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Abs t r ac t  

In this paper, we propose a behavior-based path planner that can self-learn in an 
unknown environment. A situated learning algorithm is designed which allows the 
robot to learn to coordinate several c~,ncurrent behaviors and improve its performance 
by interacting with the environment. Behaviors are implemented using CMAC neural 
networks. A simulation environment is set up and some simulation experiments are 
carried out to rest our learning algorithm. 

Keywords:  Situated learning, behavior-based, path planning, CMAC neural net- 
works. 

1 Task D e c o m p o s i t i o n  

We build our path planner based on Brook's subsumption architecture [1] . In Brook's 
approach, the overall task is decomposed into several concurrent behaviors, each behavior 
has its own applicability conditions specifying when it is appropriate, and a priority ordering 
is pre-defined to resolve conflicts among behaviors. 

In path planning, the task of the robot is to approach a target while avoiding obstacles. 
We decompose the task into three behaviors. They are Avoid, Steer and Advance. Fig.1 
illustrates the overall structure of our path planner. Avoid behavior has the highest priority. 
If a collision occurs or is likely to occur, the foremost task is to avoid obstacles. Steer behavior 
is next in priority. Whenever the forward direction of the robot deviates from the target, the 
robot will turn a fixed angle in the direction of the target. Advance behavior has the lowest 
priority. If the robot is neither in a collision situation nor in a deviation one, it should keep 
on advancing toward the target. 

Behaviors are implemented using CMAC neural networks[ 2] . For the Avoid network, the 
inputs are sonar signals and the outputs are turning angles to avoid obstacles. A threshold 
Ta is defined for the Avoid network. The Avoid behavior will be triggered either when some 
contact sensors are activated or when the output  of the network exceeds the threshold. For 
the Steer network, the inputs are the same as those of Avoid network and the outputs are 
not turning angles but activation levels. A threshold To is also defined for the Steer network. 
The Steer behavior will be triggered only when the forward direction of the robot deviates 
from the target and the output  of the network is below the threshold. 
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Fig.1. The overall structure of the behavior-based path planner. 

2 T h e  S i m u l a t e d  E n v i r o n m e n t  

Fig.5 illustrates the simulation environment used in our experiment, which is a 500 x 500 
room-like terrain populated with obstacles. The robot is represented by a 30 x 50 rectangle; 
the "nose" indicates the head of the robot. Dark shaded polygons represent obstacles and 
a small dark shaded disc represents a target. 

The kinematics of the robot is very simple. It only has two kinds of actions. One is 
translation; the other is rotation. 

Three kinds of sensors are mounted on our robot, which are simulated sensors modeled 
after the real sensors. They are sonar sensors, contact sensors and compass sensors. 

3 T h e  S i t u a t e d  Learn ing  A l g o r i t h m  

For each behavior a learning algorithm is designe~, which will be executed when the 
corresponding behavior is triggered. The Avoid behavior learns whenever the Advance be- 
havior causes a collision. At such circumstances, first, the robot will translate to a new 
situation according to a potential-like calculation. Second, a turning angle is decided ac- 
cording as which side of the robot collides with the obstacles. Third,  the Avoid network 
learns to associate the new situation with the turning angle. Thus the learning occurs not 
at the colliding point but  at some point nearby. With the local generalization ability of the 
CMAC network, the robot will turn earlier when it is likely to collide with an obstacle. 

The learning of the Steer behavior is different. It depends on what happens in the next 
control cycle. If the Steer behavior is followed immediately by an Avoid behavior, it means 
that  the Steer behavior in the previous circle is inappropriate and should be suppressed. 
The robot learns to associate the previous situation with a higher activation level. After 
several trials of learning the robot will learn to suppress the Steer behavior in inappropriate 
situations. 

4 E x p e r i m e n t a l  R e s u l t s  

4 . 1  T e s t  o f  t h e  S i t u a t e d  L e a r n i n g  A l g o r i t h m  

The workspace depicted in Fig.5 is employed in the situation. For all the CMAC 
networks, the input discretization is 50, the generalization constant is 32, the learning rate 
is 0.3 and the physical memory size is 4003. No at tempt  has been made to search for the 
best set of parameter  values. The robot is first located in the lower middle part  of the 
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environment. A trial is considered to end only when the robot reaches the target. In each 
trial the robot starts at the same location. 

