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Abstract  

We present a global edge detection algorithm based on variational regularization. 
The algorithm can also be viewed as an anisotropic diffusion method. We thereby 
unify these two fro m the original outlook quite different methods. The algorithm to 
be presented moreover has the following attractive properties: 1) It only requires the 
solution of a single boundary value problem over the entire image domain--almost 
always a very simple (rectangular) region. 2) It converges to a solution of interest. 

1 I n t r o d u c t i o n  

Edge detection can in short be described as the process of finding the discontinuities of 
the partial derivatives up to some order of an image function defined on an open bounded 
connected image domain B C_ [i 2. The image function can represent various kinds of data 
collected from the visible surfaces in the scene. We will be concerned with brightness 
data. In this case the image function is real-valued, and the  discontinuities of interest 
appear in the zeroth order derivative, that is the image function itself. If the true image 
function one would obtain by pure projection of the brightness in the scene onto the 
image domain were known, the edge detection problem would be easy. However, because 
of imperfections in the image formation process, the original image function one is given, 
is distorted so that the discontinuities in the true image function are disguised into large 
gradients. Edge detection therefore essentially boils down to numerical differentiation--a 
problem well-known to be ill-posed (in the sense of Hadamard) due to its instability with 
respect to the initial data. Since measurement noise and other undesirable disturbances 
cannot be avoided, the edge detection problem thus has to be stabilized in order to have a 
meaningful solution. In more practical terms this means that the undesirable disturbances 
must be suppressed without the disappearance or dislocation of any of the edges. Over 
the last six years or so many attempts along these lines have appeared in the literature. 
One can distinguish between two seemingly quite different approaches, viz. regularization 
and anisotropic diffusion. 

Regularization can be achieved in different ways. In probabilistic regularization the 
problem is reformulated as Bayesian estimation. In variational regularization it is posed 
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as a cost (or energy) functional minimization problem leading to a variational principle. 
In spite of the different outlooks of these approaches they essentially end up with the same 
mathematical and computational problem; given the original image function ¢ : B --* R, 
minimize a cost functional C¢(w, z) where w is some function representing the edges, 
and z : B --* R is the estimated (or reconstructed) image function. In each case the 
total cost can furthermore be divided into three components according to C¢(w, z) = 
E(w) + 79(z, ¢) + S(w, z) where the edge cost C measures the extent of the edges, the 
deviation cost ~D measures the discrepancy between the estimated and the original image 
functions, and the stabilizing cost measures the unsmoothness or the a priori "unlikeliness" 
of the estimated image function. The "edge function" w can be defined in a variety of 
ways. Here we will only be concerned with edge functions of the form w : B -~ R. 

Given a specific edge function w it is generally the case that there exists a unique 
optimal estimated image function ~ ,  which can be found by solving a linear partial 
differential equation. While most of the regularization approaches do take advantage 
of this condition, none of them is capable of solving for the optimal edges in a similar 
way. The optimality conditions for the edges do either not exist, or else they consist 
of unsolvable equations. For the minimization of C¢(w, z) with respect to w all of the 
regularization approaches referred to above therefore resort to some kind of stochastic or 
deterministic search method such as the "Metropolis algorithm" or "steepest descent". 
Because of the tremendous size of the solution space any such search method is by itself 
quite expensive. In addition the general nonconvexity of the cost function causes any 
converging search algorithm to get stuck at local minima. The common response to this 
unfortunate situation has been to solve whole sequences of minimization problems, as a 
mechanism for "gravitating" towards a good local possibly a global minimum. The GNC- 
algorithm introduced in [1, 2] and simulated annealing [3] are both examples thereof. In 
summary most global edge detection methods up to date involve some form of repeated 
iterative minimization process, and because of the high computational cost that this 
implies, the optimality of the solution is often compromised. 

