N-acetylcysteine to reduce renal failure after cardiac surgery: a systematic review and meta-analysis

[Étude méthodique et méta-analyse : la N-acétylcystéine dans la réduction de l’insuffisance rénale à la suite d’une chirurgie cardiaque]

Finola Naughton MD FCARCSI, Duminda Wijeysundera MD FRCPC, Keyvan Karkouti MD MSc FRCPC, Gordon Tait PhD, W. Scott Beattie MD PhD FRCPC

Purpose: To assess the effect of N-acetylcysteine (NAC) on acute renal failure and important clinical outcomes after cardiac surgery.

Methods: Two reviewers performed literature searches, using EMBASE and PubMed, of randomized controlled trials investigating the renoprotective effect of N-acetylcysteine in cardiac surgery. Treatment effects were calculated as relative risks (RR) with 95% confidence intervals (CI). Heterogeneity and publication bias were assessed using the P test and funnel plots, respectively. Meta regression was performed to assess the effect of baseline renal function and the use of aprotinin on renal function.

Results: Seven randomized controlled trials (RCTs) (n = 1000) were identified. No study could demonstrate, either independently or meta-analytically, an improvement in the postoperative increase in creatinine, mortality (RR 0.93, 95% CI 0.4 to 2.07), renal failure requiring renal replacement therapy (RR 1.01, 95% CI 0.49 to 2.12), myocardial infarction (RR 0.88, 95% CI 0.36 to 1.88), atrial fibrillation (RR 0.88, 95% CI 0.70 to 1.10), or stroke (RR 0.69, 95% CI 0.27 to 1.69). There was a small, though significant increase in postoperative blood loss among patients treated with NAC (weighted mean difference 119 mL 95% CI 51, 187). After meta regression neither increase in postoperative creatinine (r^2 = 0.33) nor renal replacement therapy (r^2 = 0.04) was associated with the baseline creatinine or with NAC dose (r^2 = 0.04).

Conclusion: This analysis did not find that treatment with NAC was associated with clinical renal protection during cardiac surgery, or improvement in other clinical outcomes.

From the Department of Anesthesiology and Pain Management, University Health Network, Toronto General Hospital, and the University of Toronto, Toronto, Ontario, Canada.

Address correspondence to: Dr. Finola Naughton, Department of Anesthesia and Pain Management, University Health Network, Toronto General Hospital, 3 Eaton North 3-464, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada. E-mail: finola.naughton@uhn.on.ca

This investigation was supported by funds from the R. Fraser Elliot endowment.

Conflicts of interest: None declared. Accepted for publication August 12, 2008. Revision accepted September 30, 2008.

© 2008 Canadian Anesthesiologists' Society
A new kidney injury (AKI) or renal impairment is an established complication of cardiac surgery occurring with an incidence up to 30%, depending on the definition. In recent years it has become obvious that postoperative renal dysfunction and failure does not merely represent an inconvenient complication prolonging intensive care treatment, infectious complications and hospitalization, but that AKI directly contributes to risk of mortality.1-4

Predisposing factors for the development of AKI after cardiac surgery are well documented and include advanced age, preoperative renal impairment, emergent/urgent or re-do surgery, complexity of the surgery, cardiopulmonary bypass duration, diabetes, congestive heart failure, left ventricular dysfunction, bleeding and blood product transfusion, preoperative use of intra-aortic balloon pump and chronic obstructive pulmonary disease.1,2,4-14

Pharmacological interventions to prevent AKI after cardiac surgery have been extensively investigated. To date, no agent has conferred renal protection.4-5,39 Considerable interest has developed in the potential for N-acetylcysteine (NAC) to exert a renoprotective effect in patients undergoing cardiac surgery. Due to the beneficial effect of NAC on contrast nephropathy and its purported anti-inflammatory effects, several studies were undertaken to evaluate the renoprotective effects after cardiac surgery.40-45 At this point, none of these studies has been able to demonstrate a significant benefit; although, taken individually, they were relatively small and underpowered to demonstrate an effect on the need for renal replacement therapy (RRT). Therefore, we conducted a systematic review and meta-analysis of the randomized controlled trials (RCTs) utilizing NAC in cardiac surgery requiring cardiopulmonary bypass, to determine the effect of NAC on AKI and on other important clinical outcomes.

