
R E C A S T :  
A TOOL F O R  R E U S I N G  R E Q U I R E M E N T S  

M.G. Fugini §t, B. Pernici t 

§Universit£ di Brescia 
tPolitecnico di Milano, 

piazza Leonardo da Vinci 32, Milano, Italy 

Abstract  

Reuse of development documents~regarding application requirements makes the 
application development process more efficient and reliable. The REquirements 
Collection And Specification Tool (RECAST) being developed in the framework 
of the ESPRIT ITHACA project aimed at reusability under an object-oriented ap- 
proach for Information System applications is presented in the paper. 
Two types of application developers interact with RECAST: the Application Engi- 
neer, who maintains the knowledge about reusable components, and the Applica- 
tion Developer, who develops specific applications; their interaction with RECAST 
is presented. RECAST guides these developers using design knowledge stored in a 
Software Information Base (SIB). 

1 I n t r o d u c t i o n  

This paper describes RECAST (REquirement Collection And Specification Tool), a 
tool for reusing application requirements in development of Information Systems ap- 
plications. RECAST is being developed as part of the ITHACA Project /Pro  89/, an 
ESPRIT II software environment research program encompassing European industrial 
and university organizations. The objective of ITHACA is to develop an advanced soft- 
ware development environment based on the object-orientation parad igm/Ara  88, Fis 
87, Tsi 88, Tsi 89 / and  on reusability. In particular, the ITHACA Application Develop- 
ment Environment (ADE) facilitates the reuse by the developers of various components 
of previously developed applications: application requirements, application designs, im- 
plemented objects, execution results, documentations/Gib 89b/. Consequently, the set 
of tools in the ITHACA Application Development Environment comprises requirement 
collection and specification tools, application configuration tools, object design tools. 

The ITHACA Application development Environment is centered around the Software 
Information Base (SIB), a knowledge base storing information about available reusable 
components /Cos 89/. The SIB is accessed by the ITHACA tools in order to inspect 
available application components/Gib 89b / in  the context of the development of a new 
application to evaluate which existing components can possibly be reused totally or 
through refinement and modification. 

Two types of designers are addressed by ITHACA tools: the Application Engineer (AE), 
and the Application Developer (AD) / ITH 89, Gib 89a/. The Application Engineer is 

339 



responsible for development of application skeletons, that is, sets of generic applica- 
tion components (application requirements, specifications, design objects, executables, 
design documents, etc.) meaningful to certain application domains and therefore can- 
didates for reusability in applications pertaining to those domains. For example, in the 
"accounting system" application domain, reusable components are specifications and 
designs of "journal", =client", =account" objects, and operations on them like "update", 
"post", "withdrawal". These reusable components can then be expanded by the AD in 
different ways in order to develop specific applications. The Application Developer de- 
velops specific applications. Using the ITHACA tools, the AD's development paradigm 
consists of the definition of the application requirements, selecting reusable components 
from generic applications, and progressively refining and modifying these components 
to meet the requirements of the specific application being developed. The AD uses the 
tools of the ITHACA environment, maintained by the AE, to search for reusable com- 
ponents in the SIB, for configuring the current application reusing as many components 
as possible, and for implementing new objects. The product of a specific application 
development can be further evaluated by the AE for identifying new components that 
are candidates to reusability; these may become part of the available reusable software 
of ITHACA and therefore be described in the SIB. 

In the ITHACA Application Development Environment, reusability of software and of 
development information is the major goal. This goal regards all the development 
phases, thus, in particular, the application requirement collection and specification 
phase. Such phase is conducted under a reusability approach that allows the AD to 
reuse existing requirement specifcations and to identify reusable design objects that 
meet the requirements. 

The purpose of this paper is to describe how the RECAST tool addresses these issues by 
supporting the AD in requirement collection and specification under an object-oriented 
paradigm, by automatically completing the requirements when existing specifications 
are discovered by the tool for reuse, and by giving suggestions about existing design 
objects that can be possibly reused. 

The next section of the paper describes the rationale of the approach to reusability of 
application development documents in the first phases of the software development life- 
cycle. Subsequent sections present RECAST architecture (Section 3), the requirement 
collection phase (Section 4), the requirement specification phase (Section 5), and a 
scenario of use of RECAST (Section 6). 

2 Reusabi l i ty  of  deve lopment  documents  

The focus of research on reusability has mainly been on reusing code /Bur 87, Fre 
87/. However, reusing the results of previous software projects is important in all 
development phases in the software development life-cycle. The importance of reusing 
results from the early development phases has particularly been emphasized: Freeman 
/Fre 87/ suggests the reuse not only of code, but also of specifications, and Feather 

340 



/Fea 87/ suggests to reuse specifications, modifying specifications rather than their 
implementations when change is needed. Reuse of algebraic specifications, built and 
structured in a modular manner to facilitate reuse, is presented i n / W i t  89/. 

RECAST may be regarded as a sys tem generator, based on knowledge of given applica- 
tion domains and on models for requirement definition, with reusability of development 
documents as a primary goal. RECAST is based on domain knowledge specialized for 
development of Information Systems in different application domains. The support of 
information bases, specification bases, and knowledge bases for different phases of the 
development of software systems has been proposed in the l i t e ra ture /Ts i  89, Jar 89, 
Per 89b, Pun 87, Pun 88/. 

The relevance for reusability of intermediate stable forms of development documents has 
been emphasized/Weg 87/. We assume an Information Systems development life-cycle 
based on the following phases / ITH 89/: 

• requirement collection 

• functional specification 

• configuration of designs (implementations) 

Each of these phases produces d e v e l o p m e n t  d o c u m e n t s  based on the domain knowl- 
edge and on a model for that particular development phase. The requirement collection 
phase produces a Requirement Collection Document, the specification phase a Require- 
ment Specification Document, and the third phase an implementation of the system in 
the target O-O language. 

RECAST produces and reuses documents in the first two phases above. The structure 
and the contents of these documents is discussed in the following sections. 

The definition of requirements in RECAST is oriented to building a system rather than 
to describing the relationship of the system with the external world. Therefore, the 
requirements define the system model, rather than the world model, the goal being that 
of describing the aspects that characterize a specific application in a given application 
domain. The specification documents define the functionalities of the components of 
the system. These components are defined by RECAST on the basis of available knowl- 
edge on a given domain and on the requirements described by the AD for the specific 
application. 

