ERRATUM TO

ON CONTINUOUS DYNAMICS OF AUTOMORPHISMS OF C²

Chiara de Fabritiis

In the proof of Theorem 1.4 of [1] a couple of coefficients was missing by a misprint. This sort of misprint does not change the final results of the paper. To recover the missing coefficients substitute the definition of E_1 with

$$E_1=\left\{egin{pmatrix}x\\y\end{pmatrix}\mapstoegin{pmatrix}cx+f(y)\\c^{-1}y+eta\end{pmatrix},\ \ \ c\in {f C}^*,\ eta\in {f C},\ \ f\in {
m Hol}({f C},{f C})
ight\}.$$

(the coefficient c was missing). Then the intersection $A_1 \cap E_1$ is given by

$$A_1\cap E_1=igg\{igg({x}{y}igg)\mapstoigg({cx+lpha y+a}{c^{-1}y+eta}igg),\ \ igg|\ \ c\in {f C}^*,\ lpha,eta,a\in {f C}igg\}.$$

In order to prove that $L_1 \cap L_3 = \{0\}$, in the proof of of Theorem 1.4 of [1] we must take

$$g_1 \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} x+f_1(y) \ y \end{pmatrix}, \ g_2 \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} cx+lpha y \ eta x+dy \end{pmatrix} \ ext{and} \ g_3 \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} x+f_3(y) \ y \end{pmatrix},$$

where f_1 and f_3 are non-linear elements of $\mathcal{H}_0(\mathbf{C})$, $cd - \alpha\beta = 1$ and $\beta \neq 0$ (the coefficients c and d were missing). Then the correct expression for $g_3 \circ g_2 \circ g_1$ is given by

$$g_3\circ g_2\circ g_1inom{x}{y}=g_3inom{c(x+f_1(y))+lpha y}{eta x+eta f_1(y)+dy}=\ inom{c(x+f_1(y))+lpha y+f_3(eta x+eta f_1(y)+dy)}{eta x+eta f_1(y)+dy}inom{c}{b}.$$

If $\langle x, y \rangle \cap \langle g_3 \circ g_2 \circ g_1 \begin{pmatrix} x \\ y \end{pmatrix} \cdot e_1, g_3 \circ g_2 \circ g_1 \begin{pmatrix} x \\ y \end{pmatrix} \cdot e_2 \rangle \neq \{0\}$ there exist $\gamma, \delta \in \mathbf{C}$ such that $|\gamma| + |\delta| > 0$ and

$$\gamma[c(x+f_1(y))+\alpha y+f_3(\beta x+\beta f_1(y)+dy)]+\delta[\beta x+\beta f_1(y)+dy]$$

is linear in x and y. Then $(c\gamma + \delta\beta)f_1(y) + \gamma f_3(\beta x + dy + \beta f_1(y))$ is linear in x and y, and therefore taking the derivative with respect of x we find that $\gamma\beta f'_3(\beta x + dy + \beta f_1(y))$

DE FABRITIIS

 $\beta f_1(y) + dy$ is constant. As f_3 is non-linear and $\beta x + \beta f_1(y) + dy$ is non-constant, then $\gamma \beta = 0$, and since $\beta \neq 0$, $\gamma = 0$. Thus $\delta \beta f_1(y)$ is linear in x and y against the fact that $\delta \beta \neq 0$ and f_1 is non-linear.

Proposition 2.6 of [1] must be replaced by the new

Proposition 2.6. All the one-parameter groups in E_1 are expressed (up to conjugation) by

$$\Phi_t\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}e^{ta}x+f_t(y)\\e^{-ta}y\end{pmatrix}\qquad \Phi_t\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x+f_t(y)\\y+ts\end{pmatrix},$$

where $a \in \mathbb{C}$ and in the first case f_t satisfies $f_{t+\tau}(y) = e^{\tau a} f_t(y) + f_{\tau}(e^{ta}y)$, while in the second it satisfies f_t satisfies $f_{t+\tau}(y) = f_t(y+\tau s) + f_{\tau}(y)$.

Proof. The fact that $\Phi_t \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha_t x + f_t(y) \\ \alpha_t^{-1} y + \beta_t \end{pmatrix}$ satisfies the composition rule is equivalent to the fact that $\alpha_t^{-1} y + \beta_t$ is a one parameter group of affine transformations of **C**, hence it can be conjugated to obtain $y \mapsto e^{ta} y$ or $y \mapsto y + t$, the relation on f follows immediately.

With these replacements all other statements and proofs remain as they are.

 C. de Fabritiis, On continuous dynamics of automorphisms of C², Manuscripta Mathematica, 77, 337-359 (1992)

Chiara de Fabritiis Scuola Internazionale Superiore di Studi Avanzati Via Beirut 2/4 34014, Trieste—Italy E.mail FABRITII@SISSA.bitnet

> (Received January 25, 1993; in revised form October 17, 1993)

224