Methods
This review adhered to the QUOROM recommendations.46

Search strategy
Two reviewers (F.N. and W.S.B.) searched PubMed (up to May 2008) and EMBASE (1980 to May 2008), and PubMed for RCTs comparing N-acetylcysteine to placebo in cardiac surgery. The text words and medical subject headings included: N-acetylcysteine, cardiac surgery, cardiopulmonary bypass/CPB/CABG, high-risk, renal dysfunction, renal failure, renoprotection. Included trials had to report any of the following outcomes: death, stroke, myocardial infarction, atrial fibrillation, or acute renal failure. The outline of the search strategy is seen in Figure 1.

Quality assessment and data abstraction
Two reviewers (F.N. and W.S.B.) performed quality assessment and data abstraction. Randomized controlled trial quality was rated with regard to randomization, allocation concealment, blinded outcome assessment, and dropouts. Data were abstracted on death, acute renal failure, RRT/dialysis, stroke, infarction, atrial fibrillation, red cell transfusion and reoperation. We accepted the outcome definitions used by the original researchers. A 25% increase from baseline serum creatinine was used as a surrogate measure of renal outcome by authors of all included studies. For the purpose of this meta-analysis and for consistency, we have adopted this surrogate measure in defining AKI.

Abstracts of these 79 discrete trials were retrieved and examined for subject, methods
Exclusions
Did not include renal outcomes
Anti-inflammatory markers
Cardio-protection
Were not cardiac surgery
Angiographic
Vascular
Were not randomized trials

Duplicate data extraction and consensus

Pubmed related articles search 1 new citation
Hand search of bibliographies
Authors contacted to confirm or inquire re: missing data*

Data entry and analysis

FIGURE 1 QUOROM diagram and search strategy.
TABLE I Assessment of study quality

<table>
<thead>
<tr>
<th>STUDY</th>
<th>Randomized method</th>
<th>Concealment</th>
<th>Blinding</th>
<th>Intention to treat</th>
<th>Treatment effect assumed for calculating sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns et al.10</td>
<td>1:1</td>
<td>Drugs prepared</td>
<td>Patients</td>
<td>Yes</td>
<td>50% reduction in primary outcome (event rate decrease from 30% to 15%)</td>
</tr>
<tr>
<td>JAMA 2005</td>
<td></td>
<td>In pharmacy</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ristikankare et al.41</td>
<td>No details</td>
<td>Drugs prepared</td>
<td>Patients</td>
<td>Yes</td>
<td>30% reduction in urine NAG</td>
</tr>
<tr>
<td>Br J Anaesth 2006</td>
<td></td>
<td>and randomized in pharmacy</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haase et al.43</td>
<td>1:1</td>
<td>Yes</td>
<td>Patients</td>
<td>Yes</td>
<td>30 mmol difference in serum creatinine</td>
</tr>
<tr>
<td>Crit Care Med 2007</td>
<td></td>
<td>Computer generated blocks of 10</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El-Hamamsy et al.42</td>
<td>Not given</td>
<td>Not given</td>
<td>Patients</td>
<td>Yes</td>
<td>25% reduction in troponin T</td>
</tr>
<tr>
<td>JTCVS 2007</td>
<td></td>
<td></td>
<td>Clinicians and data collectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wijeysundera et al.44</td>
<td>1:1</td>
<td>Drugs prepared</td>
<td>Patients</td>
<td>Yes</td>
<td>5% change in eGFR</td>
</tr>
<tr>
<td>Can J Anesth 2007</td>
<td></td>
<td>and randomized in pharmacy</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisillo et al.46</td>
<td>1:1</td>
<td>No details</td>
<td>Patients</td>
<td>Yes</td>
<td>40% reduction in ARF</td>
</tr>
<tr>
<td>Crit Care Med 2008</td>
<td></td>
<td>Random generated number</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barr et al.47</td>
<td>Not given</td>
<td>Drugs prepared</td>
<td>Patients</td>
<td>Yes</td>
<td>25% improvement in creatinine clearance</td>
</tr>
<tr>
<td>Crit Care Med 2008</td>
<td></td>
<td>and randomized in pharmacy</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARF = acute renal failure; NAG = N-acetyl-β-D-glucosaminidase, AKI = acute kidney injury, eGFR = estimated glomerular filtration rate.

