
Optimizing Storage Size for Static Control
Programs in Automatic Parallelizers

Vincent Lefebvre and Paul Feautrier

Laboratoire PRISM, Universit~ de Versailles-St. Quentin,
45, Avenue des l~tats-Unis, 78 035 Versailles c~dex, FRANCE

e~maih { Vincent .Lefebvre,Paul.Feautrier) ~prism.uvsq.fr

Abstract. This article deals with automatic paraUelization of static
control programs. The removal of memory related dependences is usu-
ally reatizedby translating the original program into a single assignment
form. This total data expansion has a very high memory cost. We present
a technique of partial data expansion for global memory architectures
which leaves untouched the performances of the parallelization process.

1 Introduction

This article deals with the automatic parallelization method based on the poly-
tope model. This method can be applied provided that source programs are
static control programs, i.e. are limited to do loops and assignment statements
to array with affine subscripts. During the parallelization process, the removal
of memory related dependences is usually realized by translating the program
into a single assignment form. This total data expansion has a very high memory
cost. The aim of this paper is to present a new technique to produce multiple
assignment parallel code which leaves untouched the performances of the par-
altelization process. Synchronous computers with global memory are our target
architectures. In section 2, we describe the polytope method with total data
expansion. In section 3, we present our technique of partial data expansion.

2 The polyedric me thod

2.1 Stat ic Contro l P r o g r a m s

Static control programs are built from assignment statements and do loops.
The only data structures are arrays of arbitrary dimensions. Loop bounds and
arraY sttbscr[pts are affine functions in the loop counters and integral structure
paramet~s. An operation may be named (R, x) where R is a statement and x
the iter:ation vector built from the values of the surrounding loop counters. The
iteration dQmain :D(R) of a statement R, is the set of instances of R.

357

2.2 S e q u e n t i a l E x e c u t i o n O r d e r

The lexicographic order is noted <<. The expression R <l S indicates that state-
ment R is before s tatement S in the program text. N R s is the number of loops
surrounding both R and S.
One has x <<p y = x[1..p] - y[1..p] A x[p + 1] < y[p + 1] and << is given by

Ixl-1
x << y -- V x <<p y. The fact tha t operation (R, x) is executed before the

p = 0
operation (S, y) is written: (R, x) --< (S, y).
It is shown in [4] that (R, x) --< (S, y) - x - < < y V (x[1..NRs] = y[1..NRs] A R <1

NRS

s) =_ V (R,x) (S,y)
p=O

where (R,x) --<p (S,y) ¢~ f 0 < p < N R s : x <<p y [p = N R s : x[1..NRs] = y[1..gRs] A R <l S

2.3 A r r a y D a t a F l o w A n a l y s i s

To each operation v we associate two sets: 7Z(v) is the set of memory cells
which are read by v; A4(v) is the set of memory cells which are modified by v.
Berstein's conditions distinguish three kinds of dependences between v and u,
where v -.<p u. If .4d(v) N 1Z(u) :~ 0, there is a f low d e p e n d e n c e at depth p,
written v 6p u. If 7~(v) A.£4 (u) =fi 0, there is an a n t i - d e p e n d e n c e , written v ~p u.
If ,M(v) N A4(u) ¢ 0, there is an o u t p u t d e p e n d e n c e , written vS~ u.

The real dependences which define the inherent semantic of a program, are
a subset of flow dependences: the d i r e c t f low d e p e n d e n c e s . All others depen-
dences are due to memory reuse and are artificial. D i r ec t flow d e p e n d e n c e s
are computed by da ta flow analysis [4]. It must determine for each memory cell
c read by an operation w, the last operation in -< which gives a value to c before
the execution of w. This operat ion is called the s o u r c e function of the read. The
result of the analysis is a quasi-affine tree or quast, i.e. a many-level condition-
nal in which predicates are tests for the positiveness of affine forms in the loop
counters and structure parameters. The leaves are either operation names, or _L.
Z indicates that the array cell under study is not modified.
Sources functions are gathered in the Data Flow Graph (DFG). The m a t r i x - v e c t o r
program is taken as running example in this article. It is given with its DFG.

