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Abstract 

Although the shape of objects is a key to their recognition, viable theories for describing 
shape have been elusive. We propose a theory that unifies the competing elements of shape-- 
parts and protrusions--and we develop a framework for computing them reliably. The frame- 
work emerges from introducing conservation laws to computational vision, and has application 
in areas ranging from robotics to the psychology and physiology of form. 1 2 3 

I n t r o d u c t i o n :  How should the shape of objects be described to enable recognition? This is one of 
the key problems in perception, and two views have emerged. One view holds tha t  composite objects 
are formed when distinct components interpenetrate each other [9], as when two lumps of clay are 
put together. We refer to this as the part view because it suggests that shapes are broken into ~parts" 
at the junctions between lumps. The other (protrusion) view holds that existing parts should be 
deformed, as when clay is drawn out (or pushed in) from a lump [17]. While each of these views has 
some intuitive appeal, taken in the pure form neither seems completely right nor completely wrong. 
For example, a key missing ingredient is that of "necks", or the nature of the join between parts. 
Rather, this part vs. protrusion distinction has emerged as one of the frustrating dilemmas around 
shape; others are discussed in figure 1. 

We propose an approach to representing shape, based on a reaction-diffusion equation, which 
resolves these dilemmas. Observe that,  for two-dimensional curves, slightly deformed shapes are vi- 
sually similar. We therefore study the evolution of shapes under general deformations, and show that 
they decompose into two types, a deformation that is constant (along the normal) and corresponds 
to a non-linear, hyperbolic (wave) type of process; and a deformation which varies with the curvature 
and corresponds to a quasi-linear diffusive one. The two types of processes interact, analagously to 
the way forces in physics interact at interfaces, and related questions involving conservation laws and 
entropy arise. Together the two processes give rise to shocks, the singularities of shape, which then 
provide a hierarchical decomposition of a shape into our proposed shape elements, parts and protru- 
sions. Intuitively, necks then emerge as intersecting protrusions connecting coupled parts. Examples 
show that  our proposed scheme is reliably computable. Moreover, the requirements of the algorithm 
are compatible with a physiologically-plausible model of curve detection [21] and with psychophysical 
evidence [!]" 

S h a p e  f rom an E v o l u t i o n a r y  Sequence :  Since slightly deformed shapes are visually similar, we 
begin by studying the evolution o f  a shape under various deformations. Our immediate goal is  to 
demonstrate that  deformations which depend on the local geometry of the objects can be regarded 
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Figure 1: a) The part vs. protrusion dilemma: Some objects are naturally described as the result of composition 
of parts [9], e.g. the Overlapping discs (left), while others are more naturally described as deformations [17], or 
protrusions, on a basic component (right). These two views are taken as competitive, but, intuitively, each has a 
certain appeal. Our theory provides a framework in which they both participate, eliminating the need to arbitrarily 
trade one off against the other, b) The boundary versus region dilemma: There are two complementary ways 
to approach a figurei either as a collection of boundary points or as a collection of interior points, and representations 
of shape have been based on each of these approaches; for example, boundary representations have been based on the 
chain code [5] and Fourier descriptors [20], while interior representations have been based on skeletons and medial-axis 
transformations [2]. Although the two representations are equivalent, in that one may be derived from the other, 
they each make different information explicit. This leads to trade-offs in stability and efficiency of computations. For 
example, while the structure of a "neck" at points A and B is explicit in a region-based representation, it is implicit 
in a boundary-based representation. The computation of a neck is local in a region-based representation, but global 
(thereby unstable in presence of occlusion and noise) in a boundary-based one. Our scheme makes both kinds of 
information explicit simultaneously, thereby enjoying much greater stability properties. 

as the linear sum of two basis deformations: constant motion and motion proportional to curvature. 
This will then lead us natural ly into the study of a PDE and finally to its application to shape. 

Consider the most general deformation of a curve C, namely a deformation of some arbitrary 
amount along the tangent  T and some other arbitrary amount  along the normal /V (Fig. 2)~ 0c ~ - =  

a(u, t )T + b(u, t)N, where u denotes position along the curve and t is the evolutionary step (time). 
Without  loss of generality, this deformation can be writ ten as a deformation along the normal by 
some other magnitude [6]. In addition, for a theory of shape the deformation should be restricted 
to a local function of the geometry of the curve, and should be t ime invariant. Now, since the locM 
geometry of the curve is completely determined by its curvature function [4], a time-invariant, local 
deformation is equivalent to a deformation along the normal as a function of curvature 

OC 
o-T = ~(~) '~ '  (2) 

Qualitatively, the behaviour of this deformation is governed by the first two terms in the Taylor 
expansion of fl(a) ~/~o + fll~. The first term describes constant motion outwards or inwards along 
the normal (fig 2ii), and the second term describes a motion along the normal that is proportional 
to the curvature (fig 2iii). Observe that,  for the curvature term, highly curved segments will move 
faster than slightly curved ones [12]. 

