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Summary.  - A concept o] total s tabi l i ty /or  continuous or discrete dynamical systems and a gen- 
eralized de]inition o] bi/ureation are given: 4t is possible to show the link between an abrupt 
change o/ the asymptotic behaviour o] a ]amily o] ]lows and the arising o] new invariant sets, 
with determined asymptotic properties. The theoretical results are a contribution to the study 
of the behaviour o] ]lows near an invariant compact set. They are obtained by means o / a n  
extension o/ Liapunov's direct method. 

I n t r o d u c t i o n .  

Le t  us consider a flow, possibly  induced b y  a different ial  equat ion,  which is sup- 

posed to describe the  evolut ion of a physica l  sys tem.  One m a y  ask  which regions 
in the  phase  space are  r e levan t  for a significant p ic ture  of the  ana lyzed  phenomenon .  
F i r s t  of all  i t  is c lear  t h a t  we m a y  res t r ic t  our  a t t e n t i o n  to those  regions which are 
lef t  i nva r i an t  b y  the  flow. I n  m a n y  eases we are ac tua l ly  concerned with  compac t  

i nva r i an t  sets only. I n  this  respec t  one has  to r e m e m b e r  t ha t ,  in a concre te  case, 
the  ini t ial  da ta  will no t  be  known with  a r b i t r a r y  precision, so t h a t  it is essent ial  

t h a t  a smal l  p e r t u r b a t i o n  will no t  resul t  in a dras t ic  change in the  behav iour  of the  
flow nea r  the  com pac t  i nva r i an t  set  M of in te res t ;  t h a t  is t h a t  L i a p u n o v  s tab i l i ty  

be  gua ran teed .  F u r t he r ,  if at1 t ra jec tor ies  s t a r t ing  in a ne ighboarhood  of M will 

a sym p t o t i c a l l y  reach  it, t hen  the  set  M will domina t e  the behav iour  of the  sys t em 
in a whole ne ighbourhood.  Such sets are a sympto t i ca l l y  s table  and  are  those  of 
special  phys ica l  significance. 

We emphas ize  this in te res t  in view of the  following considerat ion:  we m u s t  
t a k e  in to  account  not  only  pe r t u rba t i ons  in the  ini t ia l  da t a  bu t  of the  whole sys tem 
(e.g. of the  r ight  hand  side in a differential  equat ion) ,  since a de te rmined  flow arises 
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f rom a specific schema, neglecting a number  of side effects which are judged not  es- 
sential, bu t  t ha t  are in fact  equivalent  to a pe r tu rba t ion  of the whole system. For  
such a procedure  to  be reasonable it  is fundamenta l  t h a t  any  <, small pe r tu rba t ion  
of the  sys tem will not  drast ical ly al ter  the  local behaviour  of the  flow: tha t  is tha t ,  
roughly speaking, to ta l  s tabi l i ty  be guaranteed.  I t  is remarkable  tha t  for asympto-  
t ical ly stable sets to ta l  s tabi l i ty  is assured,  under  not  res t r ic t ive  smoothness condi- 
t ions.  Here  is ano ther  significant reason for the  physical  relevance of asymptot ica l ly  

stable sets. 
In  this paper  we shall give a concept  of to ta l  s tabi l i ty  for  cont inuous or discrete 

dynamical  systems defined on a locally compact  metr ic  space E :  this kind of to ta l  
s tabi l i ty  implies the  classical one according to the  definition due to Dv~osz~ [1], 
in the  case of dynamica l  systems induced b y  ord inary  differential  equat ions with 
l ipschitzian r ight  hand  side. I t  is possible to show tha t  asympto t ic  s tabi l i ty  of a 
compact  subset  M of E implies its to ta l  s tabi l i ty  in our sense. Note  that ,  if we con- 
sider a sys tem with a un i formly  continuous dependence on a parameter ,  a small 
change in the  pa rame te r  will induce a <( small per turba t ion  ,> (following our defini- 
tion) of the  system. ~Te nex t  prove tha t  if for a fixed flow a cer ta in  compact  in- 
varian~ set is asympto t ica l ly  stable,  t hen  under  a (< small pe r tu rba t ion  ,> a compact  
asymptot ica l ly  stable set will appear  in a neighbourhood of the  original one. Wh a t  
about  the  first set? I f  i t  changes its behaviour  to a (< complete  instabi l i ty  )> we can 
add tha t  new asympto t ica l ly  s table sets disjoint  f rom it  arise in a neighbourhood 
of i t ;  this s i tuat ion will be be t t e r  described in the  following. 

We can compare  these general  facts with models such as those proposed by  
Li~])A~: for  turbulence  [2]. S tar t ing  f rom the Navier-Stokes equat ion for a cer ta in  
value of a suitable pa rame te r  (e.g. the  Reynolds  number)  we first have a s ta t ionary  
sohltion asymptot ica l ly  stable. For  values of the  pa rame te r  greater  t han  a cer ta in  
constant ,  the  s t a t ionary  solution becomes complete ly  unstable  bu t  a periodic 
asympto t ica l ly  s table solution appears  in its neighbourhood.  Now it can be assumed 
that further increases of the parameter will cause analogous phenomena with higher 
and  higher dimensional teri appearing, carrying quasi-periodic motions. An alter- 
nat ive  model  is t ha t  of D. RUELLE and F. TAttErS [3] which is not  based on quasi- 
periodic motions for the  descript ion of turbulence,  bu t  relies all the  same upon 
this k ind of phenomenon.  This successive (~ branching ,) of compact  invar ian t  sets 
is usually e~lled bifurcat ion.  Par t icu la r  and well-known cases are branchings of 
s ta t ionary  or periodic solutions of differential  equations f rom s ta t ionary  ones [4, 5] 
and  analogously for diffeomorphisms [3] (*). All of these papers  re ly  upon an  in- 
spection of the  spec t rnm of the  l inear approximat ion  of the  r ight  hand  side of the  
differential  equat ion or of the  diffeomorphism. A common fea ture  is t ha t  a switching 
of the  asympto t i c  behaviour  induces a bifurcat ion,  under  suitable hypotheses  on 

the spect rum.  

