
Linear Logic and Lazy Computation

J.Y. Girard
Equipe de Logique, UA753 du CNRS
Mathdmatiques, Tour 45-55, 5 ~ dtage

2 place Jussieu, 75251 Paris CEDEX 05 FRANCE

Y. Lafont
INRIA, Projet Formel

Domaine de Voluceau, Rocquencourt
BP105 78153 Le Chesnay CEDEX

FRANCE

Abstract

Recently, J.Y. Girard discovered that usual logical connectors such as =~ (implica-
tion) could be broken up into more elementary linear connectors. This provided a new
linear logic [Girard86] where hypothesis are (in some sense) used once and only once.
The most surprising is that all the power of the usual logic can be recovered by means
of recursive logical operators (connector "of course").

There are two versions of the linear logic: the intuitionistie one and the classical
one. It seems that the second provides a appropriate formalism for parallelism and
communication. This approach is entirely new and requires a further development.
Here we restrict our attention to the intultionlstic version and to the consequences of
the linear constraint to the computation process.

We give two equivalent presentations of the (propositional part of) linear logic: a
sequent calculus and a (categorical) combinator system.

Then we introduce inductive and projective connectors, in particular the connector
I (read "of course"). It plays a fundamental role in the encoding of usual intuitionistic
logic into linear logic.

There is a cut elimination theorem for the sequent calculus that corresponds to an
evaluation mechanism for the combinator system. We present a very simple (abstract)
machine that performs linear computations with the following features:

• A very natural lazy evaluation mechanism.

• No need of garbage collector.

Finally, we discuss the relevance of linear logic to implement functional languages.

53

1 A sequent calculus for the linear intuit ionist ic logic

First, we present the elementary part of the linear intuitionistic logic in a 'Gentzen like'
formalism [Gentzen].

The connectors are 1 (tensor unit), ® (tensor product), t (direct un i t) , & (direct
product), 0 (direct zero), @ (direct sum) and -~ (linear implication). Thus there are two
different conjunctions (the tensor product and the direct product).

In the following rules A, B, C denote formulas and F, A denote sequences A1, ..., An of
formulas. A sequent A1, ..., An b A means that A is a consequent of A1 ® ... ® An.

1 .1 S t r u c t u r a l r u l e s

F b A A , A b B

A P A (identity) F, A b B (cut)

F , A , B , A ~- C

F, B, A, A ~- C (exchange)

1 .2 L o g i c a l r u l e s

F~-A F I - A A b B F,A, B P C
~-1 F , I ~ - A r ,A~- A ® B F , A ® B b C

F b A F ~ - B F , A P C F , B ~ - C
F ~- t F ~- A&B F, A&B P C F, A&B ~- C

r b A F b B P, A P C F , B P C
F , 0 P A F P A ~ B F b A $ B F , A $ B ~ - C

F, A b B P b A A, B b C
F b A - . B r , A,A--.B P C

The essential difference with the usual intuitionistic calculus is the absence of two
essentially non linear structural rules:

F b B F,A,A ~ B
r , A ~- B (weakening) r , .4 b B (contraction)

See appendix A for comparison.

T h e o r e m 1 This calculus admits cut elimination: "every proof without hypothesis can be
transformed into a cut free proof".

54

The proof is essentially the same as Gentzen's one (for usual intuitionistic logic). It is
even simpler because of the absence of weakening and contraction.

Let us remind that the cut elimination property has very pleazant consequences: the
consistency 1 of the system and the subformula property (a cut free proof contains only
subformulas of the sequent that it proves).

1 .3 E x a m p l e s o f p r o o f s

From now on, Heyting (logic, formula, proof) means usual intuitionistic.

A first (very crude) interpretation of the system is to see 1 and t as the true proposition,
® and & as a conjunction, 0 as the false proposition, @ as a disjunction and -* as an
implication. With this translation, every provable linear formula becomes obviously a
provable HeFting formula.

For example, the linear formula (A&B)--*A (here A and B are atomic formulas) has
the following (linear) proof:

A ? A
A&B F- A

~- (A&B)-~A

Of course, the corresponding Heyting formula (A A B) =~ A is also provable.
But the converse is absolutely false: The linear formula (A ® B)-*A is not (linearly)

provable. Yet the corresponding Heyting formula (A A B) =~ A is still provable.
Let us show that (A ® B)-*A is not provable: Take a cut free proof of [- (A ® B)-*A.