S1

S2

$3

p r o g r a m m a t r i x - v e c t o r
real s, a(n,n), b(n), c(n)
integer id,n
do i=l,n

s=O.
do j----1,n

s = s + a (i j) * b (j)
end d o
c(i) = s

end do
end

T h e D F G of the m a t r i x - v e c t o r p r o g r a m
flf ~-2>_o

• o~rce(~,(s2, i , j)) = ~ th~n {s2, i,j - 1)
[,else (S1,1)

,o~rce(~(i,j), (S2, i,~)) = -
source(b(j) , (S2 , i , j)) = .L

,o~r~e(,, {S3, i)) = IS2, ~, ,~)

358

2.4 Paral le l lza t ion by Schedu l ing

All memory related dependances can be deleted by a total memory expansion
which gives to the program the s ingle a s s i g n m e n t p rope r ty : each memory cell
allocated to data will only receive one value produced by one operation during
all the execution of the program. In this way a memory cell is associated to an
operation. The algorithm of translation of a static control program into a single
assignment form is described in [4].

Finally the program is parallelized by scheduling. A time function 8 is com-
puted which gives the partial execution order of the parallel program by taking
into account the sequential constraints of the data flow. For any operation u, if
~(u) is its execution time, one must have: Vc E 7~(u), 8(source(c, u)) << ~(u).

It defines a set of linear constraints. One limits oneself to affine one-dimensionnal
and mutti-dimensionnal schedules [5]. In the case of our running example, one
can have the following schedule function 8:

e(s~, i) = o e(s2, i , j) = y e(s3, i) = . + (1)

An operation front ~'(t) gathers all operations which have a same execution
time. The operations of a same front can be executed in parallel. If one translates
in Fortran 90 the parallel program built with (1) as new operations execution
order, one gets the following code:

S1

$2

S2

$3

program matrix-vector
real InsSl(n), InsS2(n,n), InsS3(n), a(n,n), b(n)
do t=0 ,n+ l

if (t .EQ. 0) then
InsSl(l :n : l)=0.

end if
if (t .EQ. 1) then

InsS2(l:n:l , t) = InsSl (l :n : l) n u a (l :n : l , t)*b(t)
end if
if (t .GE. 2 .AND. t .LE. n) then

InsS2(l:n:t , t) = InsS2(l :n : l , t - l) + a(l :n: l ,~)*b(t)
end if
if (t .EQ. n@l) then

InsS3(t:n:l) --- InsS2(l :n: l ,n)
end if

end do
end

Translating the sequential program into a single assignment form has a very
high memory cost. It is clear in the case of our running example: from a scalar
s and an array c(n), one gets three arrays with a data space of (.0(n~).

3 Reduced Data Expansion in Parallelized Programs

3.1 Re la t ed Work

Most of papers from the automatic parallelization community deal with array
privatization. Privatization is a technique that allows each thread on a processor
to allocate a distinct instance of a variable. It may require less space than total

359

expansion because it creates one copy per processor and the number of processors
cooperating in the execution of the parallel loop is less than the number of
iterations [7]. Lam proposes to optimize array privatization with the help of the
DFG [I].

De Greef and Catthoor have adressed the memory reuse problem for static
control programs. They stop at the formulation of the constraints to be satisfied
[2].

Another solution has been proposed by the systolic community [8]. Programs
in this case are directly given in single assignment form. They try to create output
dependences which don't invalidate the data flow by estimating the lifetime of
each variable.

3.2 Ut i l i ty Span o f a V a l u e

Our aim is now to define a method of partial data expansion which reduces the
m e m o r y expans ion induced by parallelization and replaces the single as-
s ignment fo rm t r a n s l a t i o n during the parallelization process. The constraint
is that the schedule which has been deduced from the DFG should remain valid
in the presence of output and anti-dependences.

