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Many important objects consist of approximately rigid parts connected by hinges and 
other sorts of joints, so that the obvious way to describe these objects is in terms of the 
shapes of the component parts. Furthermore, if we axe interested in the behavior of these 
parts, or if they are not completely rigid, then we must also account for their non-rigid 
shape and dynamics using a technique such as the finite element method. 

Use of a 3-D dynamic model based on the finite element method was first suggested 
by Terzopoulos, Witkin, and Kass [1]. This approach to modeling is also known as the 
"thin plate" model. I will begin, therefore, by reviewing the finite element method. 

T H E  F I N I T E  E L E M E N T  M E T H O D  

The finite element method (FEM) is the standard technique for simulating the dynamic 
behavior of an object. In the FEM energy equations (or fnnctionals) are derived in terms 
of nodal point unknowns and the resulting set of simultaneous equation iterated to solve 
for displacements as a function of impinging forces: 

Mii + Dfl  + K u  = f (1) 

where u is a 3n x i vector of the (x, y, z) displacements of the n nodal points relative 
to the objects' center of mass, M, D and K are 3n by 3n matrices describing the mass~ 
damping, and material stiffness between each point within the body, and f is a 3n x 1 
vector describing the (x, y, z) components of the forces acting on the nodes. This equation 
can be interpreted as assigning a certain mass to each nodal point and a certain material 
stiffness between nodal points, with damping being accounted for by dashpots attached 
between the nodal points. Normally the damping matrix D = s lM + s2K for some scalars 
817 $2. 

One of the major drawbacks of the finite dement method is its large computational 
expense, due to the large size of the M, D, and K matrices. For instance, an object 
whose geometry is defined by 100 points produces 300 x 300 matrices, corresponding to 
the 300 unknown coordinates of the 100 nodal points, (x/,yi, zi). Furthermore, for 3-D 
models the computation scales as O(n 3) as the number of points n defining the object 
geometry increases. 

1This research was made possible in part by National Science Foundation~ Grant No. IRI-8719920. 
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Another related drawback of the finite element method, at least as applied to vision, is 
the large numbers of unknowns that must be solved for. Because the number of unknowns 
is typically much larger than the number of measurements available from sensor data, 
external information such as axis direction and shape, and heuristics such as symmetry 
and smoothness must be used to achieve useful extraction of shape. 

A final drawback of the finite element approach is the non-unique and unstable nature 
of the descriptions produced. Because the number of degrees of freedom in the model is 
at least as large as the number of sensor measurements available, the final position of a 
particular nodal point is strongly constrained in only in the direction perpendicular to 
the object's surface. Thus it is not in general possible to compare the shape of two finite 
element models directly; instead, one must sample the surface of one model, synthesize 
3-D points, and then measure the distance between those points and the surface of the 
second model. Further, unless special care is taken in the sampling step, the comparison 
is not transitive or unique with respect to rotation and translation. 

M O D A L  D Y N A M I C S  

A better method of describing non-rigid object behavior - -  at least for vision - -  is 
by use of modal  dynamics ,  that is, by describing an object's behavior in terms of its 
natural strain or vibration modes. The modal method is equivalent to the finite element 
or thin-plate method in expressiveness and accuracy, but has the additional virtue that it 
separates non-rigid object behavior into independent modes of deformation, each of which 
may" be separately analyzed and (often) solved in closed form. This in turn ca~ lead to a 
much more efficient and stable computational scheme. 

An object's strain modes may be found by simultaneously diagonalizing M, D, and K. 
Because these matrices are normally positive definite symmetric, and D is a linear function 
of M and K ,  Equation 1 can be transformed into 3n independent differential equations by 
use of the whi tening  trans/orm, which is the solution to the following eigenvalue problem: 

$¢ = M - 1 K ¢  (2) 

where $ and ¢ are the eigenvalues and eigenvectors of M-1K.  
Using the transformation u = ¢~ we can then re-write Equation 1 as follows: 

CTM¢ fi + CTD¢ ~ + CTK¢ fi = cTf (3) 

In this equation ¢TM¢, CTD¢, and CTK¢ are diagonal matrices~ so that if we let M = 
CTM¢, I) = CTD¢, I{ = CTK¢, and f = cTf then we can write Equation 3 as 3n 
independent equations: 

J~i~ti ~_ Diui  qL Ri~t i = ~ , (4) 
where 37/i is the i th diagonal element of 1VI, and so forth. 