(*) For a wide list of references concerning this kind of problems see [6]. 
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Our purpose  is to show tha t  the  qual i ta t ive  ~spect of this phenomenon  depends 
only  on the  switching in the  asympto t i c  behaviour ,  regardless of a n y  par t icular  
s t ruc ture  of the  l inear approximat ion.  Moreover this analysis goes over, wi thout  
changes,  to  more  general  cases (e.g. when no l inear approximat ion  exists a t  all). 
The core of our approach is an  extension of the  so-called Liapunov direct  me thod  
of qual i ta t ive  analysis to cont inuous dynamical  systems not  necessarily induced by  
differential  equat ions [7]: i t  can easily be f i t ted to cover  discrete dynamical  systems 
too (these systems arise in a na tu rM way, e.g. when considering Poincar~ maps  of 
cont inuous flows; t ransversa l  mappings are of ten  used in the s tudy  of bifurcat ion 
phenomena) .  A remarkable  resul t  of this t heo ry  is t h a t  asympto t ic  s tabi l i ty  is 
equivalent  to the  existence of a cont inuous funct ion s t r ic t ly  decreasing along the  
trajectories.  I t  is th rough the  use of such a funct ion tha t  we can prove  tha t ,  if each 
dynamicM sys tem of a one-parameter  fami ly  admits  an invar ian t  compact  set 
M~c E,  asympto t ica l ly  stable for  /, ~/*o and complete ly  unstable  for  # >/~0, then~ 
for # >/~o, a new invar ian t  compact  set M~ exists,  encircling the  corresponding M~, 
disjoint f rom it  and asymptot ica l ly  stable.  In  this f ramework  the  case of R ~ is 
invest igated as an applicat ion of general  results  and some examples are given (*). 

I .  - Preliminaries.  

1. - Le t  I be ei ther  the  set R of real  numbers  or the  set Z of integers. IJ6t E 
be a locally compact  met r ic  space and ~ the  distance in E .  Le t  U be a non-empty  
subset  of E.  :For s > 0  we set S(U, ~)~ {x~E: ~(x, U ) < s }  and 8[U~ ~]-~ {xeE: 
~(x, U ) ~ } .  For  a map  / ' : E - - > 2  E, we set F ( U ) :  [J {/'(x): x ~  U}. Consider the  

set 8 of cont inuous mappings  f rom I × E  into E such t h a t  for each ~ e  $: (i) ~(0, x) ~- x 
for  all xeE;  (ii) 7~(tl, ~(t~,x)):xt(t~-~t~, x) for  all t~, t~EI and xeE .  The t r ip le t  
{I, E~ z} defines a dynamical  system~ cont inuous or diseret% according to wether  

I : R  o r  I : Z .  
For  each x~E  we denote  by :  (i) y+(x)[~-(x)]  the  posit ive [negative] ~-semitra- 

j ec tory  th rough  x; (ii) A2(x)[AZ(x)] the  posi t ive [negative] z- l imit  set of x; 
(iii) J+(x)[J~(x)] the  posi t ive [negative] g-first prolongationM limit set of x; t h a t  is 

~2(x) = {~(t, ~): t~I÷}  ; 

A ~ ( x ) :  {yeE: the re  exists a sequence {t~}cI  +, such t h a t  

t~ -~ + ~ ,  ~(t,~, x) - ~ y } .  

J+  (x) = {y e E :  there  exist  sequences {t,} c I +, {x,} c E, such t h a t  

t . - + +  o% xo ~ x ,  ~ ( t . , x ~ ) - > y } .  

AnMogously for y~(x),  A : (x ) ,  J~(x). 

(*) Most of these results have been furnished, in a preliminary version, as a communication 
to the (~ II  Congresso Nazionale AIMETA, [8]. 
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L e t  us recal l  some wel l -known definit ions and  theorems  conce iv ing  a n o n - e m p t y  

compac t  subse t  M of E .  The  set  

A.(~)= {x~E: e(z(t,x), ~) +0 as t + +  ~}, 

is said to be  the  region of a t t r a c t i o n  of M wi th  respec t  to  z.  

1.1.1 

1.1.2 

1.1.3 

1.1.4 

1.1.5 

1.1 DEFInITIOnS. - M is said to  be:  

a z - a t t r a c t o r ,  if A~(M) is a ne ighbourhood  of M;  

a z - u n i f o r m  a t t r ac to r ,  ii M is a z - a t t r a c t o r  and  for any  x ~ A , (M)  and for 
a n y  ne ighbourhood  V of M the re  exis t  a ne ighbourhood U of x and  T e I+ 

such t h a t  z(t ,  U ) c  V for  t>~ T;  

z - s tab le ,  if (Vs > 0)(36 > 0): ?+ (S(M, ~)) c S(M, e); 

z - a s ym pt o t i c a l l y  s table,  if 1.1.1 ~nd 1.1.3 are  bo th  satisfied; 

z-unstable~ if it is no t  z -s table .  

1.2 

1.2.1 

1.2.2 

1.2.3 

T H E O l C E ~ S .  