Let V(v) be the value produced by an operation v. Let ¢(v) be the memory
cell in which Y(v) is stored. Let U(v) be the set which gathers all operations
u such that there is a direct data flow from v to u./~(v) is usually called the
ut i l iza t ion set of v. Let g(v) be the execution time of the last read of]2(v) in
the parallel program. Let L(v) be the operation which executes this last read.
Consider a memory cell C(v) during the execution of a parallel program in single
assignment form. One can distinguish three periods:

1. P e r i o d (I): the memory cell s tays e m p t y until the execution of v with
which it is associated.

2. P e r i o d (II): the execution of v stores];(v) in C(v). The operations of U(v)
read V(v) until L:(v). During this time, ~;(v) is useful.

3. P e r i o d (III): the memory cell is not read anymore after g(v), nevertheless
1;(v) is still in ¢(v) until the end of the execution of the parallel program.
];(v) becomes useless .

It is clear that during the periods (I) and (III), C(v) can store others values.
Our method of partial da ta expansion is based on the notion of ut i l i ty span of
a value. It is clear that it corresponds to the period (II): Y(v) must reside in
memory during t E [e(v), E(v)].
Before and after this utility span, C(v) can store others values without changing
the data flow from v to operations in U(v): one can reintroduce output depen-
dences between v and some others operations. Such output dependences are
called neu t r a l d e p e n d e n c e s .

3.3 Neu t r a l D e p e n d e n c e s

An output dependence is neutral for a schedule function 8 iff it doesn't change
the data flow in the parallel program built with the help of 8.

360

One can precisely give the characteristics of a n e u t r a l o u t p u t dependence
between two operations v and w in the parallel program: v mus t be execu ted
be fore w (O(v) << O(w)), t h e r e is an access conflict (C(v) = C(w)) and the
u t i l i ty spans are s epa ra t e (f.(v) << O(w)).

By extension an output dependence between v and w can be considered as
neutral if w is L(v), i.e. the operation which executes the last read of Y(v). The
write of];(w) occurs after the read of V(v) by w.

To decide if an output dependence is neutral in a parallel program, one
must have a precise estimation of an utility span of each value];(v). Then this
estimation can help us to reconstruct the data space of the program by adjusting
data size to utility spans. The final purpose is to build a program with direct flow
dependences and neutral output dependences. Our first approach has consisted
to maintain neutral output dependences from the original program to its parallel
version [6]. But this method is directly dependent from the original data space
and can't be used to reduce data size of programs provided in single assignment
form. We have decided to improve our technique to become independent from
the original data: with the new method presented in this article, the output
dependences existing in the program after partial expansion are not necessarily
present in the original version.

3.4 D e t e r m i n a t i n g Ut i l i t y S p a n
Consider the utility span of an operation (R,x): [O(R,x), £(R, x)]. The lower
bound of this time subsegment is directly given by 0. The problem is to compute
the upper bound £:(R, x). Determining this time uses techniques from data flow
analysis. The main difference is that the lexicographic maximum computation
is not on the sequential execution order -<, but on the execution order given by
the schedule function 0. Consider J;wo statements R and S:

n : ~[f(x)]

s : ~ [h(y)] . . .

The operation ts(R, x) is the last read of];(R, x) in the parallel program among
the operations instances of S which belong to H(R, x). Let (S, B•s (x)) be this
set of candidates which is built by scanning the DFG. It is clear that the last
operation which reads Y(R, x) between instances of S is the last one executed
according to 0: L s (R , x) - (S, rr~axBRs(x)).

All statements which may read the data a must be taken into account. The
real last read is their maximum according to 0: L(R, x) = maxLs(R, x). Like

<<e

the source function, L(R, x) is a quast.
To determine £(R, x) one just applies the function 0 to each leaf of L(R, x)

except for leaves which are the symbol .k which are left untouched. The symbol
J_ indicates that Y(v) is either useless or an output value. The utily spans in our
running example are:

(s l , ,) (s2, ,, 1~ [o, 1] {,f:<.-~ {,,.<..-i { ,r.<,~-1
(S=, ,, 9) then"(S:~, ,,) '4- *) than--./ .~- I then'-[~, j -}- 1] .].,. (sa, i) el,,.. + I .'.e [j, ,, + *]

(s3, ,) - J. [~ + 1, ±]

361

3.5 Pa r t i a l D a t a E x p a n s i o n

The first step is a p a r t i a l a r r a y a n d scalar expans ion process that decides
the shape of each statement left hand side. The second step consists in a pa r t i a l
r enaming p rocess and decides which are the statements that can share the
same data structure.