C o n s e r v a t i o n  Laws  We now show that  a deformation composed of constant motion and curvature 
motion satisfies a viscous conservation law. In particular, constant motion along the normal satisfies 
a hyperbolic conservation law for the slope of the boundary ut+[3o[H(u)]= = 0 where u is the slope in 
an extrinsic cartesian coordinate system (with horizontal axis x), H(u) -- - v / i  + u s is the slope-flux 
[t0], and t0 is the extent of constant motion. When curvature motion is introduced, "viscosity" is 

- added to the system ut +/~0[H(u)]= - fil [1+,2]=, where/31 is the extent of curvature motion. 
This viscous conservation law is a parabolic equation (/~ ~ 0), and contains two 

terms [19]. The to term, which is hyperbolic and corresponds to the constant motion, is the wave 
part. The fll term, which is parabolic and corresponds to the curvature motion, is the diffusion part. 
The diffusion term is quasi-linear, and tends to "dampen" and smooth u, while the wave term is 
nan-linear and tends to produce large solutions, steep gradients, and discontinuities. Alternatively', 
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Figure 2: (left) An arbitrary deformation of a curve is captured by two basis deformations: a constant motion 
(reaction) and a motion proportional to curvature (diffusion). Figures (ii) and (ili) illustrate the constant and 
curvature motions, respectively. Note that for constant ruotion all points move with the same speed, so that concave 
segments become more curved while convex ones become less so. However, under the curvature term, highly curved 
segments will move faster than slightly curved ones, so that all curved segments become smoother. 
Figure 3: (right)The formation of shocks and the role of entropy. Nonlinear processes can transform initially smooth 
functions to functions with singularities. (a) show s a curve with a negative curvature extremum which, when evolved 
by constant motion along the normal, leads to a singularity. This evolution can be based entirely on boundary 
information until the singularity arises. However, at this point the entropy condition is required to further control 
evolution, so that the curve does not cross over itself and the swallowtail configuration can be properly handled (b). 
The entropy condition is regionLbased, and controls how interior information interacts with the boundary. It plays 
another key role in controlling topological evolution, by globally managing the splitting of a single boundary into two 
closed boundaries (c). 

curvature satisfies the intrinsic evolution equation st + flls~, + fl0s ~ +/~lS 3 = 0, where 8 is the  ar- 
clength parameter along the curve and s is curvature. This equation is a reaction-diffusion equation, 
a common model of chemical and biological phenomena. Observe that  for/~1 = 0, the only effect is 
that of reaction. However, when/~1 5 ~ 0 diffusion is introduced to the system. 

E n t r o p y  a n d  Shocks :  In order to solve these equtions one must  address the question of the space 
of solutions to these equations. In order to deal with formed singularities the space of measurable 
and bounded functions (generalized functions) is employed [14]. To restrict solutions to physically 
significant ones and further to constrain them to satisfy conservation across singularities, notion of 
entropy mad jump conditions were developed [18, 15, 16]. Singularities which satisfy both conditions 
are called shocks. Generalized functions whose only discontinuities are shocks enjoy existence and 
uniqueness properties as solutions to conservation laws [14, 19, 18, 3]. To relate the concepts of 
entropy, jump condition, and shocks to the problem of shape representation see [13, 10]. For ex- 
ample, the role of entropy , is one of handling discontinuities by explicitly introducing region-based 
information into the boundary-based approach whereas shocks support the decomposition of shapes 
into parts and protrusions, figure 3. 

T h e  R e a c t i o n - D i f f u s i o n  Space:  Thus far, we have modelled the deformation of a curve as a 
viscous conservation law and a reactlon-diffusion equation. We now view reaction and diffusion 
as two complementary forces "acting on shape, where the relative strefigth of the hyperbolic wave 
process to the parabolic diffusive one determines the nature of deformation. Together with the time 
of evolution, they give rise to a two:dimensional space, the reaction-diffusion space, spanned by the 
ratio ~l/flo and t ime t. 

A pure diffusion process (no wave fl0 = 0) is a quasi-linear heat process. It is formally equivalent 
to the coordinates of the parametrized equation of the curve satisfying the heat equation [7]. Thus 
evolution in t ime under pure diffusion is tantamount  to filtering the coordinates by a Gaussian kernel. 
Its role therefore is one of smoothing the boundary of the shape. In fact, the boundary converges to 
a circle [8]. Since the heat equation spreads information globally with infinite speed, diffusion is a 
global process. Finally, since diffusion operates soley on the boundary curvature information it is a 
boundary process. 

On the other hand, a pure reaction process (no diffusion flz = 0) is a non-linear hyperbolic 
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Figure 4: a) Indentification of parts requires region information. Although the objects in this figure clearly have 
different parts, each is segmented into four pieces based only on the boundary information and segmented at negative 
curvature minima. The rea~tion-diffnsion space captures the natural difference between them, and also illustrates the 
non-linear nature of shape descriptions by the transition from "two petals stuck onto a blob" to "four petals composed 
around a common center". Such families of shapes can also serve as stimuli for psychological and physiologicM 
experimentation, and our theory makes both quantitative and qualitative predictions about when transitions like that 
between i) and ii will occur, b) Pure boundary-based methods miss the part-protrusion distinction. The 
segmentation of the snake at negative curvature minimma leads to inappropriate parts. The reaction-diffusion space, 
however, correctly distinguishes the body of of the snake as one deformed part. 

process. It can be shown to create singularities from the negative minima in curvature [10]. It is 
a local process in that only a limited portion of the shape affects the evolution of any single point. 
Finally, it requires no boundary information and is a region process. 

