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Abstrac t .  The relationship between client-server distributed comput- 
ing and message-passing parallel processing is explored in this work 
through an experimental RPC framework for the PVM system. The 
project investigates the potential for I~PC to complement asynchronous 
message passing in PVM - both to expand the domain of applications, 
and to evaluate the effectiveness of client-server computing for tradi- 
tional scientific and numerical problem solving. Our design is intuitive 
and straightforward, and enables servers and clients to be developed with 
a minimum of additional effort in terms of programming and logistics. 
Our experiences with early implementations of PVM-RPC indicate that 
the client-server model is reasonably compatible with message passing 
and scientific algorithms, and furthermore, that the RPC layer intro- 
duces little if any performance overhead into message passing systems. 
Furthermore, support for simple versions of useful features such as trans- 
parent failure resilience and automatic load balancing are facilitated in 
this model. 

1 I n t r o d u c t i o n  

Parallel Virtual Machine (PVM)[7] is a software system for heterogeneous paral- 
lel and distributed computing on networked systems. PVM, which is based on the 
message passing model, has become a de-facto standard and a.widely used sys- 
tem 'due to its design effectiveness, implementation portability, and  robustness. 
However, providing only a message-passing interface has restricted PVM appli- 
cation categories significantly. Furthermore, the message-passing model requires 
a number of potentially complex tasks to be programmed explicitly by the user, 
including process identification and table maintenance; message preparation, 
transmission/reception, ordering, and discrimination; and task synchronization. 

In contrast, traditional distributed computing is based on the "client-server" 
model. In this paradigm, entities known as servers provide services that  may be 
utilized by clients. Implicit in this abstract definition is the potential for varying 
levels of implementation semantics. Typical implementations of systems include 
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location transparency, data-representation, heterogeneity, failure resilience, and 
dynamic replication of servers to meet increased load. A popular manifestation of 
client-server computing is the the Remote Procedure Call (RPC)[8, 3] interface, 
that avoids many of the pitfalls of asynchronous message-passing programming. 
For this and other reasons, including those mentioned above, the overwhelming 
majority of commercial distributed applications are based on the client-server 
model and RPC. 

At an abstract level, this project aims to investigate the viability of client 
server computing for numerical and scientific applications, and the extent to 
which this paradigm can be reconciled with the message passing model. We 
are pursuing this via an experimental software system called PVM-I~PC, which 
serves as the vehicle for evaluating both functionality and performance. In this 
paper, we discuss our motivations and background, and present an overview of 
the PVM-RPC system as it currently exists; we also provide some performance 
results comparing PVM-RPC to PVM-MP(message passing) that quantify the 
(low) overheads introduced. We then describe our plans for future enhancements 
to the system, including enhanced fault tolerance and load balancing features, 
and adding an object oriented application programming interface (API) as an 
extension to the PVM-RPC programming model. 

2 Mot ivat ions  and Goals 

RPC systems have been available for a number of years, and most of the is- 
sues have been well analyzed and resolved. Nevertheless, enhancements such as 
combining message passing and RPC, incorporating load balancing with failure 
resilience, and using request-response paradigms for numerical algorithms can 
be supported with a system like PVM-RPC. Thus, one goal of this project is to 
provide a remote procedure call facility to current PVM users, who could poten- 
tially benefit from the RPC programming model. Another is to make PVM more 
suitable for those applications which have traditionally been implemented using 
the RPC mechanism, and a third is to revisit the RPC model to explore func- 
tionality extensions to the RPC paradigm itself. Most existing PVM applications 
in scientific computing are well suited to the message passing model because of 
their asynchronous or irregular communication pattern. However, certain soft- 
ware engineering aspects of these applications, such as rapid deployment and 
robustness, can be enhanced by using the RPC paradigm. Especially since PVM- 
RPC can co-exist with traditional message passing, portions of an application 
could be converted to use RPC when appropriate. Simultaneously, traditional 
client-server applications could benefit from the software infrastructure provided 
by PVM. We believe that this approach has several advantages over simply using 
other RPC systems. Several older systems, such as rpcgen[8] are cumbersome 
and time consuming for application development; moreover, they are simplistic 
in server location mechanisms, provide little fault tolerance, and do not incorpo- 
rate load balancing schemes. Our goals were to provide these features and more, 
while minimizing the programmer's effort and system overheads. For our future 
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work we want to carry this philosophy forward while addressing the benefits of 
newer systems such as Corba [6] which work in an object oriented environment. 