I /  M is a ~r-attractor~ then A:dM) is open. 

I] M is z-stable, then it is z-positively invariant. 

I /  M is a z-uni]orm attractor~ then the set 

{xeE: J2(x)¢O, g.+(x)c ~} 

1.2.4 

1.2.5 

is a neighbourhood of M (and coincides with An(M));  the inverse holds i] the 
dynamical system is continuous, or i / a  compact neighbourhood o] M exists that 
is z-positively invariant. 

I] M is z-positively invariant and a z-uni]orm attractor, then M is st-asymp- 
totically stable. 

I /  M is ~-asymptotivally stable, then M is a ~-uni/orm attractor. 

1.3 I=~F,,MAI~KS. --  Dual  concepts  a re  t r iv ia l ly  defined wi th  respec t  to the  asymp-  
to t ic  behav iour  in the  pa s t :  in this  case we shall  use the  word <( negat ive  ~> (e.g. we 
say ( ,negat ive a t t r a c t o r  ~), <(negative s tab i l i ty  ~), and  so on). Thus A-~(M) will be  
the  region of t he  z -nega t ive  a t t r a c t i on  of M. The nega t ive  a s y m p t o t i c  s tab i l i ty  

will also be  called (( comple te  ins tab i l i ty  ~). 

2. - We conclude these  pre l iminar ies  b y  recall ing some concepts  and  theorems 
abou t  re la t ive  s tab i l i ty  and  a t t r ac t i on  for a n o n - e m p t y  compac t  set  M ¢ E.  
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2.1 DEFINITIONS. - Le t  U be a n o n - e m p t y  subse t  of E.  M is said to be:  

2.1.1 a z - a t t r a c t o r  re la t ive  to  U, if U t A h ( M ) ;  

2.1.2 z - s t ab le  re la t ive  to  U, if (Ve > 0)(3~ > 0): 7+ (S(M, (~) (3 U) c S(M, ~). 

2.2 THEOREMS. 

2.2.1 I] U c E is a z-positively invariant set and M is a ~r-stable attractor relative 
to U, then M is a z-uni]orm attractor relative to U. 

2.2.2 Suppose that M is z-positively invariant and denote by ~ the largest z-invariant 
set contained in M. Then ~ is a z-stable attractor relative to M; there]ore 
(by 2.2.1) it is a z-uniform attractor relative to M. 

The proofs  of Theorems  1.2 and  2.2 are  pe r fo rmed  in the  s ame  way  as for con- 

t inuous  d y n a m i c a l  sys tems  (see e.g. [7]). 

II. - Total  stability for cont inuous  or discrete dynamical  systems.  

1. - The  concept  of t o t a l  s tab i l i ty  for  o rd inary  differential  equat ions  is well- 
known as well as t he  in te res t  of such a concept  as a t es t  of evolut ion schemes con- 
s t ruc ted  in order to describe physica l  dynamics ,  l~ow we shall give a definit ion of to ta l  
s tabi l i ty ,  t h a t  allows to  consider dynamica l  sys tems  (not necessar i ly  genera ted  b y  
au tonomous  different ial  equat ions)  in t e r m s  of a su i table  <~ measure  )> of the  per-  

tu rba t ions  in the  phase  space. ~Let M be a n o n - e m p t y  compac t  subset  of E.  For  z~ 
p ~ 8  and  e > O ,  t ~ I + \ { O }  we pu t  

D(p, z ;  e, t) -= sup {e(p(t, x), z(t ,  x)) : 0 <~ t <~ i, x e S( M, e)}. 

1.1 DEFINITION. - L e t  z e 8. We say t h a t  M is z - to ta l ly  s tab le  if: 

1.1.1 

1.2 

1.2.1 

(re > 0)(Vie I+\{0})(351,  6~ > 0)(Vp e 8: D(p, z ;  e, t) < 6~) : 

r2 (s(~, 6~)) c S(M, ~) (*). 

I:{,E~cIARKS. -- We easily have :  

if M is z - t o t a l l y  s table ,  t h e n  M is z - s t ab le ;  

(*) Another concept of total stability, for generalized continuous dynamical systems, 
has been previously given by P. SEIB~RT in [9]. The extension of Def. 1.1 to these dynamical 
systems and its connection with the definition due to P. S]~IBERT, have been recently discussed 
by P. BO:~DI and V. MOAVRO in a forthcoming paper. 
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1.2.2 

1.2.3 

if for given values of e, i there  exist  posit ive numbers  6~, 5~ which fulfill 
condit ion 1.1.1, then  this condit ion is still satisfied by  the  same numbers  
61, ~2, for any  e'~>e, t~>~t; 

by  v i r tue  of 1.2.2 if I =  Z ~nd M is z~-totally stable,  the  numbers  5~, ~2 
in Def.  1.1 can be chosen independent  of t. 

1.3 DEFI~ITI0~. - The compact  M is said to  be z~-totally s table with respect  
to  a subset  8 '  of 8 if condit ion 1.1.1 holds with 8 '  subs t i tu ted  to 8. 

2 .  - We want  now to give a connect ion between Def. 1.1 and  the concept  
of to ta l  s tabi l i ty  due to Dubosin, when we res t r ic t  ourselves to  dynamical  systems 
genera ted  b y  autonomous  ord inary  differential  equat ions in R ~. 