We assume that the SIB contains both reusable building blocks and information about 
the development process. RECAST reuses elements in the SIB in three ways: 

• requirements  are collected following a predefined domain model.  The domain de- 
pendent model allows the designer to define the characteristics of the application, 
using a domain dependent vocabulary, mainly on the basis of examples. Require- 
ments may define not only functional characteristics of a specific application, but 
also non-functional characteristics such as distribution of users and data on differ- 
ent sites, volumes of data and processing frequency. The use of domain languages 
has been proposed in the literature for this purpose (e.g., in the Draco system 

341 



Figure 1: Relationship among Requirements Collection, Requirements Specification and 
Application Design through the Requirements Model 

/Nei 87/); in RECAST, the domain model is inserted as knowledge in the SIB, 
for more flexibility (see Sect. 3). 

• functional specitlcations are written combining specitication elements. These el- 
ements can specify default functionalities for a given domain, or be selected and 
composed (automatically or semi-automatically) from the SIB, according to the 
requirements defined by the AD. In addition, the AD may refine existing modules 
and create new elements, which may be made available for reuse in future projects, 
both as reusable elements and together with their development information. As 
suggested i n /Fea  87/, refinement in RECAST is mainly based on adding to, and 
combining features of, existing elements, rather than changing predefined features. 

• design objects (corresponding to implementations) may be associated to speci- 
fication elements, and provide the basis for implementation of the O-O target 
application. 

These three reuse categories of RECAST are strictly related to each other by a Require- 
ment Model (Fig. 1). The Requirement Model (RM) contains relationships between 
requirement, specification and design components, information about their structure, 
and about tools that can be used to define these components. Additional information 
describing the components and their relationships is also contained in the SIB with the 
purpose of facilitating their reuse. 

In general, reusable components, although constructed by developers under a reusabili- 
ty approach, are maintained and inserted in the RM by the AE in order to control and 
guarantee the quality of the model. 

The AD is guided through RECAST in the definition of the requirements of the specific 

342 



Figure 2: Architecture of RECAST 

application using information contained in the RM. A set of tools is provided within 
RECAST (or called by RECAST) to help the AD in producing the requirement and 
specification documents for a specific application, as described in the following sections. 

In RECAST, the domain model and language used for requirement collection may vary 
for different applications and different domains, while the specification language is an 
internal language of the tool, domain independent, and defined according to an extended 
object-oriented paradigm/Per 90/. The O-O paradigm in specifications facilitates the 
definition of standardized parts in the specifications and of interfaces between them. 
In fact, the description of object interfaces has been used for system specifications by 
many authors/Mey 89, Cox 87/. Moreover, in the Ithaca development environment, the 
goal is that of developing O-O applications. Therefore, while we keep the requirement 
collection phase open to any other approach, we suggest that the specification phase is 
chosen as the borderline between models used by developers during the requirements 
collection phase, based on domain dependent concepts, and the O-O world. 

3 A r c h i t e c t u r e  o f  R E C A S T  

The architecture of RECAST is shown in Fig. 2; the tool is composed of the Re- 
quirement Modeling Tool (RMT),  the Requirement Collection Tool (RCT), and the 
Requirement Specification Tool (RST). The three tools are centered around the knowl- 
edge provided by the Requirements Model (RM), which groups knowledge about the 
application domains and about the phases of requirement definition, together with a 

343 



r 

link to possible implementations, as shown in Fig. 1 and 2. 

RECAST, with the RMT, assists the AE in filling in and modifying the RM, stored 
in the SIB. Through the RCT and RST modules, RECAST assists the AD in pro- 
ducing a Development Document (DevDoc)  for a specific application, composed of a 
Requirement Collection Document (RCDoc)  and of a Requirement Specification Doc- 
ument (RSpeeDoe) .  The DevDoc is the basis for the subsequent development phases 
of ITHACA, that  is, the phases regarding configuration of designs and implementations. 
These phases are carried on by the AD using the other tools of the ITHACA Appli- 
cation Development Environment, such as the Visual Scripting Tool, which supports 
application configuration out of existing objects, and the Object Design Tool, which 
supports the design of new objects in the target O-O development l anguage / ITH 89/. 
Requirement collection and specification are performed in RECAST through a set of 
steps and using a notion of "unit" for consistency reasons. In particular, collection is 
performed through a process of production of Collection Units (CUs); these units are 
then organized in a structured RCDoc, which is part  of the output of RECAST. Analo- 
gously, requirement specification is a process of production of Specification Units (SUs) 
which are then organized by RECAST in the structured RSpecDoc. 

The RM is stored as a semantic network in the ITHACA SIB knowledge base. This 
network contains: 

• knowledge about the requirement models, about application domains, and about 
the process of defining in RECAST new application domains and reusable com- 
ponents with the related development assistance rules ("meta-knowledge').  

• knowledge about the requirement collection and specification process used in 
ITHACA ("knowledge"). 

The interaction of RECAST with the developers is obtained through navigation in the 
knowledge base using the RM (see Fig. 3) for: 

• guiding the interaction with the developers ("dialogues") and interpreting the user 
choices ("answers"); 

• allowing the developer to use available external tools necessary to perform some 
of the activities related to requirement production. These can be general-purpose 
tools, such as editors, text formatters, graphical packages or interface managers, or 
special-purpose tools, for example application document generators and managers. 
These tools are linked to the RECAST environment and can be called by the user 
to perform some functions. Such links provide flexibility to RECAST because tools 
can be easily integrated in the requirement definition environment by the AE by 
simply adding to the knowledge of RECAST a link to the tool. In current work 
on RECAST, specialized tools that scan a document and derive its conceptual 
s t ruc tu re /Pe r  89a / a re  being linked to RECAST; 

• producing the RCDoc and the RSpecDoc; 

• inspecting the set of available design objects to identify reusable objects, i.e., 
objects that  meet the current requirements; acknowledgment about the existence 

344 



COLLECTION 

External 
Tools 

Query/Answer 

question L drives 
answer 
next-qst. ~ 

Product. 
RCDoc 

Figure 3: Role of the RM in RECAST 

SPECIFICATION 

, , I External 

"::'::~ ......... i ry/AnswerTC°is 
RM I dr,ve s _lquest ion 

Product. 
~ RSpecDoc 

drives- 
selection-of 

Oesign Objects 

of such objects is inserted by RECAST into the DevDoc in the form of design 
suggestions. 

In this paper, we focus on the description of the contents of the SIB for use by RECAST 
(Sect. 3.1. describes the designer working area, Sect. 3.2. and 3.3. the meta-knowledge 
and knowledge) and on the RCT and RST modules. 