3 T h e  P V M - R P C  S y s t e m :  C u r r e n t  S t a t u s  

PVM-RPC[9] is derived from the RPC model[3] in which references to remote 
services mimic a procedure call. In PVM-RPC, applications design and imple- 
ment a server which may export one or more services. Clients access these ser- 
vices with invocations that look and behave like procedure calls. However, there 
are a number of issues which arise since these procedure calls invoke non-local 
routines; the major issues are name binding, parameter passing, asynchronous 
processing, and redundancy as it applies to fault tolerance and load balancing. 
Name binding is the process of mapping the name of a routine as referenced by 
the client to a service made available by a remote server. While there are many 
different models for name binding, we use the concept of a service broker (SB) 
[2, 6], a well-known entity in the distributed computing environment. Servers 
register with the SB, which publishes available services and from whom clients 
can obtain the location of a required service provider. 

Redundant servers are often desirable to allow for load balancing and failure 
resilience. PVM-RPC supports multiple servers offering the same service with 
the RPC invocation mechanisms selecting the best suited server for the initial 
invocation. In the event of failure during the call, the request is transferred to 
another server, if possible, without intervention or explicit coding by the pro- 
grammer. Thus, replicated servers enable simple forms of load balancing and 
failure resilience in PVM-RPC. For parameter passing, function arguments in 
PVM-RPC may optionally be tagged by the programmer as being input, output 
o1" input-output, depending on whether values are copied from client to server, 
server to client, or bidirectionally. This feature can help reduce data copying 
between client and server, particularly in the case of large arrays, while pro- 
viding the ability to pass large quantities of unidirectional data when needed. 
PVM-RPC also supports asynchronous remote procedure call; in fact, the API 
implements a synchronous call by immediately following an asynchronous call 
with a wait. While an asynchronous invocation diverges from the standard de- 
scription of RPC as described in [3], in which the invocation of a remote process 
is described as being "semantically equivalent to a procedure call". This variation 
in the RPC model is a common adaptation. 

3.1 Sys tem Overview 

The PVM-RPC system consists of four major components - the pvm daemon 
(PVMD), the service broker (SB), the servers, and the clients. Of these, PVMD is 
an integral part of any PVM system, and is responsible for managing the virtual 
machine, message routing, process initiation, housekeeping, and various other 
functions. The SB maps service names, as known to clients, to a tuple consisting 
of a server and service id recognizable by the server. In order to ensure that 
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PVM-RPC is at least as reliable as PVM with respect to hardware failure, the 
SB runs on the same machine as the master PVMD. While there are various 
ways that  the SB can start, any server that  is trying to register a service will 
start the SB if it is not already running. When a server starts, it first locates the 
SB via a table lookup in PVMD. If the SB is not running, then the server starts 
an SB using pvm_spawn and, again, at tempts to locate the SB from the PVMD 
(the second lookup of the SB is done to prevent a race condition between two 
servers). The server then registers its services with the SB. 

Similarly, when a client wishes to use a service, it first locates the SB from 
the PVMD and then obtains a list of available services from the SB. The SB re- 
turns a complete list of all known services and addresses, which the client caches 
locally in a table; subsequent name resolutions are done by table lookup. When 
a service becomes unavailable (due either to server failure or congestion) clients 
update their tables accordingly. If more than one server is available for a particu- 
lar service, clients interleave requests among all available servers. At each server, 
requests are processed in FIFO fashion. However, all servers recognize a special 
"are you alive" message and send an immediate response - thereby permitt ing 
clients to determine whether servers are still busy computing their requests or 
if they have failed. Client stubs, as previously mentioned, always perform asyn- 
chronous invocations followed by "wait"s - during which they periodically ping 
servers and re-issue requests to alternate servers if no "i am alive" responses are 
received. This simple failure resilience mechanism is of considerable practical 
value. 

