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Similar to the formation of first-order density matrices we can construct three-dimen- 
sional functions (here called density funetions) from the 3N-dimensional solution of the many- 
body problem. Ir we choose the Hamiltonian in a suitable forro the energies of atems can 
be approximately calculated with the aid of these funetions. Depending on the forro of the 
wave function the deviation from the Hartree--Fock method is some tenths or some per cent. 
The approximation is the most aeeurate and the most simple in the spherically symmetrical 
case. The discussion is possible only for stationary problems. 

Introduct ion 

I t  is well known tha t  one of the main difficulties in the m a n y - b o d y  

problem is due to the large number  of variables. The approximat ions  used 
today  are so complicated tha t  t ry ing  to get an exact  relation between a certain 

physieal cons tan t  of  the system and the atomic parameters  (atomic number ,  
principal q u a n t u m  number ,  number  of electrons, etc.) is a lmost  impossible. 

Though,  by  the aid of high-speed computers  very  great  acccuracy  is reached, 

the development  of  an approximate  method  which is less precise bu t  still 
generally adaptable  for more complicated atoms,  also, is not  wi thout  interest. 

In the l i terature we can f i n d a  great  number  of a t t empts  which ate 

confined to the global t rea tment  of the system as a whole, in place of the 
precise description of each of the particles. This means, from a mathemat ica l  

point  of view, t ha t  they  work with certain averaged functions by  the aid of 
which the energy can be calculated with sufficient accuracy.  The oldest of 

these is the T h o m a s - - F e r m i  model. The electrons of the system which can be 
described by Fe rmi - -D i r ac  statistics are t reated a s a  degenerated electron 

gas at  the absolute zero tempera ture  in which the distr ibution of the particles 
is continuous.  This assumption is reasonable in the case of a great  number  of 

particles only, so the error made in the case of the light a toms is considerably 
great. A comprehensive description of the method is given in the book by  

GOMB�93 [1]. 
In the  statistical theory  of fluids we can simplify the problem by  the 

description of a given canonical N-part icle  ensemble with the aid of averaged 
functions [2]. Similarly, the use of the reduced densi ty  matrices is widely 
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accepted  in quan tum mechanies.  In this case not  the wave funct ion but  the 
dens i ty  opera tor  is averaged [3--4] .  At tempts  have been made at  the a p r i o r i  

ealeulat ion of the first  and seeond-order densi ty  matriees bu t  these lead to 
ve ry  eomplieated expressions [5- -6] .  

MACKE [7] rep]aces the one-electron orbitals  by  those which ate auto-  
mat iea l ly  orthogonal  to eaeh other  if the suitable variat ion condit ions ate 
fulfilled. We can describe the system a s a  whole with the ensemble of these 
funet ions whieh eontain only  one rec tor -var iab le  eons t rueted  of the  three-  
spaee eoordŸ The energy expression in the case of a great n u m b e r  of 
part ieles gives the T h o m a s - - F e r m i  energy. The proeedure  is in te rmedia te  
be tween the H a r t r e e - - F o e k  and the stat is t ieal  method .  LxD~Ÿ [8] used it 
for conerete  ealeulations, also. 

Reeent ly ,  GOMBXS [9] suggested a method  b y  whieh he eould n o t ab ly  
simplify the SCF-proeedure.  Handl ing the eleetrons of a subshell un i formly  
we get as ma ny  equat ions as the number  of the subshells. By this, the numerical  
work is great ly  reduced and the accuracy is a lmost  the same as originally.  

In  the foilowing we suggest a me thod  analogous to the one ttsed in the 
stat is t ieal  theory  of fluids. By a suitable t r ans fo rmat ion  of the energy opera tor  
we can obtain sufficiently eorreet  results. 