2.1 Le t  A be the  set of continuous mappings f rom R ~ into R ~ such tha t ,  whatevea" 
be g e A, for the  differential  equat ion 

2.1.~ 2= g (x )  

uniqueness and global exis tence in R ~ of solutions th rough  every  point  x e R" be 
guaranteed .  For  x e R" we denote  by  p~(., x) the  solution such t h a t  p,(0, x ) ~ - x .  
Then  the  t r ip le t  {R, R", p~} defines a cont inuous dynamical  sys tem and we obta in  
a subset 8" of 8 as g v a r i e s i n  A. Le t  H']I be any  no rm i n R  ~ and  ~ the  induced 
distance.  Le t  M a non-empty  compact  subset  of R% F o r / ,  g e A and e' > 0 we pu t  

A(/, g; e') -~ sup{Q(/(x),g(x)): x e  S(M, #)} .  

2.2 DEFInitIOn. Le t  / c A  and  {R, R",pg} be the  dynamical  sys tem generated 
b y  eq. 2.1.1, g e A. M is said to b e / - t o t a l l y  stable with respect  to A, in the  sense 
of Dubosin,  if 

2.2.1 (w > 0)(3al, a~> o)(vg e ~:  a(/, g; ~') < a'2): r~+ (S(M, ~)) c S(M, ~'). 

We have  the  following 

2.3 THEOlCE~. - Let 1~ A be a locally lipschitzian /unction. Let {R, R ~, ~} be 
the dynamical system defined by the equation ~- - / (x ) .  I] M is 7~-totatly stable with 
respect to 8* (in the sense o/ De/. 1.3), then M is /-totally stable with respect to A 
(in the sense o/ De/. 2.2). 

PROOP. - F r o m  Def.  1.3 it follows t h a t  

2.3.~ (w > o)(vi > o)(3~,  ~ > o)(vp~ e 8*: D(p~, ~; ~, i) < ~..) 7~+ (,s(~, ~)) c S(M, ~). 
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~¥e have  to show tha t  2.3.1 implies 2.2.1. Le t  e ' >  0 and let  k > 0 be a Lipsehitz con- 
s tunt  of J in S[M,s'].  Take L=max{[ l f ( x ) l l : xeS[M,e ' ]  } and ,~>0 .  Set 
U =  (~0eA: I]~(x)t] < L +  2 in S[M,s']}. I t  is easy to prove  the  existence of a 
= i(e', 4) so t ha t  for any  g e U eq. 2.1.1 defines a dynamical  sys tem {R, R% pg} 

with  the  p rope r ty  

2.3.2 p,(t, z) E S(M, e') Y(t, z) e [0, i] X S(M, s'/2). 

For  instance if the  norm in R ~ is Euclidian,  one can assume t =  s ' [2  ~¢/n(L ~- 2)] -I. 
Le t  6~, 6'~ be such t ha t  

~ = ~1, 0 < d' 2 < rain {~, ~t-~ exp [-- ki]}, 

where d~, d~ are posit ive numbers  associated through condit ion 2.3.1 to e=e' /2 ,  t. 
Then~ for any  g e A satisfying 

! 

2.3.3 z](J, g; e')< d2, 

it  tu rns  out  g e U, and hence, by  v i r tue  of Gronwall 's  lemma,  

- ~ l-~ 

D(p,, ~; s, t)-~ (i2te < &~ . 

Therefore,  since 6'~= (31, condit ion 2.3.1 implies tha t ,  for all g e A satisfying 2.3.3, 

one has r + ( S ( M ,  ~'~)) c S(M, ~) c S(M, e'). 

3. - Consider again any  dynamical  sys tem {I, E,  ~} continuous or discrete and 
a non -empty  compact  subset  M of E.  The following theorem holds:  

3.1 TIIEOI~EI~[. - / ]  M i8 7~-asymptotieally stable, then it is z-totally stable. 

PROOF. - (i) By  v i r tue  of the  ~-asymptot ic  s tabi l i ty  of M, there  exists a con- 
t inuous fnnct ion  V: A,~(M)-+R + such t h a t :  

3.1.1 V ( x ) =  0 for all x e M ;  V ( x ) > 0  for all x e A ~ ( M ) ~ M ;  

3.1.2 V(~(t,x)) < g(x) for all t e I+~{ 0 }  and  xeA~(M) '~M.  

This fac t  is well-known in the  case I =  R (see [7]~ V, 2);  the  extension to the 
case of discrete dynamical  systems is t r ivial .  Fo r  x ~ M it is V(g(t, x)) = 0 Yt ~ I +, 
inasmuch as M is ~-stable and  therefore  ~-posit ively invar iant .  Assume 2 > 0  
such t ha t  S[M~ 4] be a compact  subset of A~(M): this is possible b y  v i r tue  of the 
local compactness  of E and  because A~(M) is a neighbonrhood of M. Le t  
iE I+~{0} ; there  exist  three  mappings a, b~ c f rom R + into R + of class K (in the  sense 
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of W. HAg~, t h a t  is continuous, s tr ict ly increasing and equal to zero in the origin) 
such tha t  for every x E S [ M ,  )~]: 

3.1.3 a(~(x, M) )  < V ( x ) < b ( q ( x ,  M)) ; 

3.1.4 V(~(t ,  x)) - -  V(x)  -< --  c(e(x , M ) ) .  

(ii) Fix  ~ ] 0 , 2 [  and  choose s e ]0 ,  ~[ so t ha t  

3.1.5 ~2 (s(~,  ~)) = S(M, ~). 

The existence of such an s is guaranteed by the  ~-stabili ty of M. Analogously assume 
S l ~ ] 0 ,  ~[, e~E]0 ,  el[, e3~ ]0,  b-l(a(e~))[ in such a way tha t  

3.1.6 r2 (s(~,  ~)) c s (~ ,  ~), 

3.1.~ r2(S(M, ~)) c Z(M, ~), 

3.1.8 7 + (S (M,  s3)) c S ( M ,  s~). 