3 .1  T h e  d e v e l o p e r  w o r k s p a c e  

The AD is provided by RECAST with a workspace where: 

• information is moved from the SIB to be examined; 

• external tools operate when invoked through RECAST; 

• requirements are inserted as part of the current application requirements in two 
ways: 

a) upon creation by the AD 

b) automatically by RECAST, when reusable requirements axe found in the 
SIB. 

The requirements are transferred, created, deleted from the workspace according to CUs 
and SUs which are the atomic entities of consistency of RECAST and of the workspace. 

A sample image of the workspace for the AD is shown in Fig. 4.: the structured RCDoc 

345 



Figure 4: Image o f the  AD workspace 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

STRUCTURED REQUIREMENTS COLLECTION DOCUMENT 

RCDoc = set-of CU 

CU = set-of REQ 

REQ = question + Answer Set + RECAST annotations 

STRUCTURED REQUIREMENTS SPECIFICATION DOCUMENT 

RSpecDoc = set-of SU 

SU = set-of SPEC 

SPEC = Object Specification + 

Design Suggestions + 

links to CUs 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

is progressively built as a set of CUs; analogously, the RSpecDoc is built as a set of 
SUs. A CU is a set of requirements (REQ in Fig. 5) derived by posing questions to 
the AD and by interpreting the user answer within an answer set. Additionally, REQ 
contains annotations given by RECAST about requirement collection, that is, about 
missing requirements that  are automatically added by the tool reusing available CUs. 
In the specification phase, SUs are built as sets of specifications. A specification (SPEC 
in Fig. 4.) is derived by RECAST as a set of specification objects and as a set of 
design suggestions. Design suggestions are links to reusable design objects. In each 
SPEC, RECAST introduces a link to the requirements that lead to the generation of 
the SPEC. 

3.2 Semant ic  ne twork  for requirements  modeling 

Requirements modeling in RECAST is based on a semantic network containing both 
meta-knowledge (generic knowledge for model construction) and knowledge (knowledge 
for modeling applications in a given application domain). 

The semantic network that  is used mainly by the AE for management of the RECAST 
environment is shown in Appendix 1. The meta-knowledge represented in this semantic 
network regards the task of the AE of defining a given RM. The definition of a RM 
consists of the definition of the m o d e l  cha rac t e r i s t i c s ,  such as the application domains 
where the model can be applied, whether the model data-oriented (e.g., an ER model) or 
process-oriented (e.g., Petri nets), and whether external tools exist for model processing 
(e.g., a graphical editor for entering the model entities). 

The next component of the RM definition process is the definition of the m o d e l  en t i t ies  

346 



( E N T I T Y  node in the semantic network). An entity, identified by its name, has a 
representation (e.g., graphical), and some attributes. 

The definition of an RM then encompasses the definition of the m o d e l  l inks,  i.e., of 
the relationships among entities ( L I N K  node). A link, identified by its name, has 
some C H A R A C T E R I S T I C S :  origin and destination entities (this also defines the 
link direction), and a type. The type can be standard, such as "is-a" or "part-off link, 
or can be defined by the AE. In the network, the "is-a" links are used as a classification 
mechanism and the "part-off links are used for defining the components of a node. No 
inheritance mechanism holds in the network. External tools mentioned earlier in this 
section are connected to LINK nodes; this mechanism allows the AD or AE to be aware 
of the availability of external tools while traversing links. 

Navigation of the AE through this meta-knowledge occurs according to the modalities 
that will be illustrated in the next section. The purpose of navigation for the AE is to be 
guided in the maintenance of the environment; besides the introduction of new models, 
the AE navigates for exploring the base of reusable requirement elements, for creating 
connections among requirements, specifications, and designs, for defining application 
domain knowledge and organizing it in structured hierarchical subdomalns. The AE 
is also responsible for linking external tools to the environment and for defining the 
questions and answers associated to links. 

In Appendix 2, a sample semantic network of RECAST knowledge is depicted. This 
network describes the knowledge used by RECAST to guide the requirements collection 
and specification by developers in specific applications and it is constructed according 
to RECAST meta-knowledge, in terms of ENTITY nodes, LINK nodes, and their char- 
acteristics. The network shows, as an example, the Requirement Definition Process in 
the "Public Administration" application domain. It is assumed that  an AD is collecting 
the requirements of an application in this domain and that a definition process based 
on a model (PADM model in App. 2 a) exists especially oriented to developing appli- 
cations in the Public Administration Domain. A method for application development 
in the Public Administration domain is being used in ITHACA as a common ground 
for evaluating the functionalities of the various ITHACA tools /Kap  89a, Kap 89b/. 
The application being developed is a system for a City Council; this system automates 
the procedure of releasing authorizations to private organizations to hold public events 
(concerts, exhibitions, etc.). App. 2 b) shows the information needed for requirements 
collection and App. 2 c) the information needed for requirements specification. The 
use of the knowledge illustrated in App. 2 is described in detail in Sect. 4 and Sect. 5., 
and an example of RECAST use based on this knowledge is shown in Sect. 6. 

3 .3  R E C A S T  i n t e r a c t i o n  w i t h  t h e  d e v e l o p e r s :  l i n k s  a n d  n a v i -  

g a t i o n  o n  t h e  s e m a n t i c  n e t w o r k s  

RECAST guides the Application Developer and the Application Engineer in navigating 
along nodes and links of the semantic networks that  constitute its base of knowledge, 

347 



performing actions and calling available external tools associated to network links. L i n k  

traversa/is the basic mechanism for generating queries to the developers and for calling 
external tools during specific tasks of the requirement definition process. 

Default queries can be automatically associated to standard links ("is-a" and "part- 
of"). The default query: 

YOU CAN SELECT ONE OF THE FOLLOWING DEFINITIONS: 

list of choices 

is associated to Uis-a" links; the developer is requested to select among possible choices 
listed by the tool. The choices are derived by RECAST from the semantic network, 
which describes "is-a" relationships between elements of the model. 

The following default query: 

WHICH PART DO YOU WANT TO SELECT? 

list of choices 

is associated to "part-of links"; the developer is requested to select among possible 
components linked with a "part-of" link in the semantic network. 

Optionally, links may have associated ques t ions  for interaction with the developer 
during re.quirements collection and specification according to the models defined by the 
Application Engineer. To each link type, an a n s w e r  set  is associated, which contains 
information to elaborate the user answers. An inverse  ques t ion  may be associated to 
links for their traversal in inverse mode. Questions attached to links may refer to tools 
(EXTERNAL TOOL node in App. 1.) which can thus be called and used from within 
RECAST. 

