Skip to main content
Log in

Closed trans-scale statistical microdamage mechanics

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Damage and failure due to distributed microcracks or microvoids are on the challenging frontiers of solid mechanics. This appeals strongly to tools not yet fully developed in continuum damage mechanics, in particular to irreversible statistical thermodynamics and a unified macroscopic equations of mechanics and kinetic equations of microstructural transformations. This review provides the state of the art in statistical microdamage mechanics.

  1. (1)

    It clarifies on what level of approximation continuum damage mechanics works. Particularly,D-level approximation with dynamic function of damage appears to be a proper closed trans-scale formulation of the problem.

  2. (2)

    It provides physical foundation of evolution law in damage mechanics. Essentially, the damage-dependent feature of the macroscopic evolution law is due to the movement of microdamage front, resulting from microdamage growth.

  3. (3)

    It is found that intrinsic Deborah numberD *, a ratio of nucleation rate over growth rate of microdamage, is a proper indication of critical damage in damage mechanics, based on the idea of damage localization.

  4. (4)

    It clearly distinguishes the non-equilibrium damage evolution from equilibrium phase transition, like percolation.

Finally, some comments on its limitations are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pantelides ST. What is materials physics, any way?Physics Today, 1992, 45(9):67–69

    Google Scholar 

  2. McDowell DL. Applications of continuum damage mechanics to fatigue and fracture.ASTM STP 1997, 1315: 1–3

    Google Scholar 

  3. Curran DR, Seaman L, Shockey DA. Dynamic failure of solids.Physics Reports, 1987, 147: 253–388

    Article  Google Scholar 

  4. Barenblatt GI. Micromechanics of fracture. In: Bodner SR, et al., eds. Theoretical and Applied Mechanics. Amsterdam: Elsevier Science Publishers BV, 1992

    Google Scholar 

  5. Xia MF, Han WS, Ke FJ, et al. Statistical meso-scopic damage mechanics and damage evolution induced catastrophe.Advances in Mechanics, 1995, 25: 1–40, 145–173, (in Chinese)

    MATH  Google Scholar 

  6. Kachanov LM. Introduction to Continuum Damage Mechanics. The Netherlands: Martinus Nijhoff, 1986

    MATH  Google Scholar 

  7. Lemaitre J, Plumtree A. Application of damage concepts to predict creep-fatigue failures.ASME Trans J Engng Matl Tech, 1979, 101: 284–292

    Google Scholar 

  8. Lemaitre J. A Course on Damage Mechanics. New York: Springer-Verlag, 1992

    MATH  Google Scholar 

  9. Chaboche JL. Continuum damage mechanics.Trans J Appl Mech, 1988, 55: 59–64, 65–72

    Article  Google Scholar 

  10. Krajcinovic D. Damage Mechanics. Amsterdam: Elsevier Science BV, 1996

    MATH  Google Scholar 

  11. Feng XQ, Yu SW. A new damage model for macrocrack-weahened brittle solids.Acta Mechanica Sinica, 1993, 9: 251–260

    Article  MATH  Google Scholar 

  12. Davison L, Stevens AL. Continuum measures of spall damage.J Appl Phys, 1972, 43: 988–994

    Article  Google Scholar 

  13. Meyers MA. Dynamic Behavior of Materials. New York: Wiley, 1994

    MATH  Google Scholar 

  14. Grady DE, Kipp ME. Dynamic fracture and fragmentation In: Asay JR, et al, eds. High-Pressure Shock Compression of Solids. New York: Springer-Verlag, 1993. 265–322

    Google Scholar 

  15. Rice JR, Tracy DM. On the enlargement of voids in triaxial stress fields.J Mech Phys Solids, 1969, 17: 201–217

    Article  Google Scholar 

  16. McClintock FA. A criterion for ductile fracture by the growth of holes.J Appl Mech, 1968, 90: 363–371

    Google Scholar 

  17. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth, Part 1: Yield criteria and flow rules for porous ductile media.Trans ASME H: J Engng Mat Tech, 1977, 99: 2–15

    Google Scholar 

  18. Szuromi P. Microstructural engineering of materials.Science, 1997, 277: 1183

    Article  Google Scholar 

  19. Weibull W. A statistical distribution function of wide application.J Appl Mech, 1951, 18: 239–297

    Google Scholar 

  20. Weibull W. A survey of statistical effects in the field of material failure.Appl Mech Rev, 1952, 5: 449–451

    Google Scholar 

  21. Deniels HE. The statistical theory of the strength of bundles of threads.Proc Roy Soc London, 1945, 183A: 405

    Google Scholar 

  22. Coleman BD. On the strength of classical fibersand fiber bundles.J Mech Phys Solids, 1958, 7: 60–70

    Article  MATH  MathSciNet  Google Scholar 

  23. Harlow DG, Phoenix SL. The chain of bundles probability model for the strength of fibrous materials.J Comp Mater, 1978, 12: 195, 314

    Google Scholar 

  24. Du SY, Wang B. Micromechanics of Composites. Beijing: Science Press, 1998 (in Chinese)

    Google Scholar 

  25. McClintock FA. Statistics of brittle fracture. In: Bradt RC, et al., eds. Fracture Mechanics of Ceramics. New York: Plenum Press, 1973. 93–113

    Google Scholar 

  26. Batdorf SB. Fracture statistics of brittle materials with integranular cracks.Nuc Engng Design, 1975, 35: 349–360

    Article  Google Scholar 

  27. Atkinson BK. Fracture Mechanics of Rock. London: Academic Press, 1987

    Google Scholar 

  28. Wu FQ, Wang SJ, Song SW, et al. Statistical methods and theories in rock mechanics.Chinese Sci Bull, 1993, 38: 1345–1354 (in Chinese)