The end of your proof has to be:
A , B ~ A

A ® B [- A
~- (A ® B) ~ A

In linear logic, it is impossible to prove A , B ~- A (in a cut free proof, the last rule has
to be an exchange . . . and you cannot find a beginning for this proof).

One of the notable features of the linear logic is the following distributivity property
(A -- B means that A ~- B and B ~- A are both provable):

A® (B @C) - CA® B) @ (A ®C)

Of course it is not true if you replace ® by &.
A cut free proof for the left to right sense is:

A~-A B~-B A~ 'A C~-C
A , B ~ - A ® B A , C ~ - A ® C

A , B ~ - (A ® B) @ (A ® C) A , C ~ - (A ® B) @ (A ® C)

A , B @ C ~ (A ® B) @ (A ® C)

A ® (B e C) ~ (A ® B) @ (A G e)

Such a cut free proof is easy to find in a bo t tom up fashion.

tin our case) the consistency is obvious (it is just a propositional calculus). Moreover there is a very
simple translation of the linear logic into the usual one that preserves provability (see section 1.8).

55

2 Combinators for the linear logic

Linear combina tors are an a l ternat ive presenta t ion for the linear logic 2.
A combina tor is a "name" for an assert ion A --* B (B is consequent of A), where A, B

are formulas. In some sense, combinators are more e lementary than sequent rules. Sequent
proofs are be t t e r for the human, but combinators are closer to the machine.

2.1 Sequential combinators

x : A - - - * B y : B - - * C

i d : A - + A y o x : A - - * C

2.2 P a r a l l e l a n d a r r a n g e c o m b i n a t o r s

x : A - - + B y : C - - + D

1 : 1 - - + 1 x ® y : A ® C - - + B ® D

o l : A ~ I ® A : c l o r : A ~ A @ l : c r

e x : A ® B ~ B ® A : e x a l : A ® (B ® C) ~ (A@ B) ® C : a r

2.3 Logical combinators

x : X - ~ A y : X ~ B

() : X -~ t (x, y) : X - * A & B f s t : A & B -~ A s n d : A & B ~ B

inl : A -+ A @ B . i n r : B -+ A @ B

x : A ~ X y : B - + X

{x, y} : A @ B --* X

x : X ® A ~ B

l c u r x : X ~ A - * B l a p p : (A ~ B) ® A ---r B

For comparison see appendix B.

P r o p o s i t i o n 1 The two formal isms (sequents and combinators) are equivalent:

Every combinator ~ : A --~ B gives a proof of A ~- B , and every proof of a sequent
A1, . . . ,A, , ~- B gives a combinator ~9 : A1 ® ... ® A,, --* B .

2They are the exact analogues of what are categorical combinator8 for Heyting logic (see appendix B)
[Lambek80,Curien85,Curien86]. For a category theoretical view, see appendix C.

56

The proof is s t ra ig thforward . In the following rules, r is cumbersome, bu t you can

push it to the r ight side using the connector -*:

P, A b C P , B b C

F , 0 b A F , A @ B b C

3 T h e c o n n e c t o r "of c o u r s e "

The linear const ra in t is very strong. To recover the expressiveness of Heyting logic, it is
necessary to in t roduce a new connector: ! (read "of course").

More generally, we can enrich the linear logic with inductive and projective connectors,
two dual not ions t ha t we i l lust ra te in the following sections:

3 . 1 I n d u c t i v e c o n n e c t o r s

Let us const ruct a " type" of na tu ra l numbers in our linear logic.
The first solut ion is a recursive definit ion (a na tu ra l number is zero or the successor of

a na tu ra l number) :

N a t = 1 @ N a t

However, this definit ion does not capture the fact t ha t N a t is the "best" solution of
this "equat ion". In par t icu la r , you need recursive definitions to const ruct usual functions
over integers.

A more adequa te solut ion is to in t roduce explici t combinators :

x : I ~ X y : X ~ X

z e r o : 1 ~ N a t succ : N a t --~ N a t n r e c x y : N a t --* X

Let us give, for example , a (non recursive) definit ion of the addi t ion:

c l : 1 ® N a t --* N a t

l c u r cl : 1 --* N a t - * N a t

l a p p : (N a t - * N a t) ® N a t -+ N a t succ : N a t --* N a t

s u c c o l a p p : (N a t - e N a t) ® N a t ~ N a t

l c u r (s u c c o l a p p) : N a t - * N a t ~ N a t - e N a t

add = l a p p o ((n r e c (l c u r c l) (l c u r (s u c c o l a p p))) ® id) : N a t ® N a t ~ N a t

Other inductive connectors can be in t roduced, for example the connector L i s t wi th the

following recursive definition:

A L i s t = 1 6) (A ® (A L i s t))

The reader may find the corresponding combinators . . .