In contrast to the regularization-based methods, the anisotropic diffusion method pre- 
sented in the literature does not seek an optimal solution of any kind. Instead it operates 
by repeatedly filtering the image function with a smoothing kernel of small support, 
thereby producing a sequence of diffused image functions of successively lower resolution. 
In order to retain, the strength and correct location of the edges, the "smoothing power" 
of the filter kernel is made to depend (inversely) on the magnitude of the image function 
gradient in a heuristic fashion. At some stage in the iterated filtering process remarkably 
impressive edges can be extracted by postprocessing the diffused image function with a 
rudimentary local edge detector. In the limit, however, all edges disappear, and the dif- 
fused image function converges to a constant. Needless to say, any solution of interest 
therefore has to be selected from the sequence of diffused image functions way before 
convergence. This selection has so far been a matter of manual inspection. If automa- 
tion is necessary, one can of course, in the absence of more sophisticated rules, simply 
prespecify a number of filter iterations. A more serious problem due to the necessity 
to select a solution prior to convergence, may arise in an analog circuit implementation 
where the diffusion process must be "latched" or halted in order to retrieve the diffused 
image function of interest. 

In this paper we show how the variational regularization approach by Terzopoulos [4, 5] 
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can be modified so that the calculus of variations yields useful optimality conditions, not 
only for the estimated image function, but for the edges as well. The result is a global 
edge detection algorithm, which as it turns out, also can be viewed as a (new) biased 
anisotropic diffusion method. This unification of the from the original outlook quite 
different regularization and diffusion approaches is in itself quite interesting. It also 
brings the anisotropic diffusion approach an appealing sense of optimality. Anisotropic 
diffusion is thus a method for solving a well-defined mathematical problem, not just an 
image processing technique, by which one image can be transformed into another more 
pleasing looking one. Even more exciting than the unification just mentioned, is the strong 
indications that the new algorithm shares the better properties of both the regularization- 
based methods and the anisotropic diffusion method. First of all, it does only require the 
solution of a single boundary value problem on the entire image domain--almost always 
a very simple region. In particular, no explicit search method is necessary. Neither is 
the solution of a sequence of minimization problems. Secondly, the algorithm converges 
to a solution of interest. The problem of manual selection of which one in the sequence 
of diffused image functions to be postprocessed with the local edge detector, is thereby 
removed from the anisotropic diffusion method. 

Before we continue, some notation needs to be settled: II_ and R+ will denote the 
sets ] - c¢, 0[ and ]0, ~ [  respectively. The norm I1" II will always refer to the Euclidean 
norm in IlL Finally V, A and o will denote the binary maximum, minimum and function 
composition operators respectively. 

2 Controlled-Continuity Stabilization 

The "classical" stabilizers that first appeared in early vision problems did not allow esti- 
mation or reconstruction of image functions with discontinuities. In order to improve 
on this for vision problems far too restrictive model TerzopouIos [4, 5] introduced a 
more general class of stabilizing functionals referred to as controlled-continuity stabilizers. 

K . . .  ~ ' ~ K k i _ l ( O i Z / ( ~ X k  1 . OXki)2 dx where These are of the form S(w, z) - fR~ Ef=l w, •k,=, - "" 
w - [ w l . . . w i ]  T, and the weighting functions w l , . . . , w ¢  : It K ~ [0,1], referred to as 
continuity control funct ions are in general discontinuous. In particular they are able to 
make jumps to zero, and edges, where the partial derivatives of z of order > j are allowed 
to be discontinuous, are represented by the sets fqf=j+l w/-l({0}), J = 0, . . .  , I -  1. For 
the edge cost Terzopoulos proposes the functional $ ( w ) -  fRK ~f=l ~i(1 -- Wi)dx  where 
the constants $1,...,)~I E R+ satisfy I ~i=i $~ > 0. This paradigm apparently fails to 
support a genuinely variational technique for minimizing the total cost with respect to 
the continuity control function vector w. First of all, all the control functions tha t  rep- 
resent nonempty sets of edges, belong to the boundary of the continuity control function 
space. Secondly, the total cost functional is affine in w, whence it does not have any 
critical points. Terzopoulos resolves this problem by first discretizing the entire space 
of continuity control functions; w is defined on a finite subset D- -a  dual pixel grid-- 
and only allowed to take the values 0 or 1. The edge cost is modified accordingly to 

I ~i[1 a $(w) - ~ ,eD ~i=~ -- wdx)] For solution he then applies a descent method in the 
space of all possible continuity control function vectors. 
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:3 G e n u i n e l y  V a r i a t i o n a l  E d g e  D e t e c t i o n  