By vir tue of 3.1.3 it  is b-~(a(s~))<s~. We now give two positive numbers ~ ,  ~ 
and we w~nt to show tha t  they  fulfill condition 1.1.1 relatively to the  couple s, t. 
Firs t  we assume ~ e ]0, s~[ with the condit ion 

3.1.9 7~ (S[M,  ~,]) c S ( M ,  ~) . 

Take L ~  ]0, + ~o[ such t h a t  

c(~1) 
3.1.10 IV(y) - -  V(z)t ~L~(y,  z) + T for all y, z ~ S [M,  2~] ; 

this is possible because V is continuous and of the  compactness of S[M,  4]. Then 
we assume bz in the  following way:  

/ c(~1) } 
3.1.11 0 < (~< Inin { 4L  ' ~ - -  ~' e --  ex, e l - -  s~, b-l(a(e~)) --  e3 • 

(iii) Consider a dynamical  system {I, E , p }  satisfying the condition 

3.1.12 D(7~, p ;  e~ t) < (~ ; 

it  follows tha t  

3.1.13 e ( p ( t , z ) , M ) < o ( 7 ~ ( t , z ) , M ) - ~ ( ~  for all t e I : O < t < t  and z e S ( M , e ) .  
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Let  x ~ S(M, ~). Suppose now t h a t  there exists 0 e I + such tha t  p(O, x)e} S(M, s). 
Set 

t"---- rain { t e l :  O<t<~O, p ( t , x )~S(M,s )}  , 

t '  = m~x {t e I :  0 < t  <t" ,  p(t, x) e S[M, (~]}. 

For  every z c I :  0 < T < t  one gets~ by 3.1.9, 3.1.13, 3.1.11~ 

p(t' + ~, x) ~ S(M, s3 + ~) c S(M, s~) c S(M, e) ; 

hence by vir tue of 3.1.7, and again 3.1.13, 3.1.11, 

p(t' d- 2% x) = p ( ~ ,  p(t' d- % x) ) ~ S( M, s~ Jr 5~) c S( M, s) . 

Then t"--t~>2t. Thus we can put  t"~-t'-~ (N-~ a)t where N > 2  is an integer and 
a ~ I : O < a ~ < l .  Define 

X~ 

One gets 

=p( t ' -~n t ,  x) for n e { 1 , 2 , . . . , N }  and x*-~p(t ' -4-(Nd-ot)t ,x) .  

~ < Q ( x ~ , M ) < s  for n e { 1 , 2 , . . . , I Y } ;  

~urther taking into account 3.1.5, 3.1.13 and  the  fact  t ha t  ~-~ 5~< ~, we have 

< Q(x*, ] I )  < X. 

~ow,  by vir tue of 3.1.4 one obtains 

v (x~+O - V(Xn) = V(p(~, X.)) -- V(~(i, x~)) + V(~(~, x~)) -- V(x~) < 

< v(p(~,x~)) - v (~(~ ,~) )  - e ( ~ 0  for ~ e { ~ , 2 , . . . ,  l v - ~ } .  

Since p(t, x~) and z(t, x~) belong to S[M, ~] and  the  conditions 3.1.10, 3.1.11, 3.1.12 
hold, we have 

V(x~+l) -- V(x~) < L~2 ÷ c(~O c(~1) e(~) < - - 5 -  for n e {~, . . . ,  2 ¢ -  1}. 

Analogously, keeping 3.1.2 in mind in place of 3.1.4, we get 

c(~) 
V(x*) -- V(x~v) < -  

2 

Then 

3.1.14 V(x*) -- V(x,) < 
N - - 2  

e(~l) < 0 .  
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On the  o ther  hand  i t  is V(x*)>~a(s), and 

tha t  is V(x*)>  V(x~), in contradict ion with 3.1.14. Thus the  theorem is proved.  
Indeed  teI+'~{0} has been chosen arbi t rar i ly ;  as for s recall Definit ion 3.1.5 and 

Remark  1.2.2. 

3.2 RE~ARK. -- The s t a t emen t  of Th. 3.1 still holds if the  hypothesis  t h a t  M 
is ~-asymptot ica l ly  stable is r~placed by  the  weaker  one tha t  M possesses a fun- 
damenta t  sys tem of ~-asymptot ica l ly  stable compact  neighbourhoods.  

3.3 R E ~ A ~ K . -  Le t  {R, R% ~} be a dynamical  sys tem genera ted  by  a diffe- 
rent ia l  eqnat ion ~ =  ](x), where ]E A is locally lipsehitzian. Then,  b y  v i r tue  of 
Th.  2.3, one gets ~ well-known resul t  which follows as a corollary, in the  case of 
autonomous differential  equations,  f rom the  classical theorem of GoRsI~ and 

MAI~:IN [10, l l ] .  

III. - Bi furcat ion and total  stability. 

1. - Le t  f i > 0  and p be a map f rom [0, fi[ into 8, /*~->p,. Assume t h a t  
p :  [0, f i [ × I × E - ~ E ,  p(#,  t, x) = p~(t, x),  is a cont inuous fnnct ion.  We shall say 
tha t  p defines a one-parameter  continuous fami ly  of dynamical  systems.  In  the  
following we shall denote  by  C the  set of all proper  compact  subsets of E o ther  t h a n  0. 

