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We present a multiscale stereo algorithm whose design makes it easily implemented on a fine grain 
parallel architecture. The matching at a given scale is performed in accordance with the algorithm 
proposed by Drumheller and Poggio, using edges as primitives. Using multiple scales is in general 
difficult and costly because of the correspondence problem between scales, but this problem is solved 
here using adaptive smoothing, a process which preserves edge location at different scales. The 
results are better than those obtained at a single scale, and the algorithm runs in a few seconds on 
a Connection Machine. 

Introduct ion  
Range or depth information has  long been considered essential in the analysis of shape. High- 
resolution range information can be obtained directly so long as the range sensor is available. Binoc- 
ular stereo has been widely used to extract the range information when such a high-resolution sensor 
is absent. Barnard and Fischler [Barnard82] define six steps necessary to stereo analysis: image 
acquisition, camera modeling, feature acquisition, image matching, depth reconstruction and inter- 
polation. Multiple scale processing not only provides a description of the signal but only facilitate a 
coarse-to-fine hierarchical processing for various vision tasks. The correspondence problem in stereo 
matching is usually very tedious and can be alleviated through a multiple scale approach. 

The correspondence problem between two images can be solved by matching specific features 
such as edges, o r  by matching small regions by the correlation of the image intensities. Edgel-based 
stereo matching techniques usually use the edges characterized by the derivatives of a smoothed ver- 
sion of the signal, for instance the zero-crossings of a Laplacian-of-Ganssian convolved image. The 
correlation-based stereo matching measures the correlation of the image intensity patches centered 
around the matched pixels. Our multiscale stereo matching is edgel-based and the matching prim- 
itives are edgels extracted with adaptive smoothing. Since adaptive smoothing provides accurate 
edge detection across different scales, it facilitates a straightforward multiscale stereo matching. 

To identify corresponding locations between two stereo images, or among a sequence of motion 
images, is difficult because of the false targets problem. Certain constraints and assumptions have to 
be made in order to establish the correct pairings. The Uniqueness constraint [Mart82] states that 
there is at most one match from each line-of-sight since the depth value associated with each matching 
primitive, left or right, mus t be unique. The Continuity constraint [Marr82! states that the depth map 
of an image should be mostly continuous, except at those points where depth discontinuities occur. 
Therefore neighboring potential matches having similar disparity values should support each other. 
The Opacity constraint further limits the occurrence of the false targets. Extending the uniqueness 
constraint, which limits to only one match along each line-of-sight, the opacity constraint states that 
there is at most one match in the hourglass-shape forbidden zone bounded by two lines-of-sight. 
The Compatibility constraint [Marr82] limits the construction of potential matches from matching 
primitives, for example, the potential matches are allowed to occur only when two zero-crossings from 
the L o G  convolved images have the same sign. Further restrictions can be made on the orientation 
and the gradient of the matching edgels. 

The false targets problem can be alleviated either by reducing the range and resolution of the 
disparity or by reducing the density of the matching features in the image. One commonly used 
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method to obtain both resolution and range of disparity information is to apply a multi-resolution 
algorithm. The information obtained from the matching at coarse resolution can be used to guide 
the matching at fine resolution. 

Mart and Grimson [Marr82,GrimsonS1] use Gaussian kernels as the scaling filters for multiscale 
stereo matching. The matches obtained at coarser scale establish a rough correspondence for the finer 
scales, thereby reducing the number of false matches, but a vergence control is necessary because of 
the poor accuracy of the LoG edge detection. 

This is overcome here by using the adaptive smoothing, which preserves edge locations across 
scales. The next section briefly reviews the major properties of adaptive smoothing, and section 3 
presents the stereo algorithm and results on two sets of images. 

Adaptive Smoothing 
We have recently introduced a formalism called adaptive smoothing [Saintmarc89]. It keeps all 
the desirable properties of Gaussian smoothing [Perona87,Chen89] and preserves the location of 
edges across scales, making the correspondence problem trivial. Adaptive smoothing, in its basic 
formulation, assumes that the signal is piecewise constant inside a region and uses an ideal step 
edge model. It not only preserves edges but also enhances them. With a suitable choice of the 
scale parameter , an accurate edge detection scheme at different scales can be achieved by adaptive 
smoothing and therefore facilitate multiple scale signal processing. A multiscale representation of 
the signal can be easily derived by choosing the necessary number of scales without dealing with the 
tedious correspondence problem as encountered in the traditional Ganssian scale space [Witkin83, 
Asada86]. Edges corresponding to adaptive smoothing are presented in the results section. 

On the Connection Machine with 16K physical processors, adaptive smoothing takes about 11 mil- 
liseconds per iteration in the case of one pixel per physical processor, compared to 10 seconds per 
iteration on a serial machine (Symbolics 3645) for a 128 x 128 image. 