Density t ransformat ioa  

Let  the normalized wave funct ion of an a rb i t ra ry  electron system be 
~(1: t, r 2 . . . . .  rN). The probabi l i ty  of f inding any electron in the space e lement  
dCr a round the point  defincd by  the vector  r is 

N /=I .  

where 

and 
d v i  ~ dZ [~ . . . d 3 r i _ t  d31:i+l . . . d 3 r N .  

= d v  is the whole configurat ion space elemertt.  Obviously,  NP(~) gives dv ,  datz 

the  eharge densi ty  of the whole system. 
Le t  us eall d ~ n s i t y  t r a n s f o r m a t i o n  the fo[[owing: 

~(t) = + VP(t) .  (2) 

Hencefor th  we call ~(t) d e n s i t y  f u n c t i o n .  As 1 /~  P(r ) > 0 qo(r ) is everywhere  
real and 1 > ~(t) ~~_ "~ 0, ir is easily seert t ha t  the deazi ty  function is also nor- 
malized.  In tegra t ing  its square with respect to r 

N 
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put t ing in the i- th in tegrand ti and d3ri in place of r and d3r, respectively,  its 
value does not  change but  we get the norm of ~ ,  the uni ty .  Later,  for the 
sake of simplicity we work with real eigenfunctions only. I f  ~ is a product  of 
one-electron orbitals the density funct ion is the following: 

Let  us examine how to t r a n s f o r m a n  operator in order to get the correct 
expectat ion value with respect to the densi ty function.  Let  O----O (q, ~2 . . . . .  
rN) be an arb i t ra ry  operator. The 

N~2(r) ( ~ O ~ ) i  dvi (3) 

production operator  satisfies the requirements and its expectat ion value with 
respect to the densi ty function is jus t  <O>. As above, the index i means tha t ,  
ufter performing the operations, we put  r instead of ti in the parentheses.  We 
oan prove analogously to our former concept tha t  the choice in (3) is correct. 

The use of to(r) is inconvenient  and we have to use the exact  wave func- 
tions, also. Let  us assume tha t  O i s  the  sum of the following one-electron ope-  

rators:  

o=2~o; ,  
J (4) 

O i = g r a d r ~  or 0 i = V ( r i ) .  

In this case ~ can be writ ten in the form of a product :  ~ = F /Vi  and the ex- 
pectat ion value of the under  operators 

N g r a d r  or NV(r) (5) 

with respect to ~0(r) gives jus t  the correct <O> ~- Z(Oi>. Namely,  the effect o f 
the gradient  operator  according to the definition (1) of ~v is the following: 

1 
gradr ~v(r) -- N~0(r) ~ i  Vi(r) gradrvi(r)  (6) 

and the expectat ion value is 

N~~v(r) gradr ~(0 d3 
J 

i "~' r d 3 r =  ,~  Vi( ) gradr vi(r) r. 
i 

Repeating the ~ = ti subst i tut ion we get <Oi>. On the other hand  in (3) we 
wrote 2?V(ri) in place of O and so we g o t a  special form of the w(r) operator  
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1 ~(~) - 
N ~ ~ ( t )  

v ~}(~) 
~i"P'(r) v(~) ,p~.(~) : v(~) �9 N~~(~) - V(r) 

whieh  m e a n s  t h a t  t he  choice  O i = V(r)  is cor rec t ,  too .  

Simpl i f i ca t ion  o f  the  Har tree  m e t h o d  

The  H a m i l t o n i a n  in a t o m i c  uni t s  can be w r i t t e n  as fol lows:  

14 = - -  
1 N N Z N 1 

2 i=~~l i = 1  i / < j = 2  - -  

L e t  us rep lace  this b y  the  fo l lowing:  

- ~2 ~i~g.a~ ~'r + (2 ~} '~ ~0(r'" ~~' 
Here  1/r Y0(r) m e a n s t h e  so lu t ion  o f  the  spher ica l ly  s y m m e t r i c a l  Po i s son-  

e q u a t i o n :  
r ~ 

lr Y~ : l ~ r  J {'P2(r ')  d r " - ~ f ~  P2(r')dr', (8) 