For our problem of detecting discontinuities of a bivariate image function, the appropriate 
deviation and stabilizing costs in the paradigm above are given by T)(z, ~) "- f s ( z -  ~)2 dx 
and $ ( w , z )  - f s  wlIVzTH 2 dx. In order to remedy the difficulties with Terzopoulos' 
method, we propose the use of a smooth continuity control function w : B --* R+. To avoid 
the problem with non-critical optimal continuity control functions, which are impossible 
to find by means of variational calculus, we will Choose the edge cost so that for each 
estimated image function z the total cost C¢(w, z) attains its minimum for exactly one 
optimal continuity control function ~ whose range is confined to lie in ]0, 1]. This idea 
iis similar to the use of barrier functions in finite dimensional optimaization [6]. The 
uniqueness of tG for a given z also allows us to solve for ff~ in terms of z in a way 
similar to Blake and Zisserman's elimination of their "line process" [1, 2]. The edge costs 
'we propose for this purpose are of the form E(w) "- fB )~f Q w dx where the edge cost 
eoe~cient ~ > 0 is constant, and the edge cost density function f : H+ --* H is twice 
differentiable. Our total cost functional is thus given by 

C¢(w, z) "--/B[.kf o w + (z - ()2 "4- wllVzTI121 dx (1) 

Setting the first variation of CO(w, z) to zero yields the Euler equations 

z(~) - ¢(~) - v .  (~Vz)(~)  = 0 

)~fr(w(x)) + llVz(~)Tll 2 = 0 

~(~)0~(~)  = o 

Vx E B (2a) 

Vx E B (2b) 

Vz ~ OB (2c) 

'where V. denotes the divergence operator, and O/Oe,~ denotes the directional derivative 
in the direction of the outward normal. The second variation of C¢ with respect to w is 
also easily found to be 

(3) 

Together with the desired existence of a unique optimal continuity control function 
' ~  for each possible estimated image function z these equations put some restrictions on 
the edge cost density f .  In fact from (2b) it follows that frN0 , 1] --~ R__ must be bijective, 
.and that f ' (] l ,  ~ [ )  _ H+. Likewise from (3) we see that f "  must be strictly positive on 
]0, 1[, and that /"(1) > 0. Two of the simplest functions satisfying these requirements 
are given by f (w)  - w - lnw and f (w)  - w l n w  - w, but there are of course many other 
possibilities [7]. 

Given that f satisfies the conditions above, f'l]O, 1] is invertible. Since moreover w is 
strictly positive, we end up with the equations 

z(=) = ((x) + v .  ( w w ) ( x )  vx e B (4a) 
w(x) = g(llVz(x)TII) Vx e B (4b) 

Oz 
Oen (x) = 0 Vx e OB (4c) 
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where the function g : R--'~ --*]0, 1], referred to as the diffusivity anomaly, is defined by 

g(7) -:-" (f'l]O, 1])-1 ( - - ~ )  > o (5) 

The properties of the edge cost density f clearly imply that g is a strictly positive strictly 
decreasing differentiable bijection. For the two edge cost densities proposed above the 
diffusivity anomaly takes the form g(7) - (1 + 3'2/A) -1 and g(7) - e-'~2/~ respectively. 

Since our method necessarily yields continuity control functions for which w -1 ({0}) = 
~ ,  Terzopoulos' edge representation is inadequate. The simplest and most reasonable 
modification is to consider the edges to consist of the set w-l(]0, 0]) where 0 is a fixed 
threshold. Since the diffusivity anomaly g is strictly decreasing; we have w-~(]0, 8]) = 
IIVzTIl-l([g-l(O), c¢[) whence the edges are obtained by thresholding the magnitude of 
the gradient of the estimated image function. 

4 B i a s e d  A n i s o t r o p i c  D i f f u s i o n  

Perona and Malik [8, 9] have introduced anisotropic diffusion as a method of suppressing 
finer details without weakening or dislocating the larger scale edges. The initial value 
problem governing their method is given by 

~Z 
~ ( x , t ) =  v . (wVz) (~ , t )  vx e B Vt> 0 (6a) 

w ( x , t )  = g ( l lVz(~ , t ) r l t )  Vx • B Vt > 0 (6b) 
Oz 

0 ~  (x't) = 0 w • OB Vt > 0 (6c) 

z(x, O) = ((x) Vx • B (6d) 

where the diffused image function z and the diffusivity w are functions of both position 
x E B and time t > 0, V- and V denote the divergence and the gradient respectively with 
respect to x, and the diffusivity anomaly g : R+ ---* R+ is a decreasing function. 