What Equation 4 describes is the time course of one of the object's strain or vibration 
modes. The constant ~-~rl is the generalized mass of mode i, that is, the inertia of the i th 
vibration mode. Similarly,/)i, and [t'i describe the damping and spring stiffness associated 
with mode i, and )~ is the amount of force coupled with this vibration mode. The i th row 
of ¢ describes the deformation the object experiences as a consequence of the force 3~, 
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and the eigenvalue Ai is proportional to the natural resonance frequency of that vibration 
mode. 

To obtain an accurate simulation of the dynamics of an object one simply uses linear 
superposition of these modes to determine how the object responds to a given force. 
Because Equation 4 can be solved in closed form, we have the result that for objects 
composed of linearly-deforming materials the non-rigid behavior of the object in response 
to a simple force can be solved in closed form for any time t. In complex environments, 
however, numerical solution is preferred. 

N u m b e r  Of  M o d e s  Requ i red .  The modal representation decouples the degrees of 
freedom within the non-rigid dynamical system of Equation 1, but it does not by itself 
reduce the total number of degrees of freedom. However modes associated with high 
resonance frequencies (large eigenvalues) normally have little effect on object shape. This 
is because (on average) the displacement amplitude for each mode is inversely proportional 
to the square of the mode's resonance frequency, and because damping is proportional to a 
mode's frequency. The combination of these effects is that high-frequency modes generally 
have very tittle amplitude. Experimentally, i have found that most commonplace multi- 
body interactions can be adequately modeled by use of only 2 rigid-body, linear, and 
quadratic strain modes [2]. 

Although discarding high-frequency modes has little effect on accuracy, it can have 
a profound effect on computational efficiency. Not only does it result in having to solve 
fewer equations in fewer unknowns, but (because of Nyquist considerations) we can also 
employ a much larger time step, For a problem involving 100 nodal points, for instance, 
the modal method (using 30 modes) will be roughly two orders of magnitude more efficient 
than the standard finite dement approach, and yet witl typically have roughly the same 
accuracy. 

Another equally important benefit of using only low-order modes to describe object 
deformations is that they change very slowly as a function of object shape. Consequently 
the same modes ¢ may be used for a range of different - -  but similar - -  undeformed 
shapes without incurring substantial error. This allows the modes to be precomputed, 
avoiding the expense of solving for ¢ at run time. 

Advantages  of the  Moda l  Represen ta t ion .  The modal representation has several 
advantages over a representation based on the standard finite element method. First, of 
course, it is much more efficient - -  typically one or two orders of magnitude more efficient 
- -  and scales as O(n) rather than the O(n 3) scaling of the standard finite element method. 

Perhaps more importantly, however, it provides a natural hierarchy of scale, so that 
we can smoothly vary the level of detail by adding in or discarding high-frequency modes. 
That is, the modal representation provides a natural multi-scale representation for three, 
dimensional object shape in much the same manner that the Fourier transform provides 
a multi-scale representation for images. By matching the level of detail (the number of 
modes) to the number of sensor measurements available the shape recovery problem can 
be kept overconstrained without resorting to heuristics or external knowledge. 

Further, by keeping the number of modes less than the number of sensor measure- 

2Note, however, higher-order modes are required to accurately model the objects whose dimensions 
differ by more than an order of magnitude. 
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ments, we can calculate a shape description that is unique with respect to sampling and 
viewpoint (assuming, of course, that a sufficient distribution of surface measurements is 
available). In the finite element/thin-plate approach a recovered description is not unique 
because changes in sampling or viewpoint cause the nodal points to move(about on the 
object's surface; this is a direct consequence of having more degrees of freedom than sur- 
face measurements. Polynomial and spline representations also suffer from these same 
problems. In the modal representation, however, the high-frequency modes that allow 
nodal points to move relative to one another have been discarded, and as a consequence 
the representation is insensitive to sampling and viewpoint. 