0 r 

where  p2 is the  spher ica l ly  a v e r a g e d  e lec t ron  dens i t y  

2~t 

P2(r) 1 ~ P~(r) "~" �9  v~(r) r 2 sin v ~ da d Z 
N i=~ 

0 0 

-~- f f q~2(r)r2sinvqdvqdz. 
O 0 

(9) 

We  can  i m m e d i a t e l y  see t h a t  t he  second  t e r m  in (7) co r responds  to  the  

(5) p r o d u c t i o n  o p e r a t o r  a n d  its e x p e c t a t i o n  va lue  is e x a c t l y  the  same as t h a t  

o f  the  a t t r a c t i v e  po ten t i a l .  
I n  t he  case o f  the  k ine t i c  e n e r g y  o p e r a t o r  we do n o t  ob ta in  e x a c t  va lues .  

Us ing  t he  def in i t ion  o f  t he  d e n s i t y  f u n c t i o n  

d i v g r a d  ~v(r) - -  N ~v(~) q(r) ' gradv~i �9 

* The Pauli exclusion principle is not fulfilled with this operator. We can obtain the 
correct results only if we use those density functions which ate constructed from antisymme- 
trical wave functions (these have to he known from other ealculations). A priori calculations 
are possible, for example, with the aid of the pseudopotential included in the Hamilt0nian 
(see Diseussion). 
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(For the sake of simplicity, here and later we do not designate the argument 
of the operator.) The scalar product occurring in the above expression can be 
brought to a simpler form by the use of the definition of ~(t). So the expect- 
ation value of the approximate kinetie energy is the following: 

f ~~f Ek -- 1 ~(r) N divgrad ~0(r) d 3 r v/i divgrad v/i d3 r 
2 2 

1 ~~f[(Igraa v/ii) ~ 
2 

v/; ] 
N~2(r) ~~ V/j (grad V/;, grad v/j) d '~ r. 

Replacing r = ti the first term gives the expectation value of the exact 
kinetic energy. The second integrand may be brought to a simpler forro, so 
we get 

El, -- Ek(HF) = AEk = 

N f (lO) -- 2N,I  <~=2 ~-2(r)(lv/j grad v / i -  v/i grad v2jl) zd3r. 

As the scalar product is always positive AEk < O. 
Let us now treat  the Coulomb repulsive term of the Hamiltonian. Ir is 

well known that  in the Har t ree- -Fock approximation we obtain the expect- 
ation value of the repulsive potential from the solution 1/ri Y0yofthe spherical- 
ly symmetrical Poisson-equation in the following way: 

where 

N 

Evr(HF ) = . ~  (ii Igt q),  
i < j = 2  

(ii tgl ii) = ~P~(r~) ! Yojdri. 
J r i  
o 

Here P~(ri) means the radial probability density function of the i-th electron. 
The last term in the (7) operator gives the expectation value of the repulsive 
potential only approximately because on the basis of (8) and (9) 

(N I t'P2(r) 1 Yo(r)dr 1 r N ( 2 N ] f ~  P~(r)[+ 1 = f � 9  
O 0 0 

f i l  ] N - - I  N -~- r" N .~'P~(r')dr" dr ~ (ijlg[ij), ] 2N i,j=~ 
r 

In the last step we made r' = rj and the r = ri substitution in the internal 
and the external integrand, respectively. 
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I t  is readi ly  seen t h a t  the  above sum gives the  expec ta t ion  value  only 
app rox ima te ly .  The dev ia t ion  is 

Epr E p r ( H F ) A E p r - ~ [  ~---1 N ~,~ 1 - -  = = . ~ ( i i l g [ i i  ) -  ( i j l g l i j ) ,  (11) 
2 i=1 i<j=2 

which can be easily p roved  b y  the aid of  s imple t r ans fo rmat ions .  We canno t  
tell any th ing  connected wi th  the  sign of AEvr; l a te r  we shall see two examples  
where it  is posit ive.  