1.1 DEFInITIOn. -- Consider a map  M f rom [0, fi[ into C, #--~M~, such t h a t  

(1) for  every  # e [ 0 ,  fi[ the  compact  set M~ is p~-invariant;  

(2) max{ (x, xeM } -+0 as 

Then # = 0 is said to be a bi furcat ion point  for the mapping M if there  exists a 

#* e ]0, fi[ and  ano ther  mapping  M' :  ]0,/~*[ -+ C, /t ~-> Mr,, such t h a t  

(a) for every  # e l 0 , # * [  the  compact  set Mj is p , - inva r i an t  and Mj n _Mr, = 0; 

m a x  {e(x,  x e o a s  0. 

Our aim is now to give a snfilcient condit ion in order  to  ensure the  occurrence 
of bi furcat ion and  to character ize the  asympto t ic  behaviour  of b i furca ted  sets. 

F i r s t  of all we h~ve to premise the  following 

1.2 THEOlCE~¢. - -  Let M o c E  be a compact set which is po-asymptotically stable. 
Then there exist a # * e ] 0 ,  fi[ and a ]unction v: R+-->R + o] class K s,aeh that ]or 
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every ~u~]0, ~*[ the set Pz ~ 7~(S(M0, v(#))) satis]ies the ]ollowing conditions: 

(a) _P~ is a p~-asymptotically stable compact set; 

(b) there exists a neighbourhood At, o] Mo ]or which 

Further we have: 

(c) P~--> Mo as /~-->0, in the Hausdor]/ metric (*). 

PROOI~. - (i) Mo is pc-total ly stable (II,  Th. 3.1). F ix  t ~ I+~{0} and ~ > 0 so 
tha t  S[M0, 2] be a compact  subset of A~o(Mo). By  vi r tue  of condit ion I I ,  1.1.1 and 
the cont inui ty  of p(#, t, x) it  is not  difficult to prove the  existence of two mappings h, It, 
f rom R + into R + of class K for which 

1.2.1 7~+(S(~o,h(~)))cS(Mo,~) ~o~ an ~e[0,~] and ~e[0, k(~)]. 

where k(.~)<fi. Let  V: A~°(Mo)-~R + be a cont inuous funct ion associated to the  
pc-asymptot ic  s tabi l i ty  of Mo in the  way we have specified in the proof  of Th. I I ,  3.1. 
This funct ion satisfies in S[Mo~ 2] the  conditions 3.1.3, 3.1A of Sect. II~ with 
z ~ P o  ~nd M :  Mo. ~or  each ~ ] 0 ,  2] there  exists (cfr. I I ,  3.1.10) ~ number  
L(s) ~ ]1, + oo[ so t ha t  

1.2.2 IV(y) -- V(z)[~Zo~(y, z) -4- c(h(e)) for all y, z e S[Mo, 2 ] .  

Because of the cont inu i ty  of the funct ion p, one can prove  the  existence of ano ther  
funct ion  y~: R+-->R + of class K for which 

1.2.3 e(p(~,  t, x), p(o, t, x)) < . . . . .  
c(h(e)) 

4L 
for all/~ e [0, F(e)] ,  (t, x ) e [ 0 ,  t]×S[Mo, ,~]. 

Consider a funct ion Z: R+ -~ R+ of class K such tha t  Z(e )<min  {k(s), W(s)} for every  
s e [ 0 ,  k]. Le t  v~- hoz-X and # * =  z(h~(k)), where h'- = hoh. Then  

1.2.4 

(if) For  e v e r y / ~ ] 0 ,  #*[ consider the  set P s -~  7g(S(Mo, v(/~))). F i r s t  of all, we 
note  t h a t  S(Mo, hS(~)) is an open neighbourhood of P~: this is a consequence of 1.2.1 

(*) This theorem extends well knowll results ([12], Chap. VI, Th. 25.3) to the case of 
perturbed dynamical systems (continuous or discrete) not necessarily defined by differential 
equations. 

1 5  - A n n a l i  di ~latematfca 
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when we assume e -~ Z-l(#), # e  ]0, #*[. We prove t h a t  if xe S(Mo, h*(.~)), t hen  there 
existsa ~ e I + s o  thatp~(T.,x)eS(Mo,~(#)).  Indeed suppose ~,~(x) + (~ S(Mo,v(#))=-O 
and let N be a positive integer. Set t ing x~ = p~(nt, x) for n e {0, 1, . . . ,N} ,  one has 
x . e S ( M o ,  2) by  vir tue of 1.2.1, 1.2.4; the same holds for the points Po(t, x.). Then, 
taking into account inequalities 1.2.2, 1.2.3 for the values e =  Z-I{/~), t te ]0 , / t*[ ,  
we easily obtain (as in the  proof of Th. I I ,  3.1) t ha t  V( x .+ l ) -  V(x~)<--[c(v(#)) ]/2, 
for all n e {0, 1, . . . ,  N - -  1}, and therefore V(p,(Nt, x)) -- V(x) < -- N[c(v(#)) ]/2. 
Hence V(p,(Ni, x)) -~--  ~ as N - ~  + c~, which is absurd.  The existence of the 
required number  z .  is then  proved. Fur ther ,  as S(Mo, f(#)) c P , ,  and P ,  is p,-posi- 
t ively invar iant ,  one has t h a t  p~(t ,x)eP~ for all t > ~ :  We can assume as v~ a 
number  T independent  of x e S(Mo, h~(2)), e.g. any  integer greater t han  the number  
max{2V(x)/c(v(#)):xeS[Mo, h~(t)]}. Thus (b) is proved. In  part icular  the set P~ 
is a compact  pz-uniform at t ractor ,  and therefore by  vir tue of I ,  1.2.4 it  is also proved 
that P ,  is p , -asympto t iea l ly  stable. 

