
Client Server C o m p u t i n g on Message Pass ing
Systems: Exper iences wi th P V M - R P C *

A. T. Krantz and V. S. Sunderam

Dept. of Math ~ CS, Emory University, Atlanta GA 30322, USA
emaih {atk, vss}~mathcs.emory.edu

Abstrac t . The relationship between client-server distributed comput-
ing and message-passing parallel processing is explored in this work
through an experimental RPC framework for the PVM system. The
project investigates the potential for I~PC to complement asynchronous
message passing in PVM - both to expand the domain of applications,
and to evaluate the effectiveness of client-server computing for tradi-
tional scientific and numerical problem solving. Our design is intuitive
and straightforward, and enables servers and clients to be developed with
a minimum of additional effort in terms of programming and logistics.
Our experiences with early implementations of PVM-RPC indicate that
the client-server model is reasonably compatible with message passing
and scientific algorithms, and furthermore, that the RPC layer intro-
duces little if any performance overhead into message passing systems.
Furthermore, support for simple versions of useful features such as trans-
parent failure resilience and automatic load balancing are facilitated in
this model.

1 I n t r o d u c t i o n

Parallel Virtual Machine (PVM)[7] is a software system for heterogeneous paral-
lel and distributed computing on networked systems. PVM, which is based on the
message passing model, has become a de-facto standard and a.widely used sys-
tem 'due to its design effectiveness, implementation portability, and robustness.
However, providing only a message-passing interface has restricted PVM appli-
cation categories significantly. Furthermore, the message-passing model requires
a number of potentially complex tasks to be programmed explicitly by the user,
including process identification and table maintenance; message preparation,
transmission/reception, ordering, and discrimination; and task synchronization.

In contrast, traditional distributed computing is based on the "client-server"
model. In this paradigm, entities known as servers provide services that may be
utilized by clients. Implicit in this abstract definition is the potential for varying
levels of implementation semantics. Typical implementations of systems include

Research supported by Array Research Office grant DAAH04-96-1-0083 U. S. De-
partment of Energy Grant No. DE-FG05-91ER25105, and the National Science
Foundation Award Nos. CCR-9523544 and ASC-9527186.

111

location transparency, data-representation, heterogeneity, failure resilience, and
dynamic replication of servers to meet increased load. A popular manifestation of
client-server computing is the the Remote Procedure Call (RPC)[8, 3] interface,
that avoids many of the pitfalls of asynchronous message-passing programming.
For this and other reasons, including those mentioned above, the overwhelming
majority of commercial distributed applications are based on the client-server
model and RPC.

At an abstract level, this project aims to investigate the viability of client
server computing for numerical and scientific applications, and the extent to
which this paradigm can be reconciled with the message passing model. We
are pursuing this via an experimental software system called PVM-I~PC, which
serves as the vehicle for evaluating both functionality and performance. In this
paper, we discuss our motivations and background, and present an overview of
the PVM-RPC system as it currently exists; we also provide some performance
results comparing PVM-RPC to PVM-MP(message passing) that quantify the
(low) overheads introduced. We then describe our plans for future enhancements
to the system, including enhanced fault tolerance and load balancing features,
and adding an object oriented application programming interface (API) as an
extension to the PVM-RPC programming model.

2 Mot ivat ions and Goals

RPC systems have been available for a number of years, and most of the is-
sues have been well analyzed and resolved. Nevertheless, enhancements such as
combining message passing and RPC, incorporating load balancing with failure
resilience, and using request-response paradigms for numerical algorithms can
be supported with a system like PVM-RPC. Thus, one goal of this project is to
provide a remote procedure call facility to current PVM users, who could poten-
tially benefit from the RPC programming model. Another is to make PVM more
suitable for those applications which have traditionally been implemented using
the RPC mechanism, and a third is to revisit the RPC model to explore func-
tionality extensions to the RPC paradigm itself. Most existing PVM applications
in scientific computing are well suited to the message passing model because of
their asynchronous or irregular communication pattern. However, certain soft-
ware engineering aspects of these applications, such as rapid deployment and
robustness, can be enhanced by using the RPC paradigm. Especially since PVM-
RPC can co-exist with traditional message passing, portions of an application
could be converted to use RPC when appropriate. Simultaneously, traditional
client-server applications could benefit from the software infrastructure provided
by PVM. We believe that this approach has several advantages over simply using
other RPC systems. Several older systems, such as rpcgen[8] are cumbersome
and time consuming for application development; moreover, they are simplistic
in server location mechanisms, provide little fault tolerance, and do not incorpo-
rate load balancing schemes. Our goals were to provide these features and more,
while minimizing the programmer's effort and system overheads. For our future

112

work we want to carry this philosophy forward while addressing the benefits of
newer systems such as Corba [6] which work in an object oriented environment.