Links have a s ta te .  The state can assume the following values: 

• p o t e n t i a l :  the link is not visible to the AD because it does not belong to the 
currently selected path, (e.g., because the AD is working within a given application 
domain and therefore a sub-network has been selected); 

• ac t ive:  the link is visible to the AD because it belongs to a currently selected 
path; potential and active links provide the Application Developer with a view 
mechanism on the semantic network; 

• selected: links can be selected by the AD when they are relevant to the current 
application and moved to the AD's workspace; with this mechanism a view on the 
semantic network is defined for a specific application (designer workspace for the 
specific application). 

All the links in the semantic networks are potential, that  is, can be traversed. Some 
of them become active, that is, can be traversed, depending on answers to previous 

348 



queries; for example, if the AD decides to use the Entity-Relationship model for defining 
data schemas in the "accounting systems" application domain, the links necessary to 
create CUs and SUs according to the E-R model and according to available reusable 
requirements in that  domain become active. 

The semantic network can be traversed in two modes: 

• retrieval mode 

• update mode 

In the first mode, the AE or the AD explore the RECAST knowledge or the AD's 
workspace in order to find concepts useful in the development or to examine the current 
contents of the workspace. The update mode occurs when concepts are selected from the 
network and information is copied from the SIB into the workspace. In retrieval mode, 
traversal of active links prompts the corresponding queries; no actions are undertaken 
on the SIB, but each link traversal operation activates other links. In update mode, the 
selection of a link determines insertion operations on the workspace. 

4 Requirements  col lect ion tool  

The Requirements Collection Tool is realized in RECAST using the navigation mech- 
anism and knowledge in the semantic network concerning requirements collection. Re- 
quirements collection is carried out by progressively creating Collection Units (see App. 
2a and 2b) composed of functional and non functionalrequirements. Functional require- 
ments regard the application entities and procedures, that  is the functionalities of the 
application; non functional requirements regard the application interface, the hardware 
and software characteristics of the application, the organization, and a variety of quan- 
titative parameters and constraints (such as, expected response times, data volumes, 
computer loads). Some examples of non functional requirements are shown in App. 2b. 

The output of requirements collection is the structured RCDoc. This document is com- 
posed of a set of CUs which are organized by RECAST in the RCDoc through some 
Structuring Rules. Such rules determine where collected information has to be placed in 
the RCDoc and how this document can be accessed in order to find "related" informa- 
tion. CUs are produced by RECAST according to the Q/A paradigm for requirements 
collection illustrated in the previous section. 

The remainder of this section describes navigation of RECAST through the semantic 
network of App. 2. for: setting the AD requirements definition environment for the 
City Council application (Sect. 4.1.); navigating in the network along specific knowledge 
referring to the preparation of CUs according to the selected method (Sect. 4.2.). 

349 



4 . 1  S e t t i n g  R E C A S T  e n v i r o n m e n t  f o r  t h e  A D  

RECAST drives the AD in setting a collection and specification environment, that  is, in 
selecting the adequate knowledge for the application at hand. Setting the environment 
is achieved with RECAST navigating along the knowledge and selecting a model and 
the application domain for a given specific application to be developed. In the network 
of App. 2 a), three types of models are shown: Structured Analysis, PADM m o d e l / K a p  
89a/, and SADT & ER mode l s /Som 89/. Application domains have an associated size 
and a description that  brings to three subdomains: the Public Administration domain, 
the domain of Chemical Applications, and the domain of Financial Applications. In our 
case, the AD selects the Public Administration domain, which is composed of a set of 
phases: each phase produces a set of CUs; CUs are in turn possibly made of CUs. 

4 . 2  A n  e x a m p l e  o f  r e q u i r e m e n t s  c o l l e c t i o n  k n o w l e d g e  

In the network of App. 2 b), the knowledge associated to the production of CUs within 
the Public Administration domain with the PADM method /Kap  89a/ is illustrated 
(only active links are shown). The network shows the representation of the require- 
ments model developed for the PADM method. A CU is made of entities (functional 
requirements) and of non functional requirements. The basic entity of this model de- 
scribes procedures and is called case type /Kap  89a/; a case type is composed of a 
schema (flowchart) of steps. Steps of a case type have associated documents; we sup- 
pose that  the reusable base of documents contains three document types: the OFFICIAL 
DOCUMENT, the REQUEST document, and the APPROVAL document. Each type 
of document has a default form which is shown to the AD: the AD decides whether 
such form is suitable to his purposes and can be reused. This is shown in App. 2b for 
the REQUEST only. The REQUEST document has a default definition; alternatively, 
an example of REQUEST can be entered by the AD and one of RECAST external 
tools can be called (e.g., the INTRES tool which understands document structures by 
examples /Pe r  89a/) or entering an example. Depending on which link is traversed in 
the network, the proper external tool is called by RECAST into the AD workspace. A 
case type also comprises the definition of agents who represent business roles involved 
in the use of the application. Here, an agent can be an EXTERNAL OFFICE (of the 
organization who requires the authorization to the public event) or an OFFICE of the 
City Council. 

A tool which facilitates the reuse of existing elements in the description of case types 
has been defined/San 90/; the tool allows the definition of case types by example, based 
on available case components; defined examples are generalized and aggregated by the 
tool in order to define case types. 

350 



5 Requirements specification tool 

The goal of requirements collection and specification in ITHACA is to enable the de- 
veloper to reuse as many existing specification components as possible. We have seen 
how RECAST guides the developer in requirements collection, helping him to identify 
and to choose from, or to define, predefined reusable components. In a similar way, 
functional specifications are constructed from predefined specification elements stored 
in the SIB. 

In the following section, we discuss how specification elements are retrieved from the 
SIB, composed in specification units and linked to design objects (implementations) by 
the RST module of RECAST. 