    Google Scholar 

  29. Bogdanoff JL. Probabilistic Models of Cumulative Damage. New York: Wiley and Sons, 1985

    Google Scholar 

  30. Xing XS. The microscopic mechanism and nonequilibrium statistical nature of brittle fracture.Advances in Mechanics, 1986, 16: 495–510 (in Chinese)

    Google Scholar 

  31. Xing XS. The unification of damage with fracture.Acta Mechanica Sinica, 1991, 23: 123–127 (in Chinese)

    Google Scholar 

  32. Sih GC. Micromechanics associated with thermal/mechanical interaction for polycrustals. In: Sih GC, ed. Mesomechanics 2000. Beijing: Tsinghua University Press, 2000. 1–18

    Google Scholar 

  33. Yuan LW. The rupture theory of rheological materials with defects. In: Wang R, ed. Rheology of Bodies with Defects. Dordrecht: Kluwer Academic Publishers, 1997. 1–20

    Google Scholar 

  34. Bazant ZP, Chen EP. Scaling of structural failure.ASME Appl Mech Rev, 1997, 50: 593–627

    Article  Google Scholar 

  35. Panin VE. Overview on mesomechanics of plastic deformation and fracture of solids.Theo Appl Frac Mech, 1998, 30: 1–11

    Article  MathSciNet  Google Scholar 

  36. Bai YL, Xia MF, Ke FJ, et al. Non-equilibrium evolution of collective microdamage and its coupling with mesoscopic heterogeneities and stress fluctuations. In: Horie Y, et al., eds. Shock Dynamics and Non-Equilibrium Mesoscopic Fluctuations in Solids. New York: Springer-Verlag, 2001 (to appear)

    Google Scholar 

  37. Li Q, He ZR, Song MS, et al. Nonequilibrium statistical theory of damage and fracture for glassy polymers 1. The statistical distribution and evolution of microcracks in glassy polymers.Macromol Theor Simul, 1996, 5: 183–197

    Article  MATH  Google Scholar 

  38. Huang ZP, Yang LM, Pan KL. Dynamic damage and failure of materials.Advances in Mechanics, 1993, 23: 433–467 (in Chinese)

    MATH  Google Scholar 

  39. Fang B, Hong YS, Bai YL. Experimental and theoretical study on numerical density evolution of short fatigue cracks.Acta Mechanica Sinica, 1995, 11: 144–152

    Article  MATH  Google Scholar 

  40. Hong YS, Qiao Y. An analysis on overall crack-number-density of short-fatigue-cracks.Mech Mater, 1999, 31: 525–534

    Article  Google Scholar 

  41. Fang FJ, Zhou GQ. Statistical analysis of brittle solid damage based on network model.Int J Solids Struct, 1996, 33: 1243–1255

    Article  Google Scholar 

  42. Bai YL, Ling Z, Luo LM, et al. Initial development of microdamage under impact loading.ASME Trans J App Mech, 1992, 59: 622–627

    Google Scholar 

  43. Han WS, Xia MF, She LT, et al. Statistical formulation and experimental determination of growth rate of micrometre cracks under impact loading.Int J Solids Struct, 1997, 34: 2905–2925

    Article  Google Scholar 

  44. Bai YL, Ke FJ, Xia MF. Formulation of statistical evolution of microcracks in solids.Acta Mechanica Sinica, 1991, 7: 59–66

    Article  MATH  Google Scholar 

  45. Ke FJ, Bai YL, Xia MF. Evolution of ideal micro-crack system.Science in China, Ser A, 1990 33: 1447–1459

    MATH  Google Scholar 

  46. Bai YL, Han WS, Bai J. A statistical evolution equation of microdamage and its application.ASTM STP, 1997, 1315: 150–162

    Google Scholar 

  47. Xia MF, Ke FJ, Lu YH, et al. Effects of stochastic extension in ideal microcrack system.Science in China, Ser A, 1991, 34: 579–589

    Google Scholar 

  48. Cocks ACF, Ashby ZMF. On creep fracture by void growth.Prog Matl Sci, 1982, 27: 189–244

    Article  Google Scholar 

  49. Bai YL, Xia MF, Ke FJ, et al. Damage field equation and criterion for damage localization. In: Wang R, ed. Rheology of Bodies with Defects, Dordrecht: Kluwer Academic Publishers, 1997. 55–66

    Google Scholar 

  50. Zallen R. The Physics of Amorphous Solids. New York: Wiley Interscience Publication, 1983

    Book  Google Scholar 

  51. Li HL, Bai YL, Xia MF, et al. Damage localization as possible mechanism underlying earthquakes.PAGEOPH, 2000, 157: 1929–1943

    Article  Google Scholar 

  52. Bai YL, Li HL, Wei YJ, et al. Key role of microdamage growth in time-dependent spall strength. In: Furnish MD, ed. Shock-Compression of Condensed Matter-2001, New York: Am Inst Phys, 2001 (to appear)

    Google Scholar 

  53. Bai YL, Bai J, Li HL, et al. Damage evolution, localization and failure of solids subjected to impact loading.Int J Impact Engng, 2000, 24: 685–701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (19891180-02, 19972004) and Major State Research Project (G200007735)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilong, B., Mengfen, X., Fujiu, K. et al. Closed trans-scale statistical microdamage mechanics. Acta Mech Sinica 18, 1–17 (2002). https://doi.org/10.1007/BF02487520

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02487520

Key words

Navigation