3.2 Application Programming Interface 

As in any RPC system, PVM-KPC provides constructs for writing servers and 
clients. To create a server, services must be declared: 

pvm rpc_service (service_name [, [IN, OUT,10] {PVM_TYPE} variable_name .... ] ) 

This declaration is then followed by standard C code that  defines the implemen- 
tation of the service. All parameters are treated as pointers. The key words IN, 
OUT and IO (default) are optionally used to provide hints to avoid data  copy- 
ing where possible. Data types are specified as in PVM, e.g. PVM_DOUBLE or 
PVMANT (PVM_CPLX and PVM_DCPLX are currently not supported). For 
each parameter  the programmer declares, there is a 'hidden' integer constant 
called {variable_name}_size (i.e., _size appended to the parameter  name) that  
specifies the number of elements the parameter var iable_name contains. This 
variable is generated automatically by the preprocessor. After all services are 
declared, the statement pvm_rpc_main completes the server. A server may itself 
behave as a client by invoking functions at other servers. While a service may call 
external functions, all services must be declared in the same file that  contains 
the pvm-rpc_main statement. 

Clients can invoke a remote procedure either synchronously with the state- 
ment pvrrarpc_sinvoke, or asynchronously with the statement pvm_rpc_ainvoke. 
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In the asynchronous case, a later pvm_rpc_wait statement acts as a synchroniza- 
tion point for the RPC. An example of a client invocation is: 

pvm_rpc_sinvoke (add_vec, a : SIZE ,b : SIZE, c : SIZE) ; 

where a, b, and c are declared as double a[SIZE], b[SIZE], and c[SIZE]. 

3.3 P e r f o r m a n c e  of  t h e  P V M - R P C  S y s t e m  

In this section we present performance results from a simple benchmark of the 
current PVM-RPC system. The application computes long range forces among 
10000 pairs of particles. The PVM-MP (message passing) program is an adap- 
tation of the "CUBIX CrOS IlI" algorithm from [5]. In this implementation, 
the particle space is divided among the available processors (processes in PVM) 
which are logically connected in a ring. By shuffling each processor's portion of 
the particle space to ring neighbors, and performing force computations on pairs 
of particle subspaces during each phase, all-to-all interaction forces are com- 
puted. In the PVM-RPC version, servers export services that  compute partial 
forces given two subspaces; a single client repeatedly issues requests to multiple 
servers with all possible combinations of particle subspaces. Our benchmark ex- 
ercise was conducted in order to to determine if PVM-RPC incurred significant 
overheads compared to PVM-MP, while providing a more natural interface to 
invoke a remote service. 
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Fig. 1. Scalability of PVM-MP and PVM-RPC. 

All programs were compiled with Sun0S cc version SC4.0 18 0ct  1995 C 
4.0  using the switch -xO4 and run on Sparcstation 20's under SunOS 5.5.1. A 
series of runs using 0,1,2,4 and 8 processors were performed for both the PVM- 
RPC and PVM-MP programs, with 0 processors representing the execution time 
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of a sequential program on a single machine. Execution times in seconds for both 
versions of the program are shown in Fig. 1 for different numbers of processors. 
Little difference in performance is observed between the two versions; in fact, 
the RPC version is marginally faster. These results, while only representing an 
isolated case, nevertheless do indicate that the client-server model does not de- 
grade either programmability or performance for physical science applications 
exemplified by PIC codes. Moreover, the marginal improvement that RPC ex- 
hibits suggests that such a client server organization may be preferable to crowd- 
computation structures. The reason for the loss in PVM-MP performance is the 
tight synchrony of the abstract algorithm, which translates poorly to general 
purpose cluster environments in which processors require slightly different times 
to complete equal amounts of work. These effects are well-known, and are due 
to external or operating system perturbations, and occur even when dedicated 
workstations are used. The RPC paradigm alleviates this synchrony by parcel- 
ing out. work to processors using a bag-of-tasks approach, often (as in this case) 
resulting in better overall performance. We have also conducted several other 
benchmarking exercises using textbook programs such as matrix multiply, dot 
products, and raytracing. In each case, similar results (i.e. performance within 
5-10% of PVM-MP) were observed. Although these conclusions cannot be gen- 
eralized because these applications are not representative of parallel programs 
with more complex communication patterns, they do indicate to some extent 
the viability of client-server computing in the scientific application domain. 