3 T h e P V M - R P C S y s t e m : C u r r e n t S t a t u s

PVM-RPC[9] is derived from the RPC model[3] in which references to remote
services mimic a procedure call. In PVM-RPC, applications design and imple-
ment a server which may export one or more services. Clients access these ser-
vices with invocations that look and behave like procedure calls. However, there
are a number of issues which arise since these procedure calls invoke non-local
routines; the major issues are name binding, parameter passing, asynchronous
processing, and redundancy as it applies to fault tolerance and load balancing.
Name binding is the process of mapping the name of a routine as referenced by
the client to a service made available by a remote server. While there are many
different models for name binding, we use the concept of a service broker (SB)
[2, 6], a well-known entity in the distributed computing environment. Servers
register with the SB, which publishes available services and from whom clients
can obtain the location of a required service provider.

Redundant servers are often desirable to allow for load balancing and failure
resilience. PVM-RPC supports multiple servers offering the same service with
the RPC invocation mechanisms selecting the best suited server for the initial
invocation. In the event of failure during the call, the request is transferred to
another server, if possible, without intervention or explicit coding by the pro-
grammer. Thus, replicated servers enable simple forms of load balancing and
failure resilience in PVM-RPC. For parameter passing, function arguments in
PVM-RPC may optionally be tagged by the programmer as being input, output
o1" input-output, depending on whether values are copied from client to server,
server to client, or bidirectionally. This feature can help reduce data copying
between client and server, particularly in the case of large arrays, while pro-
viding the ability to pass large quantities of unidirectional data when needed.
PVM-RPC also supports asynchronous remote procedure call; in fact, the API
implements a synchronous call by immediately following an asynchronous call
with a wait. While an asynchronous invocation diverges from the standard de-
scription of RPC as described in [3], in which the invocation of a remote process
is described as being "semantically equivalent to a procedure call". This variation
in the RPC model is a common adaptation.

3.1 Sys tem Overview

The PVM-RPC system consists of four major components - the pvm daemon
(PVMD), the service broker (SB), the servers, and the clients. Of these, PVMD is
an integral part of any PVM system, and is responsible for managing the virtual
machine, message routing, process initiation, housekeeping, and various other
functions. The SB maps service names, as known to clients, to a tuple consisting
of a server and service id recognizable by the server. In order to ensure that

113

PVM-RPC is at least as reliable as PVM with respect to hardware failure, the
SB runs on the same machine as the master PVMD. While there are various
ways that the SB can start, any server that is trying to register a service will
start the SB if it is not already running. When a server starts, it first locates the
SB via a table lookup in PVMD. If the SB is not running, then the server starts
an SB using pvm_spawn and, again, at tempts to locate the SB from the PVMD
(the second lookup of the SB is done to prevent a race condition between two
servers). The server then registers its services with the SB.

Similarly, when a client wishes to use a service, it first locates the SB from
the PVMD and then obtains a list of available services from the SB. The SB re-
turns a complete list of all known services and addresses, which the client caches
locally in a table; subsequent name resolutions are done by table lookup. When
a service becomes unavailable (due either to server failure or congestion) clients
update their tables accordingly. If more than one server is available for a particu-
lar service, clients interleave requests among all available servers. At each server,
requests are processed in FIFO fashion. However, all servers recognize a special
"are you alive" message and send an immediate response - thereby permitt ing
clients to determine whether servers are still busy computing their requests or
if they have failed. Client stubs, as previously mentioned, always perform asyn-
chronous invocations followed by "wait"s - during which they periodically ping
servers and re-issue requests to alternate servers if no "i am alive" responses are
received. This simple failure resilience mechanism is of considerable practical
value.

3.2 Application Programming Interface

As in any RPC system, PVM-KPC provides constructs for writing servers and
clients. To create a server, services must be declared:

pvm rpc_service (service_name [, [IN, OUT,10] {PVM_TYPE} variable_name])

This declaration is then followed by standard C code that defines the implemen-
tation of the service. All parameters are treated as pointers. The key words IN,
OUT and IO (default) are optionally used to provide hints to avoid data copy-
ing where possible. Data types are specified as in PVM, e.g. PVM_DOUBLE or
PVMANT (PVM_CPLX and PVM_DCPLX are currently not supported). For
each parameter the programmer declares, there is a 'hidden' integer constant
called {variable_name}_size (i.e., _size appended to the parameter name) that
specifies the number of elements the parameter var iable_name contains. This
variable is generated automatically by the preprocessor. After all services are
declared, the statement pvm_rpc_main completes the server. A server may itself
behave as a client by invoking functions at other servers. While a service may call
external functions, all services must be declared in the same file that contains
the pvm-rpc_main statement.