5.1 Requirements specification units 

The Requirements Specification Document (RSpecDoc) describes the functional specifi- 
cations of a specific application. The requirements specification document is composed 
of a set of specification units (SUs). Specification units describe specification compo- 
nents or composition of specification components. The requirements specification tool 
(RST) uses the navigation mechanism provided by RECAST, as in the case of the 
RCT. Contrary to the case of the requirements collection phase in RECAST, the model 
used for requirements specification is an internal model known to RECAST, common 
to all application domains. This choice is justified by the necessity of developing a 
homogeneous specification components base, providing components which are reusable 
across application domains. The internal specification model is based on an extended 
O-0 paradigm: the Objects with Roles Model (ORM) /Per  90/. An object-oriented 
paradigm has been chosen for requirements specification in ITHACA for two main rea- 
sons: the object-oriented paradigm provides abstraction and encapsulation constructs 
that make definition of specifications and their composition easier; the target develop- 
ment environment in ITHACA is object-oriented, therefore specifications at all levels 
and designs are performed according to this paradigm. The ORM model provides a high 
level representation model for objects: object properties and methods are partitioned 
using the concept of role. An object interface may be different according to the different 
roles that the object may perform, and the internal state of the object. Within a role 
precedences of application for methods and constraints may be defined with transition 
and constraint rules (the reader interested in a detailed description of ORM is referred 
to/Per 90/). 
Specification components are stored in the SIB in form of ORM pre-defined objects and 
their components (roles, messages, properties, states and rules). Information associated 
to the semantic network instructs the tool to support the mapping from requirements 
collected according to domain specific models to specifications units defined according 
to the RECAST internal specification model. 

In the following section, we discuss how specification elements are retrieved from the 

351 



SIB and composed in specification units. 

5.2 D e r i v a t i o n  o f  f u n c t i o n a l  spec i f i ca t i ons  

The Application Developer is assisted by RECAST in deriving requirements in three 
ways: 

• providing default objects. 
For deriving object descriptions, we may assume that  a number of requirements 
is implicit in a given application domain; in these cases, there is no need to 
ask the Application Developer to collect these requirements, and the tool for 
requirements specification is able to complete the collected requirements with 
application domain dependent default assumptions. For instance, in the Public 
Administration domain it is obvious that  some document preparation functions 
must be provided. Therefore, there is no need to ask the AD if these functionalities 
are needed, rather it is necessary instead to collect requirements about the quality 
of the documents to be produced, the volume, the characteristics of the secretarial 
personnel, the security and access constraints, and so on. Basic functionalities, 
such as editing, formatting, printing documents are not to be explicitly stated and 
are inserted in the  specification document by default. 

• (semi-) automatically deriving ORM objects. 
We assume that  collection units and specification units can be either in inter- 
preted or non-interpreted form /Gib  89a/. Interpreted units refer to sentences 
in a language whose syntax is known by RECAST, non-interpreted units store 
development results, independently of the model used to develop them (e.g., free 
text, or non-interpreted diagrams and charts). The mapping rules are used to 
support the developer in mapping from collected requirements to specifications; 
an automatic (or semi-automatic) mapping can only be performed for units in 
interpreted form. A mapping has the following results: 

- new specification units are created 

- active links are created from collection units to specification units; each of 
these links has attributes defining its query/answer interface, tool invocation, 
as described for the next-phase links. 

A mapping may be performed using a number of techniques, with the goal of 
combining collection units and selecting from the specification base in the SIB the 
appropriate specification units. Fig. 5.a shows the structure of mapping rules, 
which define, corresponding to a CU, which are the possible corresponding SU. 
Mapping rules are useful when the previous collection phase has been performed 
mainly in a guided way, thus yielding interpreted requirements. Mapping rules are 
associated to links in the semantic schema, which are activated when the "next- 
phase" link is traversed from a PHASE entity (see App. 2a) to the next one. 

352 



Figure 5: Mapping ru~s 

a) Mapping rule from requirements to specifications 

REQUIREMENT UNIT ..... > ORM OBJECT. ROLE. OPERATION 

b) Mapping rule from requirement specifications to designs 

{ORM OBJECT set}. {ROLE set}. {OPERATION set} ..... > 
DESIGN OBJECT. DESIGN ANNOTATIONS 

refinement by the developer. 
The developer must complete the definition of specification units, until all col- 
lection units are mapped into specification units. In particular, non-interpreted 
requirements have all to be mapped into specifications manually. In some cases, 
also interpreted requirements may require manual refinement. 

The mapping from requirements to specifications according to the ORM model is repre- 
sented in the RM following the schema of App. 2 c). Entities and links of the semantic 
network of the RM are handled as in the requirements collection part  of RECAST, that 
is: 

• some links and entities are predefined for a given application domain by the Appli- 
cation Engineer. In particular, some transformation tools are associated to some 
of the links; the mapping tool is associated to the "next-phase" link. 

• specialization of basic components may be created by the Application Developer 
in two ways: 

1. some entities and links are automatically created or activated by the mapping 
tools. 

2. some entities and links may be created by the Application Designer as a 
refinement of pre-existing entities. 

ORM design tools can be called traversing appropriate links in the semantic network. 

5.3 Design suggestions 

Design suggestions for pre-defined specification units are automatically provided through 
the Requirements Model. As with the mapping rules presented in the previous section, 
these associations may be performed dynamically, through domain-dependent rules con- 
tained in the RM, taking into consideration several aspects of the requirements, the 
domain knowledge, and existing specifications (Fig. 5.b). 

353 



Design suggestions are basically of two types: 

• object class names 

• annotations about suggested implementation strategies (for instance, references 
to previous implementations, similar implementations, possible basic components 
for the implementation). 

Some examples of mapping from requirements to specifications, including some design 
suggestions, are presented in the following section, describing a scenario of use of RE- 
CAST. 

6 S c e n a r i o  o f  u s e  o f  R E C A S T  

In this section, we describe a scenario of use of RECAST, calling also some external 
tools for requirements specification. 

The scenario is described illustrating an example dialog with an AD interacting with 
RECAST. The example is taken from the Public Administration application domain 
/Kap 89a/. 

Collection phase 

First, the developer sets up the appropriate environment answering questions about 
the general characteristics of the application at hand. We assume that the developer 
will have to answer these questions only the first time a session is started. We do not 
show here the dialog for setting up the environment, but we focus on the collection of 
requirements about functionalities in a specific application. As presented in Sect. 3, 
queries are formulated according to the semantic network of App. 2. We assume that 
the developer is using the method for the Public Administration domain (PADM in 
App. 2a). This example of interaction shows how queries are composed automatically 
by RECAST, directly from the structure of the semantic network, and from information 
associated to links. Referring to App. 2b, an example of dialogue session is reported in 
Fig. 6, where a star (*) marks selected options. 

The dialogue shown in Fig. 6. shows how a collection unit is composed. An entity is 
defined, in particular a case type. A case type is being defined. The name "approval" is 
assigned to the case type. A case type has a schema of steps, and the step "preparation" 
is being defined. Since the STEP is a reusable component, RECAST allows the AD 
to see available steps (TYPICAL DEFINITION in App. 2b): additionally, a tool is 
available to define steps by examples (associated to the "is-a" link from the EXAMPLE 
OF STEP entity to the ENTER EXAMPLE entity in App. 2b) //San 90//. 