In  order  to make  an es t imat ion  of the  errors  let us calculate  the  va lue  
of (10) and  (11) in the case of  the  Ne , a tom.  Using H - t y p e  orbitals ,  the  charge 
d is t r ibu t ion  and q also is spher ical ly  symmet r i ca l .  The  kinet ic  energy  using 
the  dens i ty  funct ion ob ta ined  f rom the above  orbi ta ls  is E~ = 13~2/4, its 
error  re la t ive  to the  one-elect ron calculat ion is A E k  = - - 0 . 0 8 4 ~  2 (--2.6~ 
where ~ means  the  va r i a t ion  p a r a m e t e r  of  the  wave  funct ions.  The repuls ive  
po ten t i a l  is E p r  = 8.42~, its error  is A E p ~  = 0.35~ (4.15%). The a t t r a c t i v e  
po ten t i a l  is - -13~Z/2,  its e r ror  is zero so the  m i n i m u m  of the  to ta l  energy  is a t  

= 8.7, i ts  va lue  is E = - -283.9 ,  the  error  is A E  = - -3 .4  (1.43%).  I r  we 
choose e -a=r, e -a=r . . . . .  e -=r as orbitals  the  kinet ic  energy is 55~ 2 the  error ,  

ca lcula t ing (10) graphical ly ,  is abou t  - -0.138~ 2 (0.25%).  The repuls ive poten-  
t ial  is 84.5~,i ts  error  is 0.465~ (0.55~ a t t r a c t i v e  po ten t ia l  is - - 3 0 ~ Z  so 
the  m Ÿ  energy (~ = 1.96) is --197.0,  its er ror  is 0.38 (0.19%). The  to t a l  
energy  of the  Ne ob ta ined  exper imen ta l ly  is - -129.5  (all values  in a tomic  
units).  Because of the omission of the Paul i  exclusion principle the  absolute  
values  of  the  above  da ta  are incorrect  bu t  we m a k e  a compar i son  be tween  
the  ene rgy  calcula ted b y  the  one and the many-d imens iona l  funct ion,  respect-  
ively.  I t  is in teres t ing  t h a t  the  errors ate  different  in the case of  the  two 
types  of  orbitals.  

Discuss ion  

The me thod  out l ined above  is appl icable  in two ways.  Firs t ,  we can 
cons t ruc t  th ree-d imens iona l  wave  funct ion wi th  the  aid of  the  m a n y - d i m e n -  
sional eigenfunct ions ob ta ined  otherwise.  This makes  a great  s implif icat ion of 
fu r the r  calculat ions possible.  The one-electron orbi ta ls  of H a r t r e e - t y p e  are 
not  sui table  for this purpose .  The funct ion cons t ruc ted  by  the dens i ty  t rans -  
f o r m a t i o n  will be spher ica l ly  symmet r i ca l  in the  case of a closed she11 b u t  
difficulties will arise in the  choice of the kinet ic  ene rgy  opera tor .  Namely ,  the  
Lap lace -ope ra to r  is the  sum of a radial  a n d a  sphcr ical  t e rm:  

A = A~ + A~~ 

0 2 2 0 1 ( ~ 2  a 1 a 2 ] 
A r --  - ~ - - -  - - ,  A ~ ~ - - - - -  ~ - c t g v  a - - - + - -  , 

0& r 0r --  & O ~  0u Q sin20 OZ 2 
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I f  the opera tor  --NAr/2 acts on the dens i ty  funct ion (the effect of the second 
t e rm is zero) we neglect  the angle-dependent  te rm occur r ing in  the H a r t r e e - -  
Fock approximat ion ,  also: 

"~~i .~.,J ~~zŸ161 = "~i" l(l + 1) ~v~ dr.  