F ina l ly  we have Mo c P ,  c S(Mo, Z-~(#)), f rom which (c) immedia te ly  follows, 

since Z -~ e K.  
Now we can prove the  following 

1.3 THEOREm. -- Suppose that E be connected. Let fi > 0 and M: [0, fi[ -~ ~ be a 
mapping satisfying conditions (1), (2) o[ De]. 1.1. Suppose that Mo be po-asymptotically 
stable and that /or each # e  ]0, fi[ the compact set M~ be p~-completely unstable. Then~ 
i t ~- 0 is a bi]urcation point ]or the map M. Further the positive number #* and the 
map M' (of De]. 1.1) can be determined so that, /or each / t e ]0 , / t* [ :  

(a) M'~ is p~-asymptoticatly stable; 

(b) M~-~ P~\A~.( ~), where ~ is a compact set containing A[~(M~). 

P~oo~. - We keep the notat ions introduced in the  proof of Th. 1.2. 

(i) Since max{0(x , Mo) 'xeM~} ->0 as # - ~ 0 ,  there exists a function 

a: R + - ~ R  + of class K such t h a t  

1.3.1 M. cS(Mo, h(e)) for all #e[O,a(e) ]  and  ee[O, 1], 

where i is now chosen so tha t  S[Mo, 1] be a proper compact  subset of A~.(Mo). We 
choose the  funct ion z e K  (also used in the proof of Th. 1.2) subject to the addi- 

t ional  condit ion 
g(s) <a(s) for all s e [0, i ] ,  

and  again correspondingly define ~ = hoz-1 and #* = 9¢(h~(~)). For  every # e ]0, #*] 
the  compact  set _P~ : 7+.(S(Mo, ~(#))) satisfies conditions (a), (b), (c) of Th. 1.2. Let  
P~ be the  largest p , - invar iant  subset of P . ;  P~ is a compact  pg-uniform a t t rac tor  
with respect to P ,  (I, 2.2.2). Then, by  vir tue of the condition (b) of Th. 1.2, P ,  is 
a p~-uniform at t ractor ,  hence a p,-asymptot icMly stable set (I, 1.2.4). 
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(ii) Now we can prove: P ~ A ~ ,  where for sake of simplicity we have set 
A-~ = A~.(M~). From 1.3.1 it follows that  there exists r~ > 0 such that  S(M~, ra)c 
c S(Mo, v(#)). Let y e A ~ .  M~ is p~-negatively asymptotically stable; then there 
exists a t ' e I -  such tha t  p~(t ' ,y)eS(M~,r~)cS(Mo,  v(#))cP~. But P~ is p~-posi- 
tively invariant; then p~(-- t', p~(t', y)) = y e Pz. Hence A~ c P~. By the definition 
o f / 5  and because of the p~-invariance of A~-, we have P~ ~ AT: The open set A7 
is a proper subset of P~, by virtue of the connectedness of E and because 
P, c S[Mo, ~]¢ E. 

(iii) Consider the p,-invariant compact set M~ = / 5 , \ A ~ .  We prove that  it 
is p~-asymptotically stable. Because of (i) and I, 1.2.3 the proof is obviously achieved 
if we show tha t  x e A ; ~ M ~  ==~ J+(x) ¢ 0 and J~(x) c 3A; .  Since A ;  is a p~-inva- 
riant compact set, it  is J+(x )¢  0 and J~+(x)cAf. T h u s  w e  have to prove that  
y e J+(x) implies y ~ A ; .  Indeed, if y e A 7 we should have J~.(y) ¢ 0 and Jj.(y)c M,: 
On the other hand, from the definition of J+(x) it follows x e J[.(y). Then x e M~, 
which is absurd. 

Last ly we have mux{Q(x, Mo): xe  M~} -->0 as # ->0. This, taking into account 
that  M~ c /5 ,cP~ ,  follows immediately from the condition (c) of Th. 1.2. 

2. - We may now apply Th. 1.3 to the study of the bifurcation of a critical point 
with respect to a family of dynamical systems induced by ordinary differentiM 
equations in R ~. The analysis in the neighbourhood of this critical point will rely 
upon hypotheses merely concerning the asymptotic behaviour of solutions near this 
rest point (which will be chosen as the origin in R2). The specific results which will 
be obtained are a generalization of a classical theorem due to E. HOPF [4] (a proof 
of this theorem can also be found in [3]). 

2.1. Let f i > 0  and I: [O, fi[× R2-+R~ be a continuous map satisfying the fol- 
lowing conditions: 

(a) i(~, o) ~_ 0; 

(b) for each /~e [0, fi[ the differential equation 

2 . 1 . 1  ~ = i x ( x ) ,  

where f~(x)~](#,x) ,  defines u dynamical system {R,R~,p~} on R~; 

(c) a neighbourhood ~ of the origin 0 e R  ~ exists such that  for every 
# e [0, fi[ equation 2.1.1 does not admit any critical point other than 0. 

Specialize now the m~p M: [0, fi[--~ C defined in Def. 1.1 assuming M . =  {0} 
for all /t E [0, fi[. The bifurcation of this map (with respect to the family of dyna- 
mical systems {R, R ~, p~}) will be called bifurcation of the origin as well ~s bifur- 
cation of the static solution x ~ 0 of each equation defined by 2.1.1. One has the 
following 
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2.2 THEOR.E~vI. -- _Let {0} be pc-asymptotically stable and p~.-completely unstable ]or 
every # ~ ]0, fi[. Then ~-~- 0 ks a bifurcation point o] the origin. Further the number 
#* ?> 0 and the map M' : ]0, #*[ --> ¢ o ]  Def. 1.1 can be determined in such a way that 
]or # ~ ]0, #*[ these properties hold: 

(a) Mj is pz-asymptotically stable; 

(b) M'~ is the compact annular region included between two cycles C~, C'~, o] 

{R, R ~, p~} both containing 0 in their interior, the inside one, C'~, being equal to ~AL(O ). 