Analyses

We employed Review Manager 4.2.10 (Cochrane Collaboration) to combine treatment effects among studies with the same design. All analyses were performed on an intention-to-treat basis. Effects on dichotomous outcomes were expressed as relative risk (RR) with 95% confidence intervals (CI). Continuous outcomes were expressed as weighted mean differences with 95% CI. Heterogeneity was assessed with the I-statistic. In all analyses the random-effects model was used. Statistical significance was defined by a two-tailed $P \leq 0.05$. For the purposes of this meta-analysis, the outcomes compared were increase in serum creatinine by 25% from baseline mortality, RRT, blood transfusion, re-exploration, atrial fibrillation, myocardial infarction and stroke. For analysis the effects of baseline creatinine and dose of NAC on the outcomes we used meta-regression. A Meta-regression was performed using S-plus/R statistical software and the MiMa function.8 Funnel-plots were used to assess for publication bias.

Results

The search strategy identified seven trials enrolling 1,000 patients.40-48,49 The details of the quality of the studies identified are outlined in Table I. All studies were RCTs, and analyzed on the basis of intention-to-treat. Six of the seven trials were blinded.

The design and characteristics of the studies are shown in Table II. There was variability in the NAC dosing regimens used across the seven trials, with the average dose received ranging from 100 mg to 1000 mg·hr$^{-1}$. Inclusion criteria of all the studies except one, selected patients at moderate-to-high risk of developing postoperative renal injury. Other patient characteristics were similar across all studies. The pri-