Par t ia l Ar r ay E x p a n s i o n We want to build a structure lhsR which is specifi-
cally associated to the statement R. It will give the shape (number of dimensions
and size of each dimension) and the index function which constitute the data in
the left hand side of R in the restructured program. The aim is that lhsR pro-
vides memory reuse, i.e. n e u t r a l output dependences between some operations
instances of R. Moreover the elaboration of lhsR must be independent from the
original data structure in the lhs of R.

One recalls that a neutral output dependence can't kill a value F(R, x) during
its utility span. To respect this rule for any instance of R, one must take into
account the maximum duration that the utility span of I](R, x) can have in the
parallel program. For an operation (R, x) this duration is obtained by subtracting
the lower bound of its utility span from the upper bound. One writes d(R, x)
this parameter. One considers that _L - ~(R, x) = _k. Each leaf of d(R, x) is
a multi-dimensionnal linear expression in terms of loop counters and structure
parameters. The maximum duration D(R) that the utility span of instances of
R can have, is the maximum vMue of d(R, x) on the iteration domain of R:
Vx e 9(R) , d(R, x)<<D(R). D(R) is a multidimensionnal linear expression in
terms of structure parameters or the symbol ±. Notice that one considers that
if d(R, x) • _L, then .1_ << d(R, x).

V(R, x) must be in C(R, x) between 8(R, x) and £(R, x) = ~(R, x) + d(R, x).
If one wants to protect each instance of R during its utility span, one must build
lhsR in such a way that no value V(R, x) can be killed between 8(R, x) and

x) + D(n).
The algorithm that builds the data structure lhsR can be summarized like this:

- One starts with a scalar lhsR. The elaboration of lhsR is iterative, the
number of iterations is equal to NRR (number of loops surrounding R).
Each iteration is called p a r t i a l expans ion of R at dep th p where p is the
depth of the loop considered.

- A par t ia l e x p a n s i o n o f R acco rd ing to p consists in computing the
expans ion deg ree o f R a t d e p t h p E~ (it gives the number of elements
of a new dimension that one adds to lhsR) and indexing this new dimension
of lhsR.

The problem is now to compute E~. The partial expansion of/~ at depth
p avoids non neutral output dependences between two operations (R, x) and
(R, x') if x <<p x'. For an operation (R, x), we build the set of candidates gath-
ering all the operations (R, x ~) which can't share the same memory cell than
(R, x) because their utility spans are no t separa te . Let C~R(x) be the set of

362

c,p be its le:dcographic maximum. One can't have output candidates and let e R
dependences between operations (R, x) and (R, x') with (R,x / -~p (R, x' / -<p
(R,x~) = e c'p. Prom this follows the inequalities on the iteration vectors-
x[v+ t] < ¢ [v + t] < xe[P+ 1].
If lhsR is expanded at depth p with E[R,x > = xe[p + 1] - x[p + 1] + 1, we
are sure that no non neutral output dependence at depth p can appear con-
cerning (R, x). But it must be verified for each instance of R, hence the ex-
pension degree E~ is the maximum value that EfR,x) can have for x E P(R):
E~ = maxxev(/~)E~&x). For our running example, one obtains the following
results:

IStacementZl~Ma~imum utility span duratioaJExpansio, de~reelJFinal data structureJ Fins! lhs J

s l D ($ I) = I E ~ I = ~ t h , S 1 [n] J h , $ 1 [i] = ...
S2 D(S2) = i E °,~ = :

E lhsS2[n] I h s S 2 (i] = ...

$3 D(S3) = J. E.~,~ ----- . lhsS3[n] lhsS3[i] ----- ...

Notice that the array in the lhs of $3 is left untouched even if its values are
never read, because it stores output values.