Clients can invoke a remote procedure either synchronously with the state-
ment pvrrarpc_sinvoke, or asynchronously with the statement pvm_rpc_ainvoke.

114

In the asynchronous case, a later pvm_rpc_wait statement acts as a synchroniza-
tion point for the RPC. An example of a client invocation is:

pvm_rpc_sinvoke (add_vec, a : SIZE ,b : SIZE, c : SIZE) ;

where a, b, and c are declared as double a[SIZE], b[SIZE], and c[SIZE].

3.3 P e r f o r m a n c e of t h e P V M - R P C S y s t e m

In this section we present performance results from a simple benchmark of the
current PVM-RPC system. The application computes long range forces among
10000 pairs of particles. The PVM-MP (message passing) program is an adap-
tation of the "CUBIX CrOS IlI" algorithm from [5]. In this implementation,
the particle space is divided among the available processors (processes in PVM)
which are logically connected in a ring. By shuffling each processor's portion of
the particle space to ring neighbors, and performing force computations on pairs
of particle subspaces during each phase, all-to-all interaction forces are com-
puted. In the PVM-RPC version, servers export services that compute partial
forces given two subspaces; a single client repeatedly issues requests to multiple
servers with all possible combinations of particle subspaces. Our benchmark ex-
ercise was conducted in order to to determine if PVM-RPC incurred significant
overheads compared to PVM-MP, while providing a more natural interface to
invoke a remote service.

300

E 250 X
e
c
u 200
t
i o 150
n

T 100
i

m 50 e

i I i I I I

- - - ~ . PVM-RPC
" _ • . . .

0 I I I I I I I

0 1 2 3 4 5 6 7 8
Number of Processors

Fig. 1. Scalability of PVM-MP and PVM-RPC.

All programs were compiled with Sun0S cc version SC4.0 18 0ct 1995 C
4.0 using the switch -xO4 and run on Sparcstation 20's under SunOS 5.5.1. A
series of runs using 0,1,2,4 and 8 processors were performed for both the PVM-
RPC and PVM-MP programs, with 0 processors representing the execution time

115

of a sequential program on a single machine. Execution times in seconds for both
versions of the program are shown in Fig. 1 for different numbers of processors.
Little difference in performance is observed between the two versions; in fact,
the RPC version is marginally faster. These results, while only representing an
isolated case, nevertheless do indicate that the client-server model does not de-
grade either programmability or performance for physical science applications
exemplified by PIC codes. Moreover, the marginal improvement that RPC ex-
hibits suggests that such a client server organization may be preferable to crowd-
computation structures. The reason for the loss in PVM-MP performance is the
tight synchrony of the abstract algorithm, which translates poorly to general
purpose cluster environments in which processors require slightly different times
to complete equal amounts of work. These effects are well-known, and are due
to external or operating system perturbations, and occur even when dedicated
workstations are used. The RPC paradigm alleviates this synchrony by parcel-
ing out. work to processors using a bag-of-tasks approach, often (as in this case)
resulting in better overall performance. We have also conducted several other
benchmarking exercises using textbook programs such as matrix multiply, dot
products, and raytracing. In each case, similar results (i.e. performance within
5-10% of PVM-MP) were observed. Although these conclusions cannot be gen-
eralized because these applications are not representative of parallel programs
with more complex communication patterns, they do indicate to some extent
the viability of client-server computing in the scientific application domain.

4 O n g o i n g W o r k a n d F u t u r e P l a n s

As discussed, PVM-RPC incurs little or no performance overhead compared to
PVM-MP while enhancing PVM with a client-server framework, some failure
resilience and load balancing support, and a procedure call interface for process-
to-process communication. However, the current implementation is limited in
several respects; we are addressing these and other issues in the belief that these
facilities would be valuable complements to the existing system and to native
PVM.

4.1 P r o p o s e d A P I

In order to facilitate object oriented applications, a new API is being developed
for PVM-RPC and incorporates C + + class definitions as its basis to define re-
mote objects. This syntax is extended by prefixing the keyword class with the
modifier distributed to define an object which requires distributed computation;
similar qualification is used to distinguish distributed methods and variables
within an object from local counterparts. Although implementation is straight-
forward, this extension raises tricky issues. For example, if distributed variables
are cached on the server, how and when are they updated? Second, as with
PVM-RPC, there is an inherent problem with the handling of pointers in that

116

the length of the vector is of an unknown size. Both of these issue could be ad-
dressed by using a newly created PVM class type which require all modifications
to distributed variables to both dirty the cache and adjust a hidden size rood-
ifier. However, this approach would introduce significant overhead and requires
further study.