57

3.2 Projective connectors

If you replace $ by &, you obtain the dual notion of projective connector.
For example the connector ! has the following recursive definition:

!A = A&I&(!A®!A)

As for N a t , we introduce new combinators:

x : X - - * A y : X - - * l z : X - + X ® X

m a k e x y z : X -*!A

r e a d :!A --* A kill :!A --~ 1 d u p l :!A - , !A®!A

The connector ! is a "trick" to eliminate the linear constraint.
First, !A is a "universal coalgebra" over A:

P r o p o s i t i o n 2 The following combinator can be constructed:

x :!A --* B
lift x :!A --*!B

! is also a sort of "exponential" operator (it links together the two conjunctions & and
®):

P r o p o s i t i o n 3 !t - 1 and !(A&B) =-!A®!B
In other words, the following eombinators can be constructed:

s u b l :!t ~ 1 : c r y s c r a c :!(A&B) ~ ! A®! B : g l u e

See appendix D for detailed constructions.

3.3 Encoding of Heyting logic into linear logic

We saw in section 1.3 a translation of linear logic into Heyting logic. Conversely, Heyting
logic can be merged into linear logic (with the connector !).

First we give a translation of Heyting formulas into linear ones:

• IAI = A (A is an atomic formula)

• It I = t and IA A B[= [AI&IB [

• If] = 0 and [Av B I =!IAI~![B I

• [A =~ B] =![AI-.[B [

P r o p o s i t i o n 4 A Heyting formula A is provable if and only if IA[is (linearly) provable.

58

The proof uses the following lemma3:

L e m r n a 1 Let A , B be two Heyting formulas. Every categorical combinator x : A --* B
gives a linear combinator: Ixt :!IAI --+ tB].

For example, if x : A A B ~ C gives Ixl :!(IAI&IB]) --+ C, then c u r x : A ~ B ~ C

gives lcur([x I o g lue) :!lA I --*!IBI--*C-
In fact, the necessary combinators are exactly those introduced by propositions 2

and 3.

4 C o m p u t a t i o n

4 . 1 T h e e v a l u a t i o n m e c h a n i s m

Our purpose is to show that the linear logic is well-suited for lazy evaluation (following

the philosophy of [Lafont86]).

Lazy types are:

t A & B 0 A @ B A--eB

Values of lazy types are not computed but frozen. A frozen value is made of a constructor
and another value, and it is unfrozen by a destructor.

Constructors are:

() (~ , ¢) in l i n r l c u r

Destructors are:

fs t s n d {} { ~ , ¢ } l a p p

Values are terms:

• 0

• (u, v) where u, v axe values

• q, • u where ,? is a constructor and u a value

We inductively define a relation u : A (u "is a value" of A) for a value u and a linear
formula A:

u : A v : B " 1 : A - - * B u : A

0 : 1 (u , v) : A ® B " ~ . u : S

~ : A ~ B u : A

We define an operation: ~ u : B

3Note that a tteyting formula A is provable when there exists a categorical combinator t --* A, and a
linear formula A is (linearly} provable when there exists a linear combLnator 1 -~ A.

59

s i d u = u (~ o ¢) u = ~ (¢ u)

• 1 0 = 0 (~ ® ¢) (u , v) = (~ u , ¢ v)

• o l ~ = (0, ~) c1((), ~) = ~ o r ~ = (~, 0) c r (~ , 0) =

ex(u ,v) = (v,u) al(u, (v,w)) = ((u,v),w) ar((u, v), w) = (u, (v,w))

• 0 ~ = () . u (~, ¢) ~ = (~, ¢). u
f s t ((~ , ¢) . u) = ~ u s n d ((~ , ¢) . u) = ¢ u

s i n l u = i n l . u i n r u = i n r . u
{¢o,¢}(inl .u) = ~ u { ~ , ¢ } (i n r . u) = C u

• (I c u r ~) u = (lcur ~) . u l app ((l cu r ~) - u, v) -- ~(u, v)

T h e o r e m 2 The previous definition is well founded: Computations using these rules al-
ways terminate.

The proof uses induction over combinators, values a~d formulas.

