Arterial oxygen desaturation during peripheral venous cannulation in children

K.K. Gombar MD, S.S. Nain DA MD, B. Singh MD, S. Satinder MD, B. Chhabra DA MS

Arterial oxygen saturation (SpO\textsubscript{2}) was measured to determine oxygen desaturation during peripheral venous cannulation prior to induction of anaesthesia in 40 consecutive patients in each of the three age groups: Group I: 1-4 mo, Group II: 4-12 mo, Group III: 12-24 mo. Following premedication with oral trimetazidine tartrate 3 mg kg-1, one to two hours before operation, baseline SpO\textsubscript{2} was noted with child breathing room air. Continuous monitoring during peripheral venous cannulation was done and maximum decrease and duration of SpO\textsubscript{2} < 90\% was noted. Decreases in mean SpO\textsubscript{2} 3.2 ± 1.4 in Group I, 2.6 ± 2.0 in Group II and 1.7 ± 1.9 in Group III, were observed (P < 0.001). Desaturation ≥4% was noted in 17 patients in Group I, ten patients in Group II and six patients in Group III. Two children, one each in Groups I and II, experienced SpO\textsubscript{2} < 90\% for 30 sec and 80 sec respectively. We conclude that clinically undiagnosed desaturation occurs during peripheral venous cannulation in healthy children. The authors suggest that continuous monitoring of SpO\textsubscript{2} using pulse oximetry should be performed routinely during peripheral venous cannulation.

Pour évaluer la désaturation en oxygène, la saturation artérielle (SpO\textsubscript{2}) est mesurée avant l’induction de l’anesthésie chez 40 patients consécutifs représentant un des trois groupes d’âges suivant: groupe I: 1-4 mois, groupe II: 4-12 mois, groupe III: 12-24 mois. Après une prémédication au tartrate de triméprazine oral 3 mg kg-1 administrée une à deux heures avant l’intervention, on établit une ligne de base pendant que l’enfant respire de l’air. Un monitorage continu est installé avant la canulation d’une veine périphérique; on note la plus grande diminution de la SpO\textsubscript{2} et la durée de la SpO\textsubscript{2} < 90\%. On observe des baisses de la SpO\textsubscript{2} moyenne de 3.2 ± 1.4 pour le groupe I, de 2.6 ± 2.0 pour le groupe II et de 1.7 ± 1.9 pour le groupe III (P < 0.001). Une désaturation ≥4% est notée chez 17 patients dans le groupe I, dix patients dans le groupe II et chez six patients dans le groupe III. Deux enfants, un du groupe I et l’auteur du groupe II ont présenté une SpO\textsubscript{2} < 90\% pour 30 secondes et 80 secondes respectivement. Nous concluons que des désaturations non détectées cliniquement surviennent pendant la canulation veineuse chez des enfants bien portants et suggérons un monitorage systématique continu de la SpO\textsubscript{2} par oxymétrie pulsée pendant la canulation d’une veine périphérique chez l’enfant.

Intravenous induction of anaesthesia in children is associated with a greater degree of hypoxaemia than is inhalational induction.1 Peripheral venous cannulation is a painful procedure which makes the child more anxious, uncomfortable and uncooperative and this may effect arterial oxygen desaturation during induction of anaesthesia.12

Arterial oxygen desaturation has been documented in adult cardiac patients during placement of invasive monitoring lines,1 but oxygen desaturation during venous cannulation in healthy children has not been reported. Induction of anaesthesia reduces oxygen reserves,4 and in combination with oxygen desaturation, which may occur during peripheral venous cannulation, can lead to increased morbidity and mortality.

The present study was conducted to measure arterial oxygen saturation (SpO\textsubscript{2}) using non-invasive pulse oximetry to determine the need for monitoring SpO\textsubscript{2} during establishment of intravenous lines in premedicated, unanaesthetized otherwise healthy children scheduled for routine elective surgery.

Methods

The study was conducted in 40 consecutive ASA I and II children in each of three groups scheduled for elective surgery under general anaesthesia; Group I: 1-4 mo, Group II: 4-12 mo, Group III: 12-24 mo. The children were selected irrespective of sex and weight. Children

Key words

ANAESTHESIA: paediatric;
HYPOXIA:
MEASUREMENT TECHNIQUES: pulse oximetry.

From the Department of Anaesthesiology, Medical College and Hospital, Rohtak 124001, India.

Address correspondence to: Dr. Kanti K. Gombar, 35/9 J, Medical Enclave, Rohtak-124001, Haryana, India.

Accepted for publication 21st December, 1993.
with cardiopulmonary disease, haematological abnormal-
ity and unstable haemodynamic status were not included
in the study. The patients in whom preinduction values
of blood pressure, heart rate, SpO2 were not accurately
obtained due to improperly applied probes, patient move-
ment or plethysmographic waveform failure on pulse ox-
imetry were excluded from the study.

The protocol was approved by the Hospital Ethics
Committee and informed consent from the parents was
taken. After three to five hours of fasting, oral trimep-
razine tartarate 3 mg · kg⁻¹ was given as premeditation
one to two hours before operation. A finger or flexible
probe of the pulse oximeter (Ohmeda Biox 3700, USA)
was attached and a baseline SpO2 reading was noted
with the child positioned under a servo-controlled over-
head radiant warmer (Ameda, Switzerland) and breath-
ing room air. Continuous monitoring of SpO2 during can-
nulation was done and the maximum decrease and the
duration of SpO2 <90% was noted. Cannulation was
performed using 22 G Teflon cannula (Vygon, France)
on the dorsum of hand or foot by an experienced an-
aesthetist and patients in whom cannulation required
more than two attempts were excluded from the study.