The Euler equations we derived in the previous section are very similar to the initial 
value problem (6). In fact, a solution of (4) is given by the steady state of the initial value 
problem 

~Z ~-(~,t) = ¢(~,t)  - ~(~,t)  + v .  ( ~ w ) ( ~ , t )  w e B Vt > 0 (7a) 

~ (x , t )  = g(t lVz(~,t)~lt)  W ~ B Vt > 0 (Tb) 
Oz 
o~,, (~'t) = o vx ~ OB Vt > 0 (7c) 

z(z,o)  = x(x) w e B (7d) 

which is obtained from (6) by replacing the anisotropic diffusion equation (6a) by the 
closely related "biased" anisotvopic diffusion equation (7@ Since our interest is in the 
steady state solution, the initial condition (6d) can also be replaced by an arbitrary initial 
condition (7d). The continuity control function w thus plays the role of the diffusivity, 
and will be referred to as such whenever the context so suggests. The bias term ~ - z 
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intuitively ha~ the effect of locally moderating the diffusion as the diffused image function 
z diffuses further away from the original image function ~'. It is therefore reasonable to 
believe that a steady state solution does exist. This belief is further substantiated by our 
experimental results. 

The possibility of suppressing finer details while the more significant edges remain 
intact, or are even strengthened, is a consequence of the anisotropy, which in both the dif- 
fusions described above in turn is caused by the non-constancy of the diffusivity anomaly 
g. For our variational method governed by the boundary value problem (4) the choice 
of g was based on optimality considerations. Perona and Malik select their function 
g by demanding that the resulting unbiased anisotropic diffusion enhances the already 
pronounced edges while the less significant edges are weakened. Based on an analysis 
including only blurred linear step edges they vouch for diffusivity anomalies of the form 
g(7) -'- c/[1 + (72/A) a] where c, A > 0 and a > 1/2 are constants. It is easy to check that, 
if these functions were substituted in the Euler equation (4b), the corresponding edge cost 
densities would satisfy the requirements of our variational method. Incidentally, for their 
experimental results Perona and Malik use exactly the diffusivity anomalies we proposed 
in section 3. 

5 The E x t r e m u m  Principle 

The extremum principle is a common tool for proving uniqueness and stability with respect 
to boundary data for linear elliptic and linear parabolic problems [10]. For quasi-linear 
equations, such as the Euler equation (4a) and the biased anisotropic diffusion equation 
(Ta), it is not quite as conclusive. Nevertheless it provides bounds on the solution and 
useful insight for convergence analysis of the numerical methods employed to find such a 
solution. 

Theorem 5.1 Let z : B x R+ -+ R be a solution of the biased anisotropic diffusion 
problem (7) where it is assumed that g : R--+ --~ R++ is continuously differentiable and 
( : B -* R is uniformly continuous. Assume further that z and its first and second order 
paxtial derivatives with respect to x are continuous (on B × R+). Then the following 
claims axe true: 

(i) If  :ky¢ : -B ~ R : x H q-z(x, r) has a local maximum at ~ E -B for some fixed T > '0, 
then +(OzlOt)(f ,  r) _< +¢(f)  T z(¢, r). 

(ii) If 4-z has a local maximum at (~, r) E B x R+, then +z(~, z) < ~ ( ~ ) .  

(iii) inf~es[¢(~) A X(~)] -< z (x , t )  <_ supeCB[¢(~ ) V X(¢)] Vx E B Vt > 0 

Theorem 5.2 Let z : B --* R be a solution of the boundary value problem (4) where it 
is assumed that g : R+ -* R+ is continuously differentiable. Assume further that z and 
its first and second order partial derivatives are continuous (on -B). Then 

inf ((~) < z(x)  < sup ((~) Vx E 
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According to the two theorems above the solutions of the biased anisotropic diffusion 
problem are well-behaved, in that they do not stray too far away from the original image 
function ~ unless forced to by the initial condition, and even if so, they eventually approach 
the range of ~ as t ---r oo. In particular, our variational edge detection method produces 
an estimated image function whose range is contained inside that of the original image 
function. 