The theorem extends to inductive and projective connectors. For example for the
connector [:

(m a k e ~ ¢ p) u = (make ~ ¢ p) . u
r e a d ((m a k e ~ ¢ p) . u) = ~ u
k i l l ((make ~o ¢ p) . u) = ¢ u
d u p l ((m a k e ~ ¢ p) . u) = ((make ~ ¢ p) ® (m a k e ~ ¢ p))(p u)

Finally, we may add primitive types with primitive values and primitive combinators,
for example a type N u m with:

• 0 : N u m l : N u m 2 : N u m . . .
m i n u s : N u m ~ N u m s u m : N u m ® N u m --* N u m . . .

4 . 2 T h e L i n e a r A b s t r a c t M a c h i n e

The Linear Abstract Machine is a cousin of the Categorical Abstract Machine [CAM]. But
the linear constraint allows a radically different allocation of the memory space.

The memory space is divided into three areas:

• The code area is static (the code doesn't change during the execution) and is organized
as a graph.

• The environment area is dynamic with two part: the current tree (or actual environ-
ment) and the free list (or memory heap).

s The dump (or stack) is dynamic and linear.

60

The main point is tha t the actual environment is organized as a tree 4, and the space
allocation is completely provided (no need of garbage collector, see section 5).

As usual, the code is a list of e lementary instructions (notations: e :: C denotes the list
whose head is e and whose tail is C, [] denotes the empty list and q denotes a constructor).

Linear Abstract Machine

Before After
code environment dump code environment dump

pushl :: C (u, v) D C u v :: D
consl :: C u v :: D C (u, v) D
pushr :: C (u, v) D C v u :: D
consr :: C v u :: D C (u, v) D

ol :: C u D
el :: C (0 , ~') D
or :: C u D
er :: C (u, 0) D
ex :: C (u, v) D
al :: C (u, (v, w)) D
ar :: C ((u, v), w) D

D

C (0 , u) D
C u D

C (u, O) D
C u D
C (v,u) D
c ((u,v),w) D
c (u, (v, w)) D

~ / : :C u C q . u D
:: c (p a i r (c ' , c ")) . , , D

and :: C (pair(C', C")) . u D
altv(C', C") :: C inl . u D
altv(C', C") :: C inr . u D

lapp :: c ((lcurC'). u,v) D

C' u C :: D

C" u C :: D

C' u C :: D

C" u C :: D

C' (u, v) C :: D
[] u C :: D C u D
[] u [] Return u

Every linear combinator ~ gives code II~II for the LAM (notation: @ denotes the
concatenat ion of lists):

• I l i d l l = [] I[~ o ¢11 = I1¢11@11~11

• t t l l I = I l i d H = []
II~ ® ¢1] = II(id ® ¢) o (ta ® id)N = [pu~hl]~]]~H@[consl;pushr]@l]¢ll@[consr]

For the other connectors, the t ranslat ion is obvious:

• II(~,~b}tl = [pair(N~N, II¢]t)] NfstN = [f s t] . . .

4 . 3 C o m p i l a t i o n o f i n d u c t i v e a n d p r o j e c t i v e c o m b i n a t o r s

There is no specific LAM instruction for inductive and projective combinators . In fact
they can be compiled into looping code.

Let us consider for example the connector], with its recursive definition:

4In a strong sense, that means a connected graph without cycle and without shared nodes.

6]

!A = A&I&(!A®!A)

!A is a direct product with three projections (Here, t r d denotes the third projection):

r e a d = fs t :!A - , A kill = snd :!A -~ 1 d u p l = t r d :!A ~!A®!A

The combinator m a k e is compiled into the following looping combinator:
m a k e x y z = rn where rn -- (x, y, (m ® m) o z)

5 R e l e v a n c e of l inear logic for c o m p u t a t i o n

5.1 Lazyness

We have to clarify the difference between Heyting logic and linear logic, and the simplifi-
cation linear logic gives.

In Heyting logic, there is only one conjunction A:
A strict value of A A B is a pair (u, v) where u is a value of A and v a value of B. Such

a value may be too "evaluated" if you apply the destructor fs t or snd.
A lazy value of A ^ B is a frozen va lue /~ , ¢/" u where u is a value of a type X and ~, ¢

are combinators, ~ : X ~ A and ¢ : X ~ B. Such a value may be too little "evaluated"
if you apply the destructor app .

Of course, it is possible to unfreeze frozen values when necessary, but this mechanism
seems rather complicated and unnatural, compared to the strict evaluation mechanism
[CAM,MaSu].