The results were analysed using Student’s paired and
unpaired t tests for continuous variables. A P value of
<0.05 was considered statistically significant.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Patient data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Age (mo) Mean ± SD</td>
</tr>
<tr>
<td>I</td>
<td>2.6 ± 1.1</td>
</tr>
<tr>
<td>II</td>
<td>9.8 ± 2.4</td>
</tr>
<tr>
<td>III</td>
<td>22.3 ± 2.9</td>
</tr>
</tbody>
</table>

TABLE II	Effect of intravenous cannulation on oxygen saturation			
Group I	Group II	Group III		
Baseline SpO2	Mean ± SD	95.8 ± 0.8	96.6 ± 1.2	97.2 ± 1.4
- Range	95–99	95–100	95–99	
Minimum SpO2 during cannulation	Mean ± SD	92.6 ± 1.3*	94.0 ± 2.3*	95.5 ± 2.4*
- Range	89–95	85–100	90–99	
Mean decrease in SpO2	Mean ± SD	3.2 ± 1.4	2.6 ± 2.0	1.7 ± 1.9
Desaturation ≥4% (n)	17	10	6	
SpO2 < 90% (n)	1	-	-	
Duration of SpO2 <90%	(sec)	30	90	-

*P < 0.001.

Results

The mean age, weight and haemoglobin concentration
in the three groups is shown in Table I.

Establishment of the intravenous line led to a decrease
in the mean SpO2 from baseline by 3.2% in Group I,
2.6% in Group II and 1.7% in Group III (P < 0.001).
The decrease in mean SpO2 was found to be greater in
Group I than in Group II (P < 0.01), in Group I than
in Group III (P < 0.001) and in Group II than in Group
III (P < 0.01).

The incidence of arterial oxygen desaturation of ≥4%
from baseline was observed in 17 patients in Group I,
ten in Group II and in six in Group III. In two patients
SpO2 was <90%. In one, Group I, the duration of desat-
uration was 30 sec and in the other, Group II, was 80
sec (Table II).

Discussion

The induction of general anaesthesia in children may be
more difficult than in adults due to anatomical and phys-
iological differences, no matter what technique is selected.
Children under one year of age are more susceptible to
a rapid decrease in arterial oxygen saturation due to lower
functional residual capacity and higher metabolic rate
which result in increased oxygen requirements. Any de-
crease in the critical level of SpO2 (90%) from birth to
the age of four months is associated with a greater de-
crease in arterial oxygen tension due to the presence of
fetal haemoglobin which has a higher affinity for oxy-
gen than does adult haemoglobin. In addition, the child
may be uncooperative and refuse to breathe oxygen prior
to induction of anaesthesia.

The incidence and degree of desaturation of arterial
oxygen during peripheral venous cannulation particularly
in children less than one year of age, in the present study,
was statistically significant. Although not clinically evi-
dent, SpO2 of less than 90% was observed in two children
under the age of one year. The brief periods of hypox-
aemia, particularly in the otherwise fit children, may be
well tolerated, but the oxygen reserves are considerably
reduced. Changes in alveolar gas tension occur even in
a smooth transition from awake to anaesthetized states,
but factors like airway obstruction, difficulty in tracheal
intubation and an already low PaO2 in children may further
aggravate hypoxaemia and thus affect cellular oxy-
genation.

Hensley et al. in a study of 20 cardiac patients breath-
ing room air showed hypoxaemia (SpO2 < 90%; lowest
SpO2 74%) in 12 patients during placement of invasive
monitoring lines prior to induction of anaesthesia. This
phenomenon, however, has not been reported in pedi-
atriac surgical patients.
Arterial oxygen desaturation while establishing an iv line may be explained by the relationship between the activity of the child and oxygen consumption, together with hyperventilation leading to low carbon dioxide tension and reduced respiratory drive. An anxious child who is mildly hypcapnoeic remains apnoeic for longer until sufficient CO₂ is retained to provide a stimulus to breathing. These lower values of SpO₂ in crying and restless children may also be exacerbated by increased secretions and an abnormal pattern of breathing. Another possibility is that the anaesthetist who has finally achieved a successful venepuncture in a screaming child may be so relieved that a slight delay may occur before airway control is secured.

In conclusion, reduced SpO₂ values in the present study were common during peripheral venous cannulation before induction of anaesthesia in children. There was no evidence that any child was harmed by hypoxaemia. However, the majority of the children in our study had been closer to SpO₂ 90%, a point from where saturation may drop steeply during induction of anaesthesia without the warning given by pulse oximeter. We therefore recommend monitoring oxygen saturation using pulse oximetry during placement of intravenous cannula, and preoxygenation in children should start from the time of peripheral venous cannulation prior to induction of anaesthesia.

References
5 Motoyama EK, Brinkmeyer SD, Mutich RL, Waczak SA. Reduced FRC in anesthetized infants: effect of low PEEP. Anesthesiology 1982; 57: A418.