A Meta-regression is a tool which can be used to measure the variability of a given response. By assessing the effects of a covariate, (in this case both baseline creatinine and the dose of NAC) on the outcome of interest, (in this case the odds ratio of post operative renal failure), we can measure the extent that this covariate explains the heterogeneity. The r^2 has been used to measure the extent to which a covariate explains the heterogeneity. In this analysis we found a large degree of heterogeneity in the baseline creatinine of the study populations and the dose of NAC used in the studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion Criteria</th>
<th>Dose of N-acetylcysteine</th>
<th>Primary outcome</th>
<th>Secondary outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns et al. 2005</td>
<td>High risk for AKI
2 of:
Creatinine > 120 umol L⁻¹
Grade 3-4 left ventricular function
Age > 70
Diabetes, Complex surgery</td>
<td>600 mg X 4
Induction
Weaning from CPB
12 hr postoperatively
24 hr postoperatively</td>
<td>Incidence of AKI
- absolute increase in serum creatinine of 44 umol or a 25% increase over baseline.
Postoperative 5 days</td>
<td>In hospital mortality
RRT, MI, stroke
Infection, ICU stay
Hospital stay</td>
</tr>
<tr>
<td>Rustikankare et al. 2006</td>
<td>Creatinine > 100 umol
Excluded: Dialysis, prior treatment, Serum creatinine > 400 umol L⁻¹</td>
<td>Bolus 150 mg kg⁻¹
50 mg kg⁻¹ for 4 hr
100 mg for 16 hr</td>
<td>Incidence of AKI
- increase in NAG/creatinine ratio > 30%.
Postoperative 5 days</td>
<td>30 day mortality
RRT, ICU stay</td>
</tr>
<tr>
<td>Sisillo et al. 2008</td>
<td>Calculated Cr Cl (Cockroft-Gault) 60 mL min⁻¹
Excluded patients with RRT</td>
<td>Bolus 1200 mg
Then 1200 mg x 3 q
12 hr</td>
<td>Incidence of AKI
- increase in serum creatinine > 25% from baseline in first 72 hr
Postoperative 72 hr</td>
<td>Mortality
Maximal change in creatinine clearance
Doubling of serum creatinine.
RRT, MI, mechanical ventilation
ICU stay</td>
</tr>
<tr>
<td>El-Hamamsy et al. 2007</td>
<td>Primary CABG.
Excluded emergency, AMI < 5/52, Redo, > 80 yr, ejection fraction < 20%</td>
<td>Oral bolus T-1 600 mg
150 mg kg⁻¹ iv bolus
12.5 mg kg⁻¹ over 24 hr levels</td>
<td>Troponin T levels-25% reduction in postoperative levels</td>
<td>Rate of MI (CKMB > 50%
-/ Q waves)
Renal function (creatinine)
Bleeding
Low cardiac output syndrome
Arythmias, mean CKMB levels</td>
</tr>
<tr>
<td>Haase et al. 2007</td>
<td>High risk for AKI, 1 or more of:
-7 0, Creat > 120 umol L⁻¹, NYHA III/IV, Valve/complex/red surgery IDDM.
Excluded: ESRD Creat > 300 umol L⁻¹, emergency</td>
<td>300 mg kg⁻¹ iv over 24 hr</td>
<td>Absolute change in serum creatinine of 50 umol L⁻¹.
Postoperative 5 days</td>
<td>Relative change in serum creatinine
Peak creatinine
Absolute / relative change in cystatin C
Urinary output, RRT
Mechanical ventilation
Chest tube drainage,
Reoperation
Atrial fibrillation, ICU stay
Hospital stay, mortality</td>
</tr>
<tr>
<td>Wijeysundera et al. 2007</td>
<td>Age > 18
Elective CABG +/- valve surgery
eGFR (Cockroft-Gault) < 60 mL min⁻¹</td>
<td>100 mg kg⁻¹ iv bolus
Then 20 mg kg⁻¹ hr⁻¹ until 4 hr after CPB</td>
<td>72 hr % change in eGFR.
Postoperative 72 hr</td>
<td>Incidence of ARF (absolute increase in serum creatinine of 44 umol or a 25% increase over baseline)
RRT, Vasoactive meds
IABP or vasoactive meds
Atrial fibrillation, stroke</td>
</tr>
<tr>
<td>Barr et al. 2008</td>
<td>Age > 18
Elective/urgent/emergency surgery.
eGFR (Cockroft-Gault) < 40 mL min⁻¹
Excluded:
Hemodialysis</td>
<td>Oral T-1 1200 mg
4 hr postop oral 600 mg
Oral 600 mg postop</td>
<td>Absolute change in eGFR
Postoperative 72 hr</td>
<td>Weight change postoperative
72 hr
eGFR T+14
ICU stay
Hospital stay
RRT
Mortality</td>
</tr>
</tbody>
</table>

AKI = acute kidney injury, AMI = acute myocardial infarction; ARF = acute renal failure; CABG = coronary artery bypass graft; CKMB = creatinine kinase MB, CPB = cardiopulmonary bypass, eGFR = estimated glomerular filtration rate, ESRD = end-stage renal disease; IABP = intraaortic balloon pump, ICU = intensive care unit; IDDM = insulin-dependent diabetes mellitus MI = myocardial infarction, NAG = N-acetyl-β-D-glucosaminidase; RRT = renal replacement therapy.
TABLE III Outcomes