We suppose that the AD has selected the DOCUMENT entity associated to the STEP, 
selecting the "has-parC link from STEP to DOCUMENT. The option of defining a 
specialization of an entity in the semantic schema is always present. In the example, 

354 



C
O
 

~
n
 

O
1
 

P
U
B
L
I
C
 
A
D
M
I
N
I
S
T
R
A
T
I
O
N
 
H
A
S
 
C
O
L
L
E
C
T
I
O
N
 
U
N
I
T
S
 

C
O
L
L
E
C
T
I
O
N
 
U
N
I
T
 

W
H
I
C
H
 
P
A
R
T
 
D
O
 
Y
O
U
 W
A
N
T
 
T
O
 
S
E
L
E
C
T
?
 

*
 

E
N
T
I
T
Y
 

N
O
N
-
F
U
N
C
T
I
O
N
A
L
 

E
N
T
I
T
Y
 

Y
O
U
 
C
A
W
 
S
E
L
E
C
T
 
O
N
E
 
O
F
 
T
H
E
 
F
O
L
L
O
W
I
N
G
 
E
N
T
I
T
I
E
S
~
 

* 
C
A
S
E
 T
Y
P
E
 

C
A
S
E
 
T
Y
P
E
 

C
A
S
E
 

N
A

M
E

: 

a
p
p
r
o
v
a
l
 

W
H
I
C
H
 
P
A
R
T
 
D
O
 
Y
O
U
 W
A
N
T
 T
O
 
S
E
L
E
C
T
?
 

*
 

S
C
H
E
M
A
 
O
F
 
S
T
E
P
S
 

D
O
~
N
T
 

SC
H

E
M

A
 

O
F

 
S

T
E

P
S

 

W
H
I
C
H
 
P
A
R
T
 
D
O
 
Y
O
U
 W
A
N
T
 T
O
 
S
E
L
E
C
T
?
 

*
 

S
T
E
P
 

Y
O
U
 
C
A
N
 
S
E
L
E
C
T
 
O
N
E
 
O
F
 
T
H
E
 
F
O
L
L
O
W
I
N
G
 
E
N
T
I
T
I
E
S
:
 

S
T
E
P
 
D
E
F
I
N
I
T
I
O
N
 

S
T
E
P
 

S
T

E
P

 
N
A
M
E
:
 

p
r
e
p
a
r
a
t
i
o
n
 

W
H
I
C
H
 
P
A
R
T
 D
O
 
Y
O
U
 
W
A
N
T
 T
O
 
S
E
L
E
C
T
?
 

F
O
L
L
O
W
S
 

A
G
E
N
T
 

S
T
A
T
E
 

A
C
T
I
O
H
 

S
E
L
E
C
T
I
O
N
 
C
O
N
D
I
T
I
O
N
 

* 
D
O
C
U
M
E
N
T
 

D
O
C
U
M
E
N
T
 

Y
O
U
 
C
A
N
 
S
E
L
E
C
T
 O
N
E
 
O
F
 
T
H
E
 
F
O
L
L
O
W
I
N
G
 
D
O
C
U
M
E
N
T
S
:
 

* 
R

E
Q

U
E

S
T

 

A
P

P
R

O
V

A
L

 

O
F
F
I
C
I
A
L
 

R
E
Q
U
E
S
T
 

W
H
I
C
H
 
P
A
R
T
 D
O
 
Y
O
U
 
W
A
N
T
 
T
O
 
S
E
L
E
C
T
?
 

D
E
F
I
N
I
T
I
O
N
 

*
 

D
E
F
I
N
E
 
S
P
E
C
I
A
L
I
Z
A
T
I
O
N
 

R
E
Q
U
E
S
T
 
S
P
E
C
I
A
L
I
Z
A
T
I
O
N
 

N
A
M
E
:
 p
o
l
i
c
e
z
d
o
c
 

A
T
T
R
I
B
U
T
E
S
:
.
 

n
o
n
e
 

P
O
L
I
C
E
-
D
O
C
U
M
E
H
T
 

* 
D
E
F
I
N
I
T
I
O
N
 

D
E
F
I
N
I
T
I
O
N
 

Y
O
U
 
C
A
N
 
S
E
L
E
C
T
 
O
N
E
 
O
F
 
T
H
E
 
F
O
L
L
O
W
I
N
G
 
D
E
F
I
N
I
T
I
O
N
S
:
 

* 
E
X
A
M
P
L
E
 

F
R
E
E
 
T
E
X
T
 

E
X
A
M
P
L
E
 

Y
O
U
 
C
A
N
 
S
E
L
E
C
T
 
O
N
E
 
O
F
 
T
H
E
 
F
O
L
L
O
W
I
N
G
 
E
X
A
M
P
L
E
S
:
 

T
Y
P
I
C
A
L
 
D
E
F
I
N
I
T
I
O
N
 

* 
E
N
T
E
R
 E
X
A
M
P
L
E
 

P
L
E
A
S
E
 
E
N
T
E
R
 T
H
E
 
E
X
A
M
P
L
E
 

Fi
gu

re
 6

: 
E

xa
m

pl
e 

of
 d

ia
lo

gu
e 

dr
iv

en
 b

y 
R

E
C

A
ST

 



the AD is defining a new document type "police-doc'. After definition of the new 
document type, control of the dialogue returns to the pre-defined semantic network; 
the new defined document type is entered and considered as a regular entity in the 
semantic schema (see dashed box in App. 2b). An example of REQUEST document 
may be entered (a toot for entering document definitions, such as an editor or a scanner, 
is called by RECAST at this point}. 

Speci~cation phase 

With the same mechanism shown for the requirements collection, it is possible to change 
phase ('next-phase' link}, and prepare the specification units corresponding to the col- 
lection units built with the illustrated dialogue. In the specification phase, mapping is 
performed directly by the AD and is assisted by mapping rules. 

Figg. 7. and 8. provide a simplified version of the City Council application using 
RECAST for specification of requirements. 

Fig. 7a illustrates the existing predefined ORM specification objects. An ORM object 
has a name, a set of roles, and, for each role, a set of applicable operations (shown 
in curly brackets}. Only the principal characteristics of each object are shown. Fig. 
7b depicts the default ORM objects provided by the AE in the Public Administration 
domain; some of these objects are usually taken globally, such as the "document" and 
"official-document" objects, while other objects may be selected considering only the 
roles relevant in the specific application. 