The pure reaction and pure diffusion processes are extremes along one axis of the reaction-diffusion 
space; intermediate combinations of reaction and diffusion are compromises on their various features. 
Traversing along the other axis in the reaction-diffusion space, namely time, the process has the 
effect of simplifying the shape: diffusion spreads information instantaneously and globally along 
the boundary, while the reaction process removes information non-linearly and locally through the 
region. This provides the basic structure for a scMe-space for shape, as we show in the next section. 

In summary, then, reaction and diffusion contrast and complement each other on issues of linearity 
vs. nonlinearity, smoothness vs. singularity, global vs. local, and boundary vs. region. 

P a r t s  and  P r o t r u s i o n s :  The reaction-diffusion space's significance is in the segmentation of a 
shape into pieces. More precisely, a shape is hierarchically analysed into a composition of parts 
and protrusions, our proposed computational elements of shape. Examples show how certain parts 
protrude into one another, thus naturally giving rise to necks, the neglected aspect of shape. 

But these notions are formal ones within our framework, and differ somewhat from standard usage. 
To clarify, recall that some traditional approaches to shape representation argue for a decomposition 
into "parts" or components by segmentation at the negative minima of curvature of the boundary 
[9, !]. This appears reasonable because, when two distinct objects interpenetrate, the intersections 
are almost always transversal, projecting to negative minima in curvature. However, figure 4 shows 
that boundary curvature is not sufficient to determine "parts"; region information must also be taken 
into account. Moreover, although the statement "parts are bounded by negative curvature minimg' 
is true, the converse does not necessarily hold. In fact, deformations of objects can give rise to 
negative curvature extrema, as is illustrated in figure 4. Observe that, when strictly applied the 
decomposition at negative curvature minima leads to counterintuitive results. 

Therefore, in addition to the negative curvature minima criterion, a further condition is needed to 
recover parts. The intuition must be captured that parts are bounded by pairs of negative curvature 
minima that are close in the distance through the region (and not necessarily along the boundary) 
forming a "neck". Such a partitioning of objects along necks makes sense because it is easiest, 
physically, to break objects at their narrowest regions, namely the necks. Furthermore, for objects 
with moving parts, the joints are often narrower than the components, and joints map onto necks. 
For further support of this argument see [10]. 
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Figure 5: The Reaction-Diffusion 
space. The deformed disc forms a first 
order singularity, while the peanut- 
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Figure 5: a) The evolution of shocks leads to parts and protrusions. This figure shows the development of an image 
of a doll (National Research Council of Canada Laser Range Image Library CNRC9077 Cat No 422; 128X128). The 
contour shown in box N corresponds to some time step. Observe that the 'Teet" partition from the "legs" (via second- 
order shocks) between frames 3 and 4, and the "hands" from the "arms" between frames 2 and 3. Following these 
second-order shocks, first-order shocks develop as the "arms" are "absorbed" into the chest. Running this process in 
the other direction would illustrate how the arms "protrude" from the chest, b) The Hierarchical decomposition 
of a doll into parts. Selected frames were organized into a hierarchy acoording to the principle that significance of 
part is directly proportional to its surviwl duration. 

How does one then interpret the unpaired curvature extrema? Consider a circular ring of flexible 
material which is deformed as if someone had at tempted to push a finger through it, figure 5 (left). 
This deformation creates a single curvature extremum. It is plausible, then, to associate the unpaired 
curvature extrema with deformations. 

The reaction-diffusion space provides the framework for making these arguments precise. The 
key is in the formation of shocks which are the singularities in the slope of the outline. Note that,  for 
the deformed circle (Fig 5) a single shock of the first order develops. For the peanut,  figure 5 (right), 
however, a topological split occurs, and second order shocks are formed. Therefore, the distinction 
between parts and protrusions is in the order of formed singularities in the reaction-diffusion space: 
first-order singularities signal protrusions while second-order singularities signal parts. To completely 
recover either part or protrusion, the evolved shape is run backwards through the reaction-diffusion 
space so it may be compared with the original shape, Fig 5. For a rigorous t reatment  see [10]. 

D i scuss ion :  In summary, we have presented a framework for a theory of shape based on the geometry 
of curves and their interiors. This framework resolves some of the classical dilemmas of shape 
perception, a~d results from viewing shape as a tension between reaction and diffusion in the context 
of a conservation law. It  defines a hierarchy of parts and protrusions as singularity types (shocks) 
in a reaction-diffusion space, and elucidates a mechanism for decomposing shapes into them reliably 
and consistently. Furthermore, a notion of scale naturally arises within this mechanism [11]. Finally, 
a whole family of qualitative predictions are opened up by the reaction-diffusion approach to shape, 
e.g. regarding the similarity between shapes expressed as a metric over the reaction-diffusion space 
[10]. 
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