Figs.2 and 3 show the paths taken by the robot during the first and tenth trial, re- 
spectively. Fig.4 displays the number of collisions and the number of undesirable Steer 
behaviors. We define the undesirable Steer behavior as the one followed immediately by an 
Avoid behavior. 

I I 

Fig.2. The path taten by 
the robot during the first triM. 

Fig.3. The path taken by 
the robot during the tenth trial. 
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Fig.4. The number of collisions and the 
number of undesirable Steer behaviors 

during each triM. Horizontal axis is the 
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Fig.5. The learning environment 
with six different targets. 

It can be seen from Fig.2 that during the first trial the robot displayed a cl-m~y zig-zag 
path and many collisions occurred. It is not a surprise since at beginning the robot did not 
know when to avoid obstacles and when not to steer toward the target. Therefore, after 
turning away from obstacles and advancing one step it turned back again and was led to a 
new collision. At this stage of performance, the robot was dominated by its basic reflexes 
and the sonar signals had not functioned yet. After several trials of learning, the robot 
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learned to avoid obstacles when cer ta in  patterns of sonar signals were perceived. It also 
learned to suppress the Steer behavior when there were obstacles between itself and the 
target. As a result, in the fifth trim the number of collisions and the number of undesirable 
Steer behaviors were greatly decreased, which are 3 and 1 respectively. During the tenth 
trial no collision occurred and the Steer behavior was triggered only when the robot was 
away from the obstacles. 

From Fig.3, we can see that  the robot displayed a "follow wall" like behavior which was 
not preprogrammed by the designer but learned by itself by interacting with the environ- 
ment. In this sense this kind of behavior is emergent. 

4 . 2  L e a r n i n g  I n t e r f e r e n c e  a n d  G e n e r a l i z a t i o n  

In this experiment we discuss the learning interference and the generalization ability 
of our learning algorithm. First, we want to know whether the experience the robot learns 
afterwards will interfere with what it has learned. Second, we want to know how well the 
robot performs when it is put  into an environment different from the one it encountered 
before. 

In Fig.5, six different targets are used to train the robot. The robot is first located at 
the lower middle part  of the environment. For each target, the robot performs 10 trials. In 
each trial the robot starts at the same location. The labeling number indicates the training 
order of the corresponding target. 

After the total 60 trials, targets in the 
~ e  previous trials are tested. In Fig.6, the 

path for the third target is displayed. It 
be that the robot well. performs c a n  seen 

Therefore, we can say that  what the robot 
learns afterwards does not interfere with 

"~ ~ what it has learned. 
In Fig.7, some new obstacles are 

added to the environment. It can be seen 
that  the robot still performs well. It takes 
a different path and there are only one col- 
lision and two undesirable Steer behaviors. 

In Fig.8, the experienced robot is put 
into a new environment. It is again located 

._~, at the lower middle part  of the environ- 
ment. In this case, the robot also performs 

Fig.6. The testing path for the third well except two undesirable Steer behav- 
target after the total 60 trials are over. lots. 

These simulation results show that  our learning algorithm has some generalization ability. 
This ability is part ly due to the local generalization ability of the CMAC network. It  is also 
due to the similarity of the environment. In the environment of Fig.5 the robot has learned by 
itself how to perform in a number of typical situations, such as, in front of a wall, at a turning 
angle, in some leinds of corridor. Thererfore, when it is put  into a new environment, it can 
generali~.e from these typical situations and performs well. On the other hand, although the 
robot has performed 60 trials the different patterns of situation the robot has encountered 
are still very limited and there might exist some circumstances in which the robot performs 
badly. But  this is not a problem for our robot because whenever the robot does not perform 
well, i.e. some collisions or undesirable Steer behaviors occur, the learning mechanism will 
be triggered and the robot will eventually learn to perform well in such new situations. In 
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fact, it is one of the advantages of our si tuated learning algorithm tha t  the robot situates in 
the environment and improves its performance by interacting with the environment. 

Fig.7. The testing path for the third 

target after some new obstacles 

axe added into the environment. 

I 
Fig.8. The path taken by the robot 

when it is put into a new environment. 

5 C o n c l u s i o n s  

In this paper,  we present a behavior-based mobile robot pa th  planner tha t  can improve 
its performance by interacting with the environment. The pa th  planning problem here is a 
nontrivial one since the environment is unknown and the robot must  learn to coordinate ob- 
stacle avoiding behaviors with target  approaching behaviors. However, from the simulation 
results shown above, we can see that  after several trials of learning our robot can avoid its 
previous clumsy behaviors and performs well. 
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