Fig. 8. shows some mappings from requirements to specifications in the Public Admin- 
istration domain. In Fig. 8a, some general mapping rules are shown. In Fig. 8b, the 
actual mapping from application requirements in the City Council example to specifi- 
cations is shown. Note that some of the derived roles appearing in Fig. 8b are derived 
automatically from default objects and/or from mapping rules; other roles have been 
selected from the SIB and added to the specifications by the developer, or deleted from 
suggested specifications. 

7 Conc lud ing  remarks and future work 

Reusability of requirements is one of the goals of the ITHACA Esprit II Project; in 
this paper we have illustrated the basic features of the RECAST tool that is being 
implemented in the ITHACA framework for reusing development documents related to 
requirements. 

The approach to reusability of requirements on which RECAST is based is a guided 
collection of the requirements of a specific application, together with a from these re- 
quirements to specifications reusing as many available specification elements as possible. 
In guiding the collection of requirements and in supporting the selection of suitable spec- 
ifications, RECAST uses knowledge about requirement models and about application 

356 



Figure 7: Predefined components 

a) PREDEFINED 0RM OBJECTS 

person/office 
roles: request-handler 

reminder/informer 
document-preparer 
asker-for-approval 
approver 

document 
roles: been-prepared 

role-messages: {input, visualize/retrieve} 
been-delivered 

role-messages: {print, archive, send} 

official-document 
roles: been-prepared 

role-messages: {sign} 

external-office 
roles: approver 

been-informed 

b. PUBLIC ADMINISTRATION DEFAULT SPECIFICATION OBJECTS 

document 

official-document 

external-office 
roles: been-informed 

person/office 
roles: document-preparer.reminder/informer, asker-for approval 

357 



Figure 8: Mappings 

a. MAPPING RULES 

Collected Specification components 
Requirement to be selected: 

ORM object role 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

office person/office 
office-director person/office approver 
request official-document all roles 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

b. MAPPING OF EXAMPLE REQUIREMENTS 

Requirements Specifications 
ORM object role 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

office person/office 

office-director 

been-delivered 

person/office 

document 

official-document 

document-preparer, 
reminder/informer, 
asker-for-approval, 
request-handler 
approver, 
reminder/informer 
been-prepared. 

been-prepared.been-delivered 

external-office been-informed 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

358 



domains stored in a knowledge base (Software Information Base). 

Connections of RECAST with the other tools of the ITHACA Application Development 
Environment are being studied. Experiments on sample applications are currently being 
performed, based on a ground of implemented objects in a given application domain (the 
Public Administration application domain). Ideas on reuse of requirements are being 
validated on these objects using the ORM specification model; work on refinement of 
this model is also being done. 

Acknowledgments 

We acknowledge the contributions of the ITHACA partners in the Tools Group through 
discussions and comments. 

This work was partially supported by a research contract between Datamont and Po- 
litecnico di Milano within the ESPRIT II project Ithaca (Project N. 2121) of the Com- 
mission of European Communities. We also acknowledge the contribution of the par- 
ticipants to Project "Informatica e Calcolo Parallelo - Obiettivo Infokit" of the Italian 
National Research Council through discussions on the topics presented in this paper. 

R e f e r e n c e s  

/Ara 88/ G. Arango, R. Cazalens, and J.-C. Mamou, "Design of a software reusability 
system in a object-oriented environment", Rapport Technique Altair 25-88, Nov. 30, 
1988. 

/Bur 87/B.A. Burton, R.A. Wienk, S.A. Bailey, et al., "The reusable software library", 
IEEE Software, July 1987. 

/Cos 89/P. Costantopoulos, M. Jarke, J. Mylopoulos, B. Pernici, E. Petra, M. Theodor- 
idou, and Y. Vassiliou, "The ITHACA Software Information Base: Requirements, Func- 
tions, and Structuring Concepts", in / ITH 89/. 

/Cox 87/B. Cox, Object-oriented programming, Addison-Wesley, 1987. 

/Fea 87/M.S. Feater, "Reuse in the context of transformation based methodology", in 
/fre 87/. 
/Fis 87/ G. Fisher, "Cognitive view of reuse and redesign", IEEE Software, July 1987. 

//Fre 87/P. Freeman, Tutorial: Software Reusability, IEEE Computer Society, 1987. 

/Gib 89a/ S. Gibbs, V. Prevelakis, D. Tsichritzis, ~Software Information Systems: A 
Software Community Perspective", in/Tsi  89/. 

/Gib 89b/S. Gibbs, G. Kappel, ~The ITHACA Application Development Environment 
- Process Models and Tools Scenario", in//ITH 89/. 

/ITH 89//ITHACA Tools Group, "Tools Group Interim Report", July 1989. 

359 



/Jar 89/ M. Jarke, DAIDA Team, "DAIDA: Conceptual Modeling and Knowledge- 
based Support" (draft version), Sept. 1989. 

/Kap 89a/G. Kappel, "Proposed reference example for the TWG in ITHACA", ITHACA.CUI.89.E. 
(Revised Version), Sept. 1989. 

/Kap 89b/ G. Kappel, "Reusable software components for application of the Public 
Administration domain", ITHACA.CUI.89.E.~12, Sept. 1989 

/Kou 89/ M. Koubarakis, J. Mylopoulos, M. Stanley, M. Jarke, "Telos: A knowledge 
representation language for requirements modelling", Int. Rep. KRR-TR-89-1, Univ. 
of Toronto, Jan. 1989. 

/Mey 89/B. Meyer, Object-Oriented Software Construction, Prentice-Hall Intl. Series 
in Comp. Sc., 1989. 

/Nei 87/J.M. Neighbors, "The Draco approach to constructing software from reusable 
components", in/Fre 87/. 

/Per 89a/B. Pernici, G. Vaccari, R. Villa, "INTRES: INTelligent REquirements Spec- 
ification", Proc. IJCAI Workshop on Automating Software Engineering, Detroit, Aug. 
1989. 

/Per 89b/ B. Pernici, F. Barbic, M.G. Fugini, R. Maiocchi, J.R. Rames, C. Rolland, 
"C-TODOS: An automatic tool for office systems conceptual modelling", ACM Trans. 
on Information Systems, Oct. 1989. 

/Per 90/ B. Pernici, "Objects with Roles", ACM/IEEE Conf. on Office Information 
Systems, Boston, MA, April 1990. 

