
Warming the tracheal tube and kinking

To the Editor:
We read with interest the letter on intratracheal kinking of an endotracheal tube by Lee et al.1 The authors highlighted that, in addition to various known causes of obstruction of the endotracheal tube, intratracheal kinking at the site where the inflating lumen opens into the cuff can also cause its obstruction. Their observation is similar to that of Singh et al.2 where the authors could barely pass the endotracheal tube through the nasal cavity following soaking it in warm water. It is well known that thermal softening of the polyvinyl chloride tracheal tube can lead to its distortion and obstruction.3 In the case reported by Lee et al., we postulate that warming the tube to soften it contributed to kinking at the tube’s weakest point, i.e., the site where the inflating lumen opens into the cuff.

We feel that the practice of softening the endotracheal tube should be avoided. If one is unable to intubate with a particular size tube it is better to use a smaller size that can be inserted without causing trauma.

Anil Agarwal MD
Lucknow, India

References

Nasotracheal intubation, epistaxis and atelectasis in a patient with anhidrotic ectodermal dysplasia

To the Editor:
Anhidrotic ectodermal dysplasia (AED) is a rare hereditary disorder affecting ectodermally-derived tissues and organs. It is characterized by hypohidrosis, hypodontia and hypotrichosis.1

A five-year-old boy (26 kg, 116 cm) with AED was scheduled for extraction of impacted teeth under general anesthesia. A nasotracheal tube (inner diameter, 5.0 mm) was softened with warm saline before intubation. Anesthesia was induced with 5% sevoflurane in combination with nitrous oxide and oxygen via a face mask. After venous cannulation, 3 mg vecuronium bromide was used to facilitate tracheal intubation. The tube was inserted into the right naris. Resistance was not felt during transit of the tube through the nasal passageway. However, blood was found in the pharynx and hindered intubation under direct laryngoscopic visualization. Aspiration resulted in the immediate removal of a considerable quantity of blood. As we could visualize the vocal cord with a laryngoscope, the tube was placed in the trachea with the aid of a Magill forceps. A decrease in SpO2 was noted following the induction of epistaxis by the nasotracheal intubation with diminished respiratory sounds being evident in the right upper lung field. A chest x-ray indicated atelectasis and an obstructing clot was removed by bronchoscopy from the right upper lobe bronchus. This resulted in an improvement in SpO2. In the ward three hours after extubation, the atelectasis was no longer evident on a chest x-ray. On the first postoperative day, hematological examination revealed a mild inflammatory state and the patient was treated with antibiotics. There was no evidence of a respiratory tract infection and the exact cause of the inflammatory state was not determined. He was discharged on the fifth postoperative day.

Patients with AED are predisposed to epistaxis because of poor humidification of inspired air leading to generalized drying and crusting of the airway.2 To our knowledge, our case is the first report of epistaxis and atelectasis following nasotracheal intubation in a patient with AED. We believe that imperfect suctioning of blood in the pharynx resulted in blood entering the bronchus when tracheal intubation was performed. The alpha-adrenergic agonist oxymetazoline is effective for the prevention of epistaxis associated with nasotracheal intubation3 and may, therefore, be useful in a patient with AED.

In conclusion, specially in patients with AED, it is necessary to perform nasotracheal intubation very delicately in order to prevent epistaxis and associated complications.

Hideaki Ishii MD
Ippei Watanabe MD
Konosuke Watanabe MD
Chie Kobayashi MD
Masanori Maruyama MD
Hiroshi Baba MD
Niigata, Japan
References

Nitrous oxide added to propofol does not influence the increase in cerebral blood flow velocity elicited by surgical stimulation

To the Editor:

Nociceptive stimulation provokes an increase in cerebral blood flow (CBF), which may cause undesirable effects, such as an increase in intracranial pressure, in patients with brain pathology. It has been suggested that the stimulation-induced increase in CBF is more pronounced when cerebral vasodilating anesthetics are used, compared to vasoconstricting agents.1,2 Our previous study demonstrated in patients anesthetized with 1.7% sevoflurane plus 60% nitrous oxide (N2O) that the increase in CBF velocity elicited by surgical stimulation was attenuated by prior constriction of cerebral vessels through hypocapnia and was augmented by dilation of them through hypercapnia.3 We currently investigated whether the addition of N2O, a potent cerebral vasodilator, to propofol, a cerebral vasoconstrictor, augments the response of CBF velocity to surgical stimulation using transcranial Doppler ultrasonography.

Sixteen female patients (mean age = 42 yr, mean weight = 54 kg) undergoing elective gynecological surgery performed through a lower median abdominal incision were studied. Patients were anesthetized either with propofol alone (2 mg·kg−1 bolus followed by continuous infusion at a rate of 10 mg·kg−1·hr−1, P group, n = 8) or propofol (the same regimen) plus 60% N2O (PN group, n = 8), and were kept normocapnic and normothermic. Surgery began after a steady state was obtained. The changes in mean blood flow velocity in the middle cerebral artery (Vmca), together with changes in bispectral index of the electroencephalogram (BIS value) were evaluated during the first nine minutes after surgical incision.

Both anesthetic regimens decreased Vmca in a similar manner by approximately 60% of awake values, concomitant with a decrease in BIS values to approximately 40. Vmca increased with incision in both groups (4–9 cm·sec−1; mean value) but there were no significant differences in the magnitude of changes between groups P and PN (Figure A). Mean arterial blood pressure increased with incision (8–18 mmHg; mean value) but there was no significant difference between the two groups (Figure B). BIS values did not change after incision and there was no significant difference between the two groups (Figure C).

The results show that N2O, in combination with propofol anesthesia, neither increases Vmca nor augments the increases in Vmca evoked by surgical stimulation. This suggests that N2O has a negligible effect on CBF velocity, provided an adequate depth of background propofol anesthesia (BIS value = 40) is achieved.

Ryuichi Kawata MD
Mishiya Matsumoto MD
Atsuo Yamashita MD
Mitsuyoshi Yoshida MD
Satoshi Matsumoto MD
Yasuhiro Morimoto MD
Takefumi Sakabe MD
Yamaguchi, Japan