The neglect  of this t e rm gives a considerable error.  ~pi appears  in the above 
expression weighted with l(l q- 1) and construct ing the densi ty  funct ion we 
consider ir always with the same weight.  So we should have  an opera tor  
which produces a weighted sum from the non-we igh ted  ~. I r  we do no t  use 
the original wave funct ion this is not  possible. The solution should have been 
a product ion  opera tor  corresponding to (3) bu t  this is so complicated t h a t  
the method  would lose its value.  The Ritz var ia t ion procedure  is a possible 
way to obtain concrete results with the aid of the densi ty  funct ion.  We approach 
the ~o by  a suitable expression and we calculate the min imum of the energy 
so we can obta in  the best  parameters  of our  trial  funct ion.  The Pauli  exclusion 
principle is no t  ineluded in the dens i ty  funct ion;  this is to be considered in 
some suitable subsidiary condition.  Most convenient  is the pseudopotent ia l  
used in the s tat is t ical  theory  of  the  a tom [10]. This is an energy-l ike product ion  
opera tor  which, added to the Hami l ton ian ,  does not  let  all the  electrons drop 
into the lowest energy states.  

The m e thod  is pr imar i ly  convenien t  in the t r e a t m e n t  of  the  ground state.  
In  caleulat ing the a tomic spectra  several  difficulties arise. A given configu- 
ra t ion is to be wr i t ten  in the best way with the aid of the one-electron orbitals.  
As the densi ty  t rans format ion  does not  make any difference between the 
individual  propert ies  of the electrons,  the exci ted states belonging to different  
symmetr ies  are indistinguishable.  According to similar reasons the formula t ion  
of the exchange of electrons is also problematic .  As the dens i ty  funct ion is 
always real in the case of non-s ta t ionary  problems, i t i s  useless. 

One can expec t  t ha t  the most  correct  results are obta ined  in the spheric- 
ally symmetr ica l  case. This is suggested by  the vast  reduct ion  of the error  
with the use of spherically symmetr ica l  orbitals.  So the value of the metho, l  
is greatest  for the calculation of this case. 
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HPHI3flHYKEHHE H P O B f l E M b l  M H O F H X  3J1EI~TPOHOB 
HYTEM E~HHOITI ~HCKNCCHH 3APgi~{HOFO OBfIAI<A 

F. HAPAH-CAEO 

P e 3 ~ o M e  

1-Io~o5~o o6pa3oBa~~~o pe~lyRnpo8aHHb~x MaTpHL~ FIYlOTHOCTH nepBor0 paHra H3 pemeHH~ 
npo£ MH0rnX TeJI C 3N - -  nepeMe~Hb~~m M0>KnO rlp0H3B0}IHTh TaK Ha3bmaeMbm qbym<t~HH 
IDIOTHOCTH C TpeM~ nepeMeHHbltaH. I]pH IIOMOIRH 9THX ~byHKI~H~ 9neprna aToMa BblqHC2I~IeTC~I 
C np~6~~~eH~0~ T0qH0CTblO HpH yC2aOBHH Bb~60pa onepaTopa FaMI4J1hTOHa B C00TBeT~rBylOlIIe~ 
~b0pMe. OTJIHqHe OT MeT0aa XapTpH-- r  8 3aBHCHM0CTH 0T BH~a B0~8OB0~ ~byHKILHI4 He- 
CKOJIbK0 ~eC~lTblX ~0JIH HpoReHTa H~H HecK0~bK0 Hp0l~eBTOB. I-IpH6~H>~eHHe HaH6o~ee T0ttHO 
14 IIp0CTO B cayqae.c~bepHqecKo~ CHMMeTpHH. (I)yHKI~H~ IIJ10TH0CTH IIpHMeHHMa TO.qbKO J~JI~ 
~'IHCKyCCHH CTaIlt40HapHblX rlpoSnet~, 
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