/Pro 89/A.K. Proefrock, D. Tsichritzis, G. Mueller, M. Ader, "ITHACA: An integrated 
toolkit for Highly Advanced Computer Applications", in /Tsi 89/ and in Office and 
Business Systems Results and Progress of ESPRIT Projects in 1989, DG XIII, CEC, 
1989. 

/Pun 87/P.P. Puncello, F. Pietri, P. Torrigiani, "ASPIS: a project on a knowledge-based 
environment for software development", CASE 87, 1987. 

/Pun 88/ P.P. Puncello, P. Torrigiani, F. Pietri, R. Burlon, B. Cardile, M. Conti, 
"ASPIS: a knowledge based CASE environment", IEEE Software, March 1988. 

/Pun 89/ W.W.Y. Pun, R.L. Winder, "A design method for object-oriented program- 
ming", in Proc. ECOOP'89, S. Cook ed., Cambridge University Press, 1989. 

/San 90/ A. Sanfilippo, Dynamic INTRES, Graduation Thesis, Politecnico di Milano, 
1990. 

/Som 89/ I. Sommerville, Software Engineering, 3rd ed., Addison-Wesley, 1989. 

/Tsi 88/D. Tsichritzis (Ed.), Active Object Environments, Centre Universitaire d'Informatique, 
University of Geneva, June 1988. 

360 



/Tsi 89/D. Tsichritzis (Ed.), Object-Oriented Development, Centre Universitaire d'Informatique, 
University of Geneva, July 1989. 

/Weg 87/P. Wegner, "Varieties of reusability", in/Fre 87/. 

/Wit 89/M. Wirsing, R. Hennicker, R. Stabl, "MENU - An example for the systematic 
reuse of specifications", University of Passau Technical Report MIP - 8930, 1989. 

A p p e n d i x  1 - S e m a n t i c  n e t w o r k  o f  R E C A S T  m e t a - -  

k n o w l e d g e  

REQUIREMENT 
MODEL 

~ [par,-of ~ 

I 
~.of 's-a [ ~POTENTIAi~ 

' s - a / / ~  T~  TY 'EI--]1-7[_ / ,,SE'LECTEI~ 

,s.~ -~-~, ~ - ~ , ~  

DESTINATIO! Is-a 
[STANDARD ~ ~ 

is-a~ is-a I , USER~-DEFINED~ 

361 



A p p e n d i x  2 - S e m a n t i c  n e t w o r k  o f  R E C A S T  k n o w l -  
e d g e  

Z 
Oz 

< 

/ 
o = 

-= :=~ 
O ~  ? 

/ 
~ ~ I 

' ~  ' ~i r~ 2 I 

App. 2a 

362 



G
O

 

¢..
,O

 

.'?
 

It,
 O
 o"
 

CO
LL

EC
TI

O
N

 ~
ar

t-
of

 
U

N
IT

 
pa

rt
-o

f~
 

EN
TI

TY
 

NO
N 

FU
N

CT
IO

N
A

L 
I 

[is
_ a

 
~ 

"-
-~

ar
t-

of
 

~ 
I I

N
TE

RF
A

C~
 

~A
SE

 T
YP

E 
] 

\ 
~a

.-o
~ 

I 
ha

s-
a 

~ 
SE

kS
EC

UR
IT

,~ 
I S

CH
EM

A O
F 

ST
EP

S L
 

~,~
rt-

o~
 

f°
L°

w
s 

ha
s-

~ 
~ 

I O
RG

A
N

IZ
A

TI
O

N
A

IJ
 

I 
I 

~ 
~ 

I 
D

IA
G

R
A

M
 

| 
ST

EP
 ~

 
Is'

I~
P 

DE
FI

Nm
ON

I 
h a

,~.
.a.

. ,'/
 

-
-

.
.

~
a

~
-

~
~

 
t ~

 
i s-

a 

A
G

E
N

T
 

D
O

C
U

M
EN

T 
ha

 
~ 

EX
AM

PL
Eo

F 
ST

EP
 

• 
) 

i.,
~-

 
'-

 )C
U

M
EN

T I
~ 

h~
a ~

'''~
[ ~

 
• 

, 
~J

[ 
is-

a 
is-

 
,s-

a]
 

ls 
a[

 
/-

--
..

1 
C

O
N

D
IT

IO
N

 
. 

1s
-a

/ 
, 

.
~

 
, 

EX
TE

R
N

A
LI

 
I 

O
F

~
I

/
 

I T
Y

pI
cA

L
 

/ 
I E

N
TE

R
 

! 
- 

is 
a 

D
EF

IN
IT

IO
 

EX
A

M
PL

 
O 

Fi 
E 

I I
 

/'a
 

ti, 
 

' 
t 

i o
Ff

IC
E 

i 
IA

PP
RO

VA
LI

 
t 

I R
EO

UE
ST

J.
--

__
__

_~
a 

l h
as

-a
 

PO
LI

CE
 

...
...

.. 
D_

._Q
C_

 ...
...

.. 
I D

EF
IN

IT
IO

NI
 

is-
a 

.~
l 

EX
A

M
PL

E]
 

O
F 

R
EQ

 
] 

is-
a 

"-
.~

is-
a 

-T
Y

PI
CA

L 
EN

TE
R

 -
7 

D
EF

 
] 

EX
A

M
PL

E]
 



.I
x 

CO
LL

EC
TI

ON
 

PH
AS

E 
ne

xt
-p

ha
se

 
SP

EC
IF

IC
AT

IO
N 

PH
AS

E 

I h
as

-a
 

_/
 

SP
EC

IF
IC

AT
IO

N 
U

N
IT

 

r
~

 
x,,

~s
_ a

 

CO
LL

EC
TI

ON
1 

l 
OR

M
 

U
N

IT
 

J 
OB

JE
CT

 
~.

~' 
t "-

'" 
I ~

 rx
 lvl

.-E
J 

t 
pa

~o
~ 

is-
a J

 
is-

a I
 

~p
Xa

(t~
f~

ar t
 -°

 f 
J 

\
\

~
 

RE
QU

ES
T 

OF
FI

CE
 

[ 
. 

pa
rt-

°k
f~

'kk
~ O

PE
RA

 TI
O/

~ 
ha

s-d
es

!g
n-

] 
/ h

as
-d

es
ig

n-
 

su
gg

es
tm

n 
/ 

[su
gg

es
tio

n 
~R

UL
E[

 
M

A
IL

 
[ 

DA
TE

 
HA

ND
LE

R 

DE
SI

GN
 

t 
OB

JE
CT

 