4 O n g o i n g  W o r k  a n d  F u t u r e  P l a n s  

As discussed, PVM-RPC incurs little or no performance overhead compared to 
PVM-MP while enhancing PVM with a client-server framework, some failure 
resilience and load balancing support, and a procedure call interface for process- 
to-process communication. However, the current implementation is limited in 
several respects; we are addressing these and other issues in the belief that these 
facilities would be valuable complements to the existing system and to native 
PVM. 

4.1 P r o p o s e d  A P I  

In order to facilitate object oriented applications, a new API is being developed 
for PVM-RPC and incorporates C + +  class definitions as its basis to define re- 
mote objects. This syntax is extended by prefixing the keyword class with the 
modifier distributed to define an object which requires distributed computation; 
similar qualification is used to distinguish distributed methods and variables 
within an object from local counterparts. Although implementation is straight- 
forward, this extension raises tricky issues. For example, if distributed variables 
are cached on the server, how and when are they updated? Second, as with 
PVM-RPC, there is an inherent problem with the handling of pointers in that 
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the length of the vector is of an unknown size. Both of these issue could be ad- 
dressed by using a newly created PVM class type which require all modifications 
to distributed variables to both dirty the cache and adjust a hidden size rood- 
ifier. However, this approach would introduce significant overhead and requires 
further study. 

Another API extension concerns non-blocking invocations. We are consid- 
ering (possibly nested) COBEGIN-COEND structures that  enable client side 
threads to be dynamically created to simulate efficient fork-join operations. Us- 
ing this feature, a distributed calls could take place simultaneously. Such a fea- 
ture will also enable the implementation of asynchronous callbacks or notification 
mechanisms. An example of a possible notation is: 

ptr.add(a:20,b:40:2,c): NOTIFY add_handler(c) 

This example illustrates a remote method add which will return prior to comple- 
tion of the remote computation. When the remote computation has completed 
the routine add._handler will be called with argument c. Since distributed classes 
will be converted to C + +  classes by a preprocessor, normal C + +  features such 
as inheritance and virtual functions are supported. 

4 .2  F a u l t  T o l e r a n c e  a n d  L o a d  B a l a n c i n g  

In PVM and other metacomputing environments, the ability to continue a job 
despite individual machine failures is very beneficial. PVM-RPC, like Sciddle[1] 
can only detect server failures at synchronization points (i.e. pvm_rpc_sinvoke 
or pvm_rpc_wait) and re-issues requests. Unlike Sciddle, PVM-RPC at tempts to 
handle load balancing and fault tolerance automatically. Therefore, increased 
benefits can be accrued if clients are able to detect failure immediately. To 
facilitate this we are attempting to incorporate this improvement by using a 
multi threaded client calling mechanism. 

While the current PVM-RPC strategy of multiplexing requests among mul- 
tiple servers works well if machines are homogeneous and there is only one user, 
it is not as effective in heterogeneous systems with disparate server capabilities 
or in an open environment with multiple clients share the same servers. To im- 
prove load balancing in these situations a m~re sophisticated system is needed 
which allows the client to obtain some information regarding the current load 
on a server. We intend to address this problem by 

- enhancing servers to report  their current load when responding to a 'ping'; 
- allowing the service broker to cache current load from 'ping' reports; 
- permitting the client to query the service broker for unused servers while 

waiting for a long request to complete. 

Effective load balancing is a difficult task because the load at a server is 
dynamic and a particular technique which is optimal for one class of users may 
be non-optimal for another. Excessive polling of the server to obtain load infor- 
mation can artificially inflate the load while delayed polling of the servers can 
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result in execution delays. Furthermore, a policy found effective for one type of 
computation might be ineffective for another since request size, execution time, 
and network bandwidth all affect the viability of shifting a request from one 
server to another. Based on these issues, we are incorporating a load-balancing 
strategy in which clients make decisions based on instantaneous conditions and 
on queries of the SB and servers. 

5 C o n c l u s i o n  

The current version of PVM-RPC has given us some insight into the benefits 
and drawbacks of the system design, functionality, and performance. Although 
efficiency and performance are satisfactory, the API, tolerance to failures, and 
the load balancing mechanism can be improved. We are addressing these issues 
and have begun to implement our proposed solutions. We are also conducting 
more extensive tests on a number of other classes of applications, to ensure that  
the RPC paradigm is indeed suitable in a variety of circumstances. We expect 
that  successful completion of these investigations will make PVM-RPC a viable 
and valuable platform for parallel distributed computation. 
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