The problem is that two essentially different kinds of destructors (the projections and
the application) may operate over values of type (A =~ B) A A.

In linear logic, the dilemma disappears:
Values of A ® B are strict values, and the two components are necessary: There is no

projection A ® B --* A or A ® B --* B.
Values of A&B are lazy values, and the only possible destructors for such a value are

fst and snd.

5.2 Memory allocation

Implementations of symbolic (LISP) or functional (NIL) languages need a separate mech-
anism (the garbage collector) to recover the .memory space used by abandoned pieces of
data. Garbage collecting takes time and sometimes place. Moreover, it complicates the
implementation . . .

In linear logic, the connector corresponding to the management of environment is ®
(& is lazy). Thus, projections and pairing don't act on the environment. This allows the
environment to be kept in a tree whose nodes are never abandoned or shared.

More precisely, the transitions of the Linear Abstract Machine are left and right linear
with respect to the environment (but not to the code). Left linearity is expected for an
abstract machine, but right tinearity is rather surprising.

62

In our "implementation", we add a fourth register (the free list) to the Linear Abstract
Machine. Some instructions (eonsl, consr, ol, or and the constructors) take a free location
from the free list. Other instructions (pushl, pushr, el, er, f st, snd, altv, lapp) return
a location to the free list (this is legitimate because nodes are not shared). The other
instructions (like ex) act as physical modifications.

Of course, we don't need a garbage collector because nodes are never abandoned.

5 . 3 C o m p i l a t i o n o f f u n c t i o n a l l a n g u a g e s

We saw in section 3.3 a translation of categorical combinators into linear combinators.
But there is a classical translation of functional programs into categorical combinators
[CAM,MaSu]. That gives a compilation of functional programs into the Linear Abstract
Machine.

Unfortunately, this compilation is not realistic. In fact, a very simple program gives
a big piece of code. For example, the categorical combinator ~ o ¢ is translated into the
linear combinator I~l o (lift [¢1), and lift is not a primitive combinator (see appendix D),
and m a k e is not a primitive instruction (see section 4.3) . . .

Of course, this translation is too brutish. The problem is to understand how the
linearity that occurs in a program (and there is a lot of linearity in classical algorithms)
can be recognized (by the machine or by the programmer) for our linear implementation.

A possible continuation for this article should be the elaboration of a realistic optimized
translation, or rather the development of a new programming style, in a new high level
language adapted to our linear implementation. This new language should hold simulta-
neously elegance of functional languages and efficiency of procedural languages.

Appendix
A T h e s e q u e n t c a l c u l u s

l o g i c

A . 1 S t r u c t u r a l r u l e s

F ~ - A A, A k B

A k A (identity) F, A ~- B

63

f o r t h e u s u a l i n t u i t i o n i s t i c

F,A,B,A k C
(cut) F, B, A, A k C (exchange)

r ~- B F , A , A k B

F, A V B (weakening) F, A k B (contraction)

A . 2 L o g i c a l r u l e s

r k A A~-B F , A ~ - C F , B k C

~- t r , A e A A B F, A A B ~ - C F , A ^ B k c

F P A P~-B F, A k C A, B k C
f P A F k A V B P b A V B F,A , A V B b C

F , A } - B r b A A , B ~ - C

P k A ~ B F , A , A ~ B k C

B

B . 1

C a t e g o r i c a l c o m b i n a t o r s

S e q u e n t i a l c o m b i n a t o r s

x : A ~ B y : B ~ C

i d : A - . A y o x : A - - - ~ C

B . 2 L o g i c a l c o m b i n a t o r s

x : X - - , A y : X - - ~ B

0 : x - ~ t (x,y>: x ~ A A B

{ } : f - * X i n l : A ~ A V B

x : X A A - - * B
cur x : X --+ A =~ B

fs t : A A B -~ A

i n r : B ~ A V B

s n d : A A B - - ~ B

x : A - ~ X y : B - - + X

{x,y} : A V B --* X

app : (A =~ B) A A --* B

64

C Linear c a t e g o r i e s

c.1 Terminology

A symmetric monoidal category is a category C with a bifunctor ® : C x C --~ C and an
object 1 E ¢ such that:

l ® X ~ Z X ® Y ~ Y ® X (X e Y) ® Z ~ X ® (Y ® Z)

Here ~ denotes a natural isomorphism. In addition, there are several coherence axioms
that constrain those natural isomorphims (for example: a o a = id, p o a = ~, ® id).