<table>
<thead>
<tr>
<th>Comparison or outcome</th>
<th>Studies</th>
<th>Participants</th>
<th>Statistical method</th>
<th>Effect estimate</th>
<th>Test for heterogeneity P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>7</td>
<td>1000</td>
<td>RR random (95% CI)</td>
<td>0.93 [0.41, 2.07]</td>
<td>6.0%</td>
</tr>
<tr>
<td>Renal replacement therapy</td>
<td>7</td>
<td>1000</td>
<td>RR random (95% CI)</td>
<td>1.01 [0.49, 2.12]</td>
<td>0%</td>
</tr>
<tr>
<td>Baseline creatinine</td>
<td>7</td>
<td>1000</td>
<td>WMD random (95% CI)</td>
<td>0.02 [-0.5, 0.10]</td>
<td>60.7%</td>
</tr>
<tr>
<td>>25% increase creatinine from baseline</td>
<td>7</td>
<td>1000</td>
<td>RR random (95% CI)</td>
<td>0.80 [0.62, 1.05]</td>
<td>0%</td>
</tr>
<tr>
<td>Use of aprotinin</td>
<td>6</td>
<td>710</td>
<td>RR random (95% CI)</td>
<td>1.53 [0.53, 4.53]</td>
<td>93.1%</td>
</tr>
<tr>
<td>Postoperative blood loss</td>
<td>4</td>
<td>415</td>
<td>WMD Fixed 95% CI</td>
<td>11.9 [51, 187]</td>
<td>32.1%</td>
</tr>
<tr>
<td>Reexploration</td>
<td>6</td>
<td>923</td>
<td>RR random (95% CI)</td>
<td>1.32 [0.71, 2.45]</td>
<td>0%</td>
</tr>
<tr>
<td>Low output state</td>
<td>6</td>
<td>753</td>
<td>RR random (95% CI)</td>
<td>0.78 [0.43, 1.43]</td>
<td>0%</td>
</tr>
<tr>
<td>Stroke</td>
<td>6</td>
<td>532</td>
<td>RR random (95% CI)</td>
<td>0.71 [0.28, 1.80]</td>
<td>0%</td>
</tr>
</tbody>
</table>

RR = relative risk; CI = confidence interval; WMD = weighted mean difference.

RR = relative risk; CI = confidence interval; WMD = weighted mean difference.

FIGURE 2 Forrest plot: The effect of N-acetylcysteine and the relative risk of a 25% rise in postoperative creatinine. The diagram is subdivided by the use of aprotinin. The relative risk is calculated using the random effects model. Each square represents the weighting of that study in the overall relative risk the lines represent the 95% confidence interval. Heterogeneity is calculated using the 12 test.

mary study endpoint was the development of AKI in all but one of the studies. There was some variation in the definition and markers of AKI, but all studies reported a 25% increase in serum creatinine from baseline. Increase in serum creatinine by 25% is a surrogate measure of renal failure. Secondary outcome measures varied, but all seven studies reported RRT and mortality. The studies varied with regard to the time period over which the change in renal function occurred, ranging from 72 hr to five days postoperatively. Table III summarizes the results of the meta-analysis. This analysis did not demonstrate any significant effects of NAC on outcomes. N-acetylcysteine was neither protective nor deleterious in its impact on an increase in serum creatinine by 25% from baseline (RR 0.80, 95% CI 0.62 to 1.05). There was no statistically significant difference between treatment and control.
control groups in the requirement for RRT (RR 1.01, 95% CI 0.49 to 2.12), the prevalence of which was 2.8%. There was wide variance in baseline creatinine between studies. A meta-regression analysis shows no significant relationship between preoperative serum creatinine and postoperative change in creatinine (Figure 3). However, there is a possibility that the beneficial effect of NAC is greater for patients with higher preoperative creatinine. This was not seen for RRT or for mortality. There is also a possibility that aprotinin use may counteract the beneficial effect of NAC (Figure 2). When studies are divided by frequency of the use of aprotinin, studies in which nearly all patients received aprotinin had a RR of renal failure of 1.0, while the two studies where aprotinin was never used had a RR of 0.76 (95% CI 0.57–1.03). In-hospital death occurred in 14 of 503 patients receiving treatment with NAC and 18 of 497 control patients (RR 0.93, 95% CI, 0.41 to 2.07).

Four studies measured postoperative blood loss. There was a small, though significant increase in postoperative blood loss among patients treated with NAC (weighted mean difference 119 mL, 95% CI 51, 187). There was no indication of publication bias (Figure 4).