Pa r t i a l RenAming For two statements R and T, partial expansion builds two
structures lhsR and lhsT which can have different shapes. If at the end of the
renaming process R and T are authorized to share the same array, this one would
have to be the rectangular hull of lhsR and lhsT: lhsR-T. It is clear that these
two statements can share the same data iff this sharing does not generate non
neutral dependence between R and T with lhsR-T in lhs of the two statements.
Let F•-T be the index function of lhsR-T. One must verify for each operation
(R, x / and (T, z) tha t would be in output dependence (i.e. FR-T(X) = FR-T(Z))
that I](R, x) can't be killed by (T, z) before the end of its utility span and that
N(T, z) can't be killed by (R, x) before the end of its utility span.

Finding the minimal number of renaming is a NP-complete problem (see [2]).
Our method consists in building a graph similar to an interference graph as used
in code generation process of a classical compiler to optimize registers allocation.
In this graph, each vertex represents a statement of the program. There is an
edge between two vertices R and T iff it has been shown that they can't share
the same data structure in their lhs. Then one applies on this graph a greedy
coloring algorithm. Finally it is clear that vertices that have the same colour can
have the same data structure. In our running example, S1, $2 and $3 have the
same colour. The memory requirement is finally an one-dimensionnal array with
n elements which can be the array ¢.

[StatementslOri~in~| da~a~After tots| exp~mslonlAfter psrtlaJ expansion I

l n , S 2 ~ a , n]

After partial expansion the Fortran 90 version of the program is :

program matrix-vector
real s(n), a(n,n), b(n), c(n)

363

$1

$2

integer id,n~
d o t = 0 , n

if (t .EQ. 0) then
c(l :n : l) : O.

end if
if (t .GE. 1 .AND. t .LE. n)

e(l :n: l) = c(l :n : l) + a (l :n : l , t)*b(t)
end if

end do
end

4 Conclusion

Our aim has been reached, our method can effectively reduce the memory cost
in the data expansion process of stat ic control programs. In our running example
the data size is less in the parallel p rogram than the original data size. Moreover
the s tatement $3 has become useless after the fusion of e and s and has been
removed. Notice that if one builds a schedule function equivalent to the sequential
execution order, one finds as final s t ructure the scalar s and the array c. It means
that if the source program is provided in single assignment form for instance,
then our method reduces the two arrays in the lhs of $1 and $2 to a single
scalar. We have then obta ined an impor tan t result: our method can reduce the
original da ta size of the program if the memory requirement necessary for the
schedule function is less than the original da ta size.

References

1. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array data-flow analysis and
its use in array privatization. In Principles of Programming Languages, 1993.

2. P.Y Calland, A. Darte, Y. Robert , F. Vivien. On the removal of anti and out-
put dependences. Technical report RR96-04, laboratoire LIP - dcole normale
supdrieure de Lyon - Feb 1996.

3. E. De Greef, F. Catthoor and H. De Man. Reducing storage size for static control
programs mapped to parallel architectures. - presented at Dagstuhl Seminar on
Loop Paralletization, April 1996.

4. P. Feautrier: Dataflow Analysis of Array and Scalar References. Int. J. of Parallel
Programming, 20(1):23-53, February 1991.

5. P. Feautrier. Some efficient solutions to the a]:fine scheduling problem part H :
multidimensional time. Int J. of Parallel Programming, 21(6):389-420, December
92.

6. V. Lefebvre and P. Feautrier. Storage Management in Parallel Programs. In
Proc. of the Fith Euromicro Workshop on Parallel and Distributed Processing
Conf, Pages 181-188. London. Jan 1997.

7. P. Tu and D. Padua. Array pr~vatization for shared and distributed memory
machines. In Proc. Third Workshop on Languages and Compilers for Distributed
Memory Machines, Boulder, Colorado 1992.

8. S. Rajopadhye and D. Wilde. Memory Reuse Analysis in the Polyhedral Model.
tn Bougd, Fraignaud, Mignotte and Robert, editors, Euro-Par'96 Parallel Pro-
cessing, Vol I, pages 389-397. Springer-Vertag, LNCS 1123, Aug 1996.