A symmetric monoidal closed category is a symmetric monoidal category C such that,
for every A E C, the functor X ~ X ® A has a right adjoint Y ~ A-*Y. That means:

H o m (Z ® A, Y) - Horn(X, A-*Y)

Finally, a linear category is a symmetric monoidal closed category with finite products
and coproducts 5.

c.2 Examples

Of course, a category with finite products (or coproducts) is a monoidal category. Therefore
a category with finite products, finite coproducts and exponentials is a linear category 6.
For example S E T is a linear category: @ and & are the cartesian product, @ is the disjoint
union, and I -*J = jx.

A more interesting model is the category of modules over a ring: ® is the tensor
product, & the direct product, @ the direct sum, and A--*B = Horn(A, B). Of course, &
and @ are identical.

Another example is the category T O P of topological spaces. T O P is not cartesian
closed but it is a linear category: & is the cartesian product and ~ is the disjoint union.
E ® F is E x F with the finest topology that makes sections x ~-~ (x, y) and y ~ (x, y)
continuous. E-*F is the space of continuous maps E -* F with the pointwise convergence
topology.

D S o m e u s e f u l l inear c o m b i n a t o r s

t r a n s = a r o ((al o (id ® ex) oa r) ® id) o a l : (A ® B) ® (C ® D) -* (A ® C) ® (B ® D)

x :!A --* B kill :!A --* 1 dupl :!A ~!A®!A
lift x = m a k e x kill dupl :!A -*!B

5The categorical notion corresponding to ~!" is more complex. It makes use of the notion of internal
comoY~o~'d,

6This justifies the t ranslat ion of section 1.3. Moreover, in such a category, ~!~ exists (it 's the identity
functor).

65

subl = kill :!t ~ 1

< > : l - - + t i d : l - - + l o 1 : 1 - - + (1 ® 1)

c rys = m a k e () i d o l : 1 ~ ! t

fs t : A & B ~ A snd : A & B ~ B
!fst :!(A&B) --~IA !snd :!(A&B) ~ ! B

!fst®!snd :!(A&B)®!(A&B) --:.IA®!B

e rac = (!fst®!snd) o dup l :!(A&B) --~!A®!B

r e a d :!A -+ A kill :!B -+ 1
r e a d ® k i l l : ! A ® ! B - - + A ® l c r : A ® l - - + A

cr o (read ® kill) :!A®!B --+ A

kill :!A --+ 1 r e a d :!B -+ B
kill ® r e a d :!A®!B -+ l ® B e l : I ® B - - + B

el o (kill ® read) :!A®!B -+ B

kill :!A --~ 1 kill :!B --* 1
kill ® kill :!A®!B ~ 1 ® 1 cl : 1 ® 1 --~ 1

cl o (kill ® kill) :!A®!B --~ 1

dup l :!A ~ ! A ® ! A dup l :!B ~ ! B ® ! B

dup l ® dup l :]A®!B ~ (!A®!A) ® (IB®!B)

glue = m a k e (cr o (read ® kill), el o (kill ® read)) (cl o (kill ® kill)) (t r ans o (dupl ®
dupl)) :!A®!B --+!(A&B)

R e f e r e n c e s

[CAM] G. Cousineau, P.L. Curien and M. Mauny. "The Categorical Abstract Machine."
In Functional Programming Languages and Computer Architecture, Ed. J. P. Jouan-
naud, Springer-Verlag LNCS 201 (1985) 50-64.

[Curien85] P. L. Curien. "Categorical Combinatory Logic." ICALP 85, Nafplion, Springer-
Vertag LNCS 194 (1985).

[Curien86] P. L. Curien. "Categorical Combinators, Sequential Algorithms and Functional
Programming." Pi tman (1986).

66

[Gentzen] G. Gentzen. "The Collected Papers of Gerhard Gentzen." Ed. E. Szabo, North-
Holland, Amsterdam (1969).

[Girard86] J.Y. Girard "Linear Logic" to appear in TCS.

[Lafont86] Y. Lafont "De la D6duction Naturelle g Machine Cat4gorique" to appear.

[LambekS0] J. Lambek. "From Lambda-calculus to Cartesian Closed Categories." in To
H. B. Curry: Essays on Combinatory Logic, Lambda-catculus and Formalism, Eds.
J. P. Seldin and J. R. Hindley, Academic Press (1980).

[MaSu] M. Mauny and A. Suarez. "Implementing Functional Languages in the Categor-
ical Abstract Machine." in Proceedings of the 1986 ACM Conference on Lisp and
Functional Programming.