Discussion
This meta-analysis of seven well designed RCTs suggests that NAC does not confer renal protection in patients undergoing cardiac surgery. It has no significant impact on a 25% increase from baseline serum creatinine, which is a surrogate for acute renal failure necessitating RRT. The prevalence of RRT in these studies was 2.8%. Renal replacement therapy rates have previously been reported at 1.3–2.2% in derivation and validation cohorts. The relatively high RRT rate in these studies most likely reflects the inclusion of patients at moderate-to-high risk for developing AKI in the postoperative period. N-acetylcysteine was not associated with a reduction in RRT rates.

In addition, other important clinical outcomes such as perioperative mortality, stroke, myocardial infarction and atrial fibrillation were not improved by treatment with NAC. Somewhat surprisingly, our analysis found that there was increased postoperative blood loss in patients receiving NAC. A possible mechanism for this effect may be related to a direct anti-aggregating effect on human platelets through an increased bioavailability of platelet nitric oxide. N-acetylcysteine has also been found to potentiate the inhibition of platelet aggregation by nitroglycerin.

This analysis has several limitations. The meta-analytic tool is best used for hypothesis generation rather than hypothesis testing. Meta-analysis can be unreliable when multiple small studies, as seen in this analysis, are combined. Publication bias does not appear to be an issue in this study, as funnel plots show clearly that negative studies have been included (Figure 4). The quality of included trials is unlikely to have biased treatment effects since six studies were double-blind, or evaluator-blinded. Allocation concealment was generally well described, abrogating the likelihood of increasing estimates of treatment benefit. Despite this meta-analysis, existing data still lack adequate power to conclusively determine whether NAC improves or worsens outcomes.

Meta-analysis is weakest and most controversial when studies disagree and there is heterogeneity. In our meta-analysis, the outcomes chosen for comparison are clinically important which is reflected in their repeated use by investigators of outcome after cardiac surgery. While our sample size is relatively small, there was little heterogeneity between the studies in terms of inclusion criteria or measured outcomes, although there is some variation in surrogate measures of outcome, definitions, and local practice guidelines. This analysis is further complicated by the issues surrounding perioperative blood loss and aprotinin. Aprotinin
was administered in five of the seven studies analyzed, either routinely or when the patient was deemed to be at high risk for bleeding, or in accordance with local institution policy in operation at the time. This analysis does not allow us to fully assess the effect that aprotinin may have had in these studies. Aprotinin use was moderate, being used in approximately 43% of the studied patients, and was equally distributed between groups of the two trials which universally used NAC. There was no effect of NAC on postoperative creatinine. However, in the two trials where no patients received aprotinin, NAC was associated with a smaller proportion of patients who had a postoperative rise in creatinine (RR 0.78 95% CI 0.59–1.08 \(P = 0.08 \)). We can only speculate as to whether rates for renal failure, reoperation or transfusion were affected by the use of aprotinin. Finally, this meta-analysis cannot evaluate the interrelationship between preexisting renal dysfunction, the dosages of NAC, and the renal toxicity that may have been conferred with aprotinin. Heterogeneity in baseline creatinine and NAC dosages may account for the lack of significance in NAC effect. Further clarification on the effects of NAC might be provided by an individual patient data meta-analysis.

In conclusion, this analysis suggests there is no renal protection with NAC in cardiac surgery patients. However, we are unable to fully assess the effects of NAC dosage, the use of aprotinin, and baseline renal function and the interrelationship of these factors on outcomes. Future trials, if undertaken, could address this issue, if designed to include large numbers of patients with similar baseline renal function receiving the same dosing regimen of NAC. In the meantime, individual patient data meta-analysis within existing studies may provide answers.

Acknowledgements

We sincerely thank the authors who responded in a very timely manner to our requests for additional information related to their respective studies. Drs. Burns and Chu provided the unpublished data on aprotinin. Dr. El-Hamansay provided details on renal failure, and on the incidence of bleeding. We thank Dr. Marenzi for confirming that aprotinin was not used in any of their patients. Finally, to Dr. Barr, for providing the unadjusted creatinine values and details of blood loss.

References