Because of this uniqueness property, the modal representation is well-suited for object 
recognition and other spatial database tasks. To compare two objects described using a 
modal representation one simply compares the vector of mode values fi; if the dot product 
of the fi for each object is small, then the objects are similar (excepting some degenerate 
conditions). 

USE OF V O L U M E T R I C  M O D E L I N G  P R I M I T I V E S  

A disadvantage of any vertex or knot based representation is the expense of calcu- 
lating the distance between 3-D points (e.g., sensor data) and the modeled surface; this 
calculation has a computational complexity of O(Nn) where N is the number of  data 
points and n is the  number of points defining the object's geometry. Consequently this 
distance calculation is often a large fraction of the total computational cost. 

One method of reducing the cost of computing the data error term is to use a rep- 
resentation that has an inside-outside distance function f (x ,  y, z) = d. For such implicit 
function representations the distance d between a point (x, y, z) and the surface can be 
found by simply substituting the point into the distance function f (x ,  Y, z). The compu- 
tational complexity of this computation is O(N), a significant improvement. 

The modal representation of shape can be combined with analytic shape primitives 
by first describing each mode by an appropriate polynomial function, and then using 
global deformation techniques to warp the shape primitive into the appropriate overall 
form. The polynomial deformation mappings that correspond to each of the modes are 
determined by a linear regression of a polynomial with ra terms in appropriate powers of 
x, V, and z, against the n triples of x, y and z that compose ¢i, a 3n x 1 vector containing 
the elements of the i th row of ¢: 

= , ( 5 )  

where a is an m x 1 matrix of the coefficients of the desired deformation polynomiM, fl is 
an 3n x m matrix whose first column contains the elements o fu  = (Xr, yl,zl~ x2, y2, z2, ...), 
and whose remaining columns consist of the modified versions of u where the x., Y, and/or 
z components have been raised to the various powers. See reference [2] for more details. 

By linearly superimposing the various deformation mappings one can obtMn an accu- 
rate accounting of the object's non-rigid deformation. In the Thingworld modeling system 
[2] the set of polynomial deformations is combined into a 3 by 3 matrix of polynomiMs 
that is refered to as the modd  deformation matrix. Because low-order modes change 
slowly as a function of Object shape, the matrix can be used for a range of similar shapes, 
and thus may be precomputed. 
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Figure 1: (a) Time-lapse sequence of a sphere being deformed to fit a vertical box, and 
(b) a sphere being deformed to fit a hollow vase. 

F I T T I N G  3-D M O D E L S  

Given a segmentation into parts (such as produced by the algorithm described in 
reference [3]), the next step is to fit a deformable model to each part using available 
data. For simple objects this can be accomplished directly from the object's axes. This is 
because the planes of symmetry are the singularities (zero points) of the various low-order 
modal deformations, so that along axes and planes of symmetry the various modes are 
effectively decoupled. Consequently, the unknown polynomial coefficients in the modal 
deformation matrix can be solved for by measuring axis length, direction, and bending. 
From these coefficients the modal amplitudes fi can be solved for directly.. Such model 
recovery from symmetry analysis may be useful for understanding human vision, or for 
constructing efficient "first-pass" machine vision systems. 

More accuracy can be obtained by fitting the model to range data. This can be 
accomplished by assigning a gravity-like potential field to each data point, so that the 
deformable part's surface is attracted to the data points by the resulting forces. Figure 1 
shows two examples of this fitting process. In Figure l(a) the range data is of a vertical 
box, and in Figure l(b) the range data is of a hollow vase. In both cases the original 
spherical shape is progressively deformed by the  attractive forces exerted by the range 
measurements, until the surface exactly fits the data. Typical fitting times on a Sun 4 
using this formulation is a few seconds per part, depending upon the number of data 
points. These examples also illustrate that a wide variety of shapes can be generated by 
applying first and second order deformations to a basic spherical shape. 
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