6 E d g e  E n h a n c e m e n t  

It was mentioned earlier that the biased anisotropic diffusion (7) in similarity with its 
unbiased counterpart (6) has the important property of suppressing finer details while 
strengthening the more significant edges. In order to see this we define the edges to 
consist of the points in the image domain B at which the magnitude of the gradient of the 
diffused image function z has a strict local maximum along the direction perpendicular to 
the edge, that is the direction of Vz. Letting O/Oe~, denote the directional derivative in 
this direction, A denote the Laplacian operator, and a - ][VzT]] represent the strength 
of the edge, we furthermore observe that 02a/Oe~ ~ Aa < 0 at typical edge points of 
interest. At such edge points it can then be shown [7] that 

" t - 9 2 0 -  " 

- = - + tg o + tg o .)zx  - + @' o (8) 

where ~r¢ - 0ff/0e~, and qo(3") - g(7)3', 3' > 0. From this equation it is clear that the bias 
term - ( a  - a¢) merely has a moderating effect on the enhancement/blurring of the edge 
while the decision between enhancement vs. blurring depends on the sign of the "driving" 
term (qa' o a)Acr associated with the unbiased anisotropic diffusion. Since Aa < 0, the 
desired performance of weakening the weak edges while strengthening the strong ones in 
a consistent manner, therefore requires that there exists an edge enhancement threshold 
3'0 E R+ such that ~'-l(R_) =]3'0, ~ [ ,  ~'-1({0}) = {7o} and ~'-I(R+) = [0,3'0[. If that is 
the case, the threshold 70 clearly determines the sensitivity of the edge detector, and one 
would hence expect it to be closely related to the intuitively similarly acting edge cost 
coefficient i .  Indeed, from (5) and the definition of ~, it follows that 3'o is proportional 
to v~.  It is also easy to verify that the two diffusivity anomalies proposed in section 3 
satisfy the threshold condition above with 3'o = v ~  and "Yo = V / ~  respectively. 

If the diffused image function converges to a steady state solution, that is a solution 
of the boundary value problem (4), according to (8) we obtain the steady state edge 
enhancement a - a¢ = (~' o a)Aa.  Since the range of the steady state solution by the 
extremum principle is confined to lie within the range of the original image function, 
an amply enhanced edge strength a can only be maintained along a very short distance 
across the  edge. Such edges are therefore sharpened. 

Besides being of vital importance for the edge enhancement mechanism, the existence 
of the edge enhancement threshold 3'o also provides a natural choice for the threshold to 
be used in the postprocessing whereby the edges are finally extracted from the estimated 
image function. For our edge representation to be consistent with the edge enhancement 
mechanism, the edge representation threshold in section 3 should thus be given by 8 - 

g(3'o)- 
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7 Experimental Results 

The experiments presented here were conducted with the edge cost density f (w)  - w - l n  w 
corresponding to the diffusivity anomaly g(7) - 1/(1 + 72/$). The images involved were 
obtained by solving a discrete approximation of the boundary value problem (4) with a 
Gauss-Seidel-like iteration method. 

As mentioned earlier, the iteration method converges to a solution of interest. This 
condition is illustrated by figure 1, which shows an original image and the estimated image 
obtained after convergence in the "sense of insignificant perceptible changes". With the 
initial image function z (°) set equM to ~ this convergence required about 100 iterations. 
For the purpose of edge detection, however, reasonably good results were obtained already 
before 50 iterations. 

The variational edge detection method itself as well as the iteration method we em- 
ployed to solve it appear to be remarkably robust with respect to changes in the initial 
image function. To demonstrate this behavior we tried the algorithm on the same original 
image function as in figure 1, but with the for convergence particularly unfavorable initial 
image function z (°) = 0. Once ~gain the algorithm converged if yet at a slower rate. The 
two solutions obtained with the two different initial image functions were not identical, 
but very similar. The significant differences were indeed limited to affect only small blobs 
of high contrast relative to the local background. 

In order to extract a set of edges from the estimated image function z we followed 
the strategy outlined in section 3, and simply thresholded the gradient magnitude. Fig- 
ure 2 shows the edges extracted from the estimated image function in figure 1 (b) with 
a gradient magnitude threshold 0 50% higher than the edge enhancement threshold 70. 
The edges obtained with 0 50% lower than ~/0 were almost identical. Since the edge en- 
hancement/blurring mechanism discussed earlier depletes the set of points at which the 
gradient magnitude takes values close to "/o, this ought to be expected. 
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Figure 1: Es t imated  image after i i terations, when z (°) = ¢. (a) i = 0 (original image). 
(b) i = 100. 
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Figure 2: Extracted edges from estimated image in figure 1 (b). 
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