Another API extension concerns non-blocking invocations. We are consid-
ering (possibly nested) COBEGIN-COEND structures that enable client side
threads to be dynamically created to simulate efficient fork-join operations. Us-
ing this feature, a distributed calls could take place simultaneously. Such a fea-
ture will also enable the implementation of asynchronous callbacks or notification
mechanisms. An example of a possible notation is:

ptr.add(a:20,b:40:2,c): NOTIFY add_handler(c)

This example illustrates a remote method add which will return prior to comple-
tion of the remote computation. When the remote computation has completed
the routine add._handler will be called with argument c. Since distributed classes
will be converted to C + + classes by a preprocessor, normal C + + features such
as inheritance and virtual functions are supported.

4 .2 F a u l t T o l e r a n c e a n d L o a d B a l a n c i n g

In PVM and other metacomputing environments, the ability to continue a job
despite individual machine failures is very beneficial. PVM-RPC, like Sciddle[1]
can only detect server failures at synchronization points (i.e. pvm_rpc_sinvoke
or pvm_rpc_wait) and re-issues requests. Unlike Sciddle, PVM-RPC at tempts to
handle load balancing and fault tolerance automatically. Therefore, increased
benefits can be accrued if clients are able to detect failure immediately. To
facilitate this we are attempting to incorporate this improvement by using a
multi threaded client calling mechanism.

While the current PVM-RPC strategy of multiplexing requests among mul-
tiple servers works well if machines are homogeneous and there is only one user,
it is not as effective in heterogeneous systems with disparate server capabilities
or in an open environment with multiple clients share the same servers. To im-
prove load balancing in these situations a m~re sophisticated system is needed
which allows the client to obtain some information regarding the current load
on a server. We intend to address this problem by

- enhancing servers to report their current load when responding to a 'ping';
- allowing the service broker to cache current load from 'ping' reports;
- permitting the client to query the service broker for unused servers while

waiting for a long request to complete.

Effective load balancing is a difficult task because the load at a server is
dynamic and a particular technique which is optimal for one class of users may
be non-optimal for another. Excessive polling of the server to obtain load infor-
mation can artificially inflate the load while delayed polling of the servers can

117

result in execution delays. Furthermore, a policy found effective for one type of
computation might be ineffective for another since request size, execution time,
and network bandwidth all affect the viability of shifting a request from one
server to another. Based on these issues, we are incorporating a load-balancing
strategy in which clients make decisions based on instantaneous conditions and
on queries of the SB and servers.

5 C o n c l u s i o n

The current version of PVM-RPC has given us some insight into the benefits
and drawbacks of the system design, functionality, and performance. Although
efficiency and performance are satisfactory, the API, tolerance to failures, and
the load balancing mechanism can be improved. We are addressing these issues
and have begun to implement our proposed solutions. We are also conducting
more extensive tests on a number of other classes of applications, to ensure that
the RPC paradigm is indeed suitable in a variety of circumstances. We expect
that successful completion of these investigations will make PVM-RPC a viable
and valuable platform for parallel distributed computation.

R e f e r e n c e s

1. Peter Arbenz, Martin Billeter, Peter Guntert, Peter Luginbuhl, Michela Taufer~ and
Urs yon Matt. Molecular dynamics simulations on cray clusters using the sciddle-
pvm environment. Parallel Virtual machine - EuroP VM'96, pages 142-149, October
1996.

2. A. D. Birrell. Grapevine: An exercise in distributed computing. Communications
of the ACM, 4(15):260-273, 1982.

3. A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. A CM Trans-
action on Computer Systems, 2:39-59, 1984.

4. H. Casanova and J. Dongarra. Netsolve: A network solver for solving computational
science problems. Technical P~eport CS-95-313, University of Tennessee, November
1996.

5. G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving
Problems on Concurrent Processors. Prentice Hall, Englewood Cliffs, 1988.

6. Object Management Group. The Common Object Request Broker: Architecture and
Specifications, 2.0 (draft) ed, May 1995.

7. V. S. Sunderam. Pvm: A framework for parallel distributed computing. Concur-
rency: Practice and Experience, 2(4):315-339, 1990.

8. SunOS Reference Manual. Mountain View, California, 1990.
9. A. Zadroga, A. Krantz, S. Chodrow, and V. Sunderam. An rpc facility for pvm.

High-Performance Computing and Networking '96, Brussels, Belgium, pages 798-
805, April 1996.