Multiscale Stereo 
As mentioned in the introduction, multiscale processing is often used in a coarse to fine strategy 
to solve the matching problem, but one must solve the correspondence problem between scales. 
Adaptive smoothing can overcome this disadvantage with its accuracy of edges over scales. The 
matching results at coarser scale with adaptive smoothing are therefore much more reliable and the 
propagation of the disparity information between scales is straightforward. 

We have used our adaptive smoothing and implemented a multiscale stereo matching algorithm to 
extract the matching features. It is based on Drumheller and Poggio's [Drumheller86] parallel stereo 
matching implementation on the Connection Machine [Hillis85]. The parallel stereo matching, as in 
most stereo matching algorithms, utilizes the uniqueness the continuity constraint on the surface and 
therefore the values on the disparity map. It also imposes the opacity constraint on the surfaces and 
the compatibility constraint on the matching of the edges. 

W e  use three scales, namely coarse, intermediate and fine, in our mUltiscale stereo matching. We 
first extract edges at coarse scale for both images using adaptive smoothing. The stereo images are 
assumed to be epipolarly registered and the matching is performed scan-line by scan-line. A potential 
match is marked only when the corresponding edges from the two images have approximately the 
same orientation and gradient. Imposing the continuity constraint, the number of potential matches 
is counted over a flat uniformly-weighted square support (chosen for computational convenience) 
centered at each pixel. Enforcing the opacity and uniqueness constraints, there must be no more 
than one match in the forbidden zone, therefore a winner-take-all strategy is applied in the forbidden 
z o n e .  

The matches at the edge locations from the coarse scale are then propagated to the intermediate 
scale. Each match at coarse scale generates a forbidden zone which forbids potential matches to be 
marked at intermediate scale. This greatly reduces the number of potential matches at intermediate 
scale and therefore facilitates producing more reliable matching results. After potential matches are 
formed at intermediate scale, the same continuity, opacity and uniqueness constraints are employed 
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Figure 1: Flowchart of Multiscale Stereo Matching 

to produce the matches which are then propagated to the fine scale. A flow chart of the process is 
shown in figure 1. 

The multiscale stereo matching algorithm is implemented on the Connection Machine. The accu- 
rate edge detection by adaptive smoothing provides a very simple contro! mechanism for multiseale 
processing, and the simpficity is essential when considering parallel implementation. 

We first show in figure 2 stereo matching of the aerial view of Pentagon (256 x 256 x 8b~s, 
courtesy of Dr. W. Hoff). The pair is epipolarly registered, i.e. the two images correspond to each 
other scan-line by scan-line. Subfigures (a) and (b) show the left and right view of the original stereo 
pair. Part (C) shows the matching result using single (fine) scale. Subfigures (d), (e) and (f) show 
the left edgels, right edgels and the matching result at the coarse scale, while (g), (h) and (i) are for 
intermediate scale and (j), (k) and (1) are for fine scale. The scaling parameter k is set to 8, 4 and 0 
(no smoothing) for the coarse, intermediate and fine scales respectively. The range of disparity for 
this example is -5 (farther) to 5 (nearer) pixels, and the brighter gray level values indicate a position 
closer to the viewer. 

We show in figure 3 another example of a fruit scene (256 x 256 x 8bits, courtesy of Dr. T. Kanade, 
Carnegie-Mellon University). The scaling parameter k is set tq 12, 6 and 0 for coarse, intermediate 
and fine scales respectively. The range of disparity is -15 to 22 pixels. Figures 3(a) and (b) show the 
stereo image pair. The results of single scale and multiscale matching are shown in figure 3(c) and 
(d) respectively. 

Table 1 summarizes the statistics of the number of potential matches for the stereo matching. 
The column "multiple" stands for multiseale stereo matching and column "single" stands for stereo 
matching at each scale individually. Since the matches at coarser scale are used to form the forbidden 
zones when constructing potential matches at finer scale, the number of potential matches is greatly 
reduced at the finer scales as we can observe from the table. 

Conclus ion 
We have shown a multiseale coarse-to-fine hierarchical matching of stereo pairs which uses adaptive 
smoothing to extract the matching primitives. The number of matching primitives at coarse scale is 
small, therefore reducing the number of potential matches, which inreturn increases the reliability 
of the matc]hing results. A dense disparity can be obtained at a fine' scale where the density of 
edgels is very high. The control strategy is very simple compared to other multiscale approaches 
such as the ones using Gaussian scale space, this results from the accuracy of edges detected by 
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Figure 2: Stereo Matching of the Pentagon 
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Figure 3: Stereo Matching of the Fruit Scene 

(d) 

Pentagon Fruit 
coarse lnterm, fine coarse Interm. fine 

singlescale 22670 28892 33323 36885 80045 120026 
multiscale 22670 11372 11279 36885 37588 35676 

Table 1: Number of Potential Matches 

adaptive smoothing at different scales. The simplicity of the control strategy is especially important 
for low-level processing, and mat~es parallel implementation quite simple. 
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