ERRATUM TO

ON CONTINUOUS DYNAMICS OF AUTOMORPHISMS OF C ${ }^{2}$

Chiara de Fabritiis

In the proof of Theorem 1.4 of [1] a couple of coefficients was missing by a misprint. This sort of misprint does not change the final results of the paper. To recover the missing coefficients substitute the definition of E_{1} with

$$
E_{1}=\left\{\binom{x}{y} \mapsto\binom{c x+f(y)}{c^{-1} y+\beta}, \mid c \in \mathbf{C}^{*}, \beta \in \mathbf{C}, \quad f \in \operatorname{Hol}(\mathbf{C}, \mathbf{C})\right\} .
$$

(the coefficient c was missing). Then the intersection $A_{1} \cap E_{1}$ is given by

$$
A_{1} \cap E_{1}=\left\{\binom{x}{y} \mapsto\binom{c x+\alpha y+a}{c^{-1} y+\beta}, \quad \mid \quad \in \in \mathbf{C}^{*}, \alpha, \beta, a \in \mathbf{C}\right\}
$$

In order to prove that $L_{1} \cap L_{3}=\{0\}$, in the proof of of Theorem 1.4 of [1] we must take
$g_{1}\binom{x}{y}=\binom{x+f_{1}(y)}{y}, g_{2}\binom{x}{y}=\binom{c x+\alpha y}{\beta x+d y}$ and $g_{3}\binom{x}{y}=\binom{x+f_{3}(y)}{y}$,
where f_{1} and f_{3} are non-linear elements of $\mathcal{H}_{0}(\mathbf{C}), c d-\alpha \beta=1$ and $\beta \neq 0$ (the coefficients c and d were missing). Then the correct expression for $g_{3} \circ g_{2} \circ g_{1}$ is given by

$$
\begin{gathered}
g_{3} \circ g_{2} \circ g_{1}\binom{x}{y}=g_{3}\binom{c\left(x+f_{1}(y)\right)+\alpha y}{\beta x+\beta f_{1}(y)+d y}= \\
\binom{c\left(x+f_{1}(y)\right)+\alpha y+f_{3}\left(\beta x+\beta f_{1}(y)+d y\right)}{\beta x+\beta f_{1}(y)+d y}
\end{gathered}
$$

If $\langle x, y\rangle \cap\left\langle g_{3} \circ g_{2} \circ g_{1}\binom{x}{y} \cdot e_{1}, g_{3} \circ g_{2} \circ g_{1}\binom{x}{y} \cdot e_{2}\right\rangle \neq\{0\}$ there exist $\gamma, \delta \in \mathbf{C}$ such that $|\gamma|+|\delta|>0$ and

$$
\gamma\left[c\left(x+f_{1}(y)\right)+\alpha y+f_{3}\left(\beta x+\beta f_{1}(y)+d y\right)\right]+\delta\left[\beta x+\beta f_{1}(y)+d y\right]
$$

is linear in x and y. Then $(c \gamma+\delta \beta) f_{1}(y)+\gamma f_{3}\left(\beta x+d y+\beta f_{1}(y)\right)$ is linear in x and y, and therefore taking the derivative with respect of x we find that $\gamma \beta f_{3}^{\prime}(\beta x+$
$\left.\beta f_{1}(y)+d y\right)$ is constant. As f_{3} is non-linear and $\beta \boldsymbol{x}+\beta f_{1}(y)+d y$ is non-constant, then $\gamma \beta=0$, and since $\beta \neq 0, \gamma=0$. Thus $\delta \beta f_{1}(y)$ is linear in x and y against the fact that $\delta \beta \neq 0$ and f_{1} is non-linear.

Proposition 2.6 of [1] must be replaced by the new
Proposition 2.6. All the one-parameter groups in E_{1} are expressed (up to conjugation) by

$$
\Phi_{t}\binom{x}{y}=\binom{e^{t a} x+f_{t}(y)}{e^{-t a} y} \quad \Phi_{t}\binom{x}{y}=\binom{x+f_{t}(y)}{y+t s}
$$

where $a \in \mathbf{C}$ and in the first case f_{t} satisfies $f_{t+\tau}(y)=e^{\tau a} f_{t}(y)+f_{\tau}\left(e^{t a} y\right)$, while in the second it satisfies f_{t} satisfies $f_{t+r}(y)=f_{t}(y+\tau s)+f_{\tau}(y)$.
Proof. The fact that $\Phi_{t}\binom{x}{y}=\binom{\alpha_{t} x+f_{t}(y)}{\alpha_{t}^{-1} y+\beta_{t}}$ satisfies the composition rule is equivalent to the fact that $\alpha_{t}^{-1} y+\beta_{t}$ is a one parameter group of affine transformations of C, hence it can be conjugated to obtain $y \mapsto{ }^{\prime} e^{t a} y$ or $y \mapsto y+t$, the relation on f follows immediately.

With these replacements all other statements and proofs remain as they are.
[1] C. de Fabritiis, On continuous dynamics of automorphisms of \mathbf{C}^{2}, Manuscripta Mathematica, 77, 337-359 (1992)

Chiara de Fabritiis
Scuola Internazionale Superiore di Studi Avanzati
Via Beirut 2/4
34014, Trieste-Italy
E.mail FABRITII@SISSA.bitnet