P~OOF. - (i) By  virtue of Theorem 1.3, # = 0 is a bifurcation point of the origin; 
besides a number #* > 0 and a map M": ]0, #*[ -+ C exist (with M~ --~ {0} as/~ -+ 0) 
such that,  for e~ch /~e]0,#*[, it results: (1) M;'. is p~-asymptotieally stable; 
(2) M ' ~ = P ~ \ A ; ,  where A;  is now the set A~(0) and P~DA;  is a compact sub- 
set of ~2, p~-invariant and p~-asymptotically stable. Choose # ~ ]0, #*[ and put 
r~ = max {~(0, x): x e /~}.  Choose ~ e A~( /~)  such that  ~(0, ~) > r~. Now the limit 
set A+(~) is not empty ~nd is contained in P~, since $ ~ A~,.(P~). Moreover, ~ being 
in the complement of the compact invariant set P , ,  we may state that  A L(~) c ~P~; 

~"  . . . . . .  0 therefore A~.(~) ~s bounded and does not contain any cr~tmal point (since 8P ,c~2\{  }). 
Then A+(~) is a cycle, whose interior contains the origin (by virtue of some well- 
known theorems of Bendixon). We put  C~ = A+(~) ~nd denote by D. the com- 
pact region bounded by C~. 

(ii) We now prove that  P~cD~. Since 0eD~,  choose zeP~\{0}  and suppose 
that  z~D~: we have to show that  this is absurd. The set A+(z) is not empty and 
AL(z)cP,\{0 } c~ :  then AL(z) is a cycle contained in /~, and containing 0 in its 
interior. By the uniqueness of trajectories, the only cases to consider are: 
(~) A+(z)c/~z; (/3) A + ( z ) c R ~ D ~ ;  (y) A+(z)~-C~. (~) is impossible, for the set Dz 
is invariant and z ~ D~. If  (fi) holds the point ~ defined in (i) should be interior to 
the cycle A+(z) (which is contained in P , \{0})  : this is obviously absurd. Then (},) 
only is possible; analogously A~-(z) --=- C,. Therefore C, should be both positive ~nd 
negative limit set for the point z ~ C~: this is absurd (see e.g. [13], .Chap. IV, Th. 8). 

(iii) D~ is a p,-invariant compact set containing P~. I t  is easy now to show 
that  D, is p~-asyraptotically stable. Obviously, there exists e > 0 such that 
S(DI,, e)~-f)~cA~.(P~): then for any xeS(D~,  e)\l°)~ it happens that  J+(x)=/: 0 and 
J+(x) cP~cD~ .  If  x ~ /) ,  one gets trivially, by virtue of the p,-invariance of D~, 

J+~.(x) c D~. 

(iv) Let ~ e A; \{0} .  Since A;  c / ~  c D~ c Q and A;  is invariant, then the limit 
set A+(~) is a cycle contained in D, and containing 0 in its interior. We set 

t l - • 

C~ = A+(~) and denote by Dv the compact region bounded by C~: r~ is true that  
D~ c D~. We prove that  C', = ~A;. I t  is sufficient to show that b;. ~- A; .  If y e A~ 
then A ; ( y ) =  {0} and there exists a i <  0 such that p~(i, y ) e  ~. Taking into ac- 
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of 
count t ha t  1)'~ is p~-invariant, it  will be y ~ / ~ ,  t ha t  is A~ c D, .  Conversely, since 

o o! "F 
0 ~ A ~ ,  suppose now tha t  y~D~\{0} .  The limit set Ap.(y) is a cycle C~ contained 
in D', and containing 0 in its interior. I t  is easy to see tha t  C2 = C~; otherwise 
either ~+(g) or ~-(~), the  semi-trajectories through ~, would cress C2 in a point,  
wi thout  coinciding with C2. This is absurd. Then in D~ there exist a unique cycle, 
C,,' and a unique critical point~ 01 with  respect to {R, R 2, p~}; since A~.(y)+ = C'~; 

Q r 

necessarily A~.(y)= {0}. This means tha t  y e A 2 ,  t ha t  is D, c A  7. 

(v) We can conclude tha t  the  set M~ = D ~ \ / ~  satisfies all conditions required 
by Theorem 2.2: indeed this is the  ring between the two cycles C,, C~= ~A~ of 
{R, R ~, p,}, each having in its interior the  origin. Secondly, i t  is t rne  t ha t  M~ --> {0} 
as # - + 0 ,  since Pz-+{0} as # - > 0  (Czc3[%). Las t ly  M~ is p~-invariant and asym- 
ptot ical ly stable. To prove the  p , -asymptot ie  s tabi l i ty  of M~ it  is sufficient, by  
vir tue of (iii), to observe t h a t  x e A;'~{0} implies J+(x)c OA; c M'~. 

2.3 ~ENARK. - -  AS a part icular  case, we note t ha t  if in the  region D the  dynamical  
system admits  for each # ~ ]0, #*[ a unique cycle, then  this cycle is a t t rac t ive  and 
one obtains the  Hopf bifurcation.  

2.4 I t  is now suggestive to provide some examples of bifurcation in R ~. Let  n 
be an odd integer and  no, a~, . . . ,  a,, be functions of a parameter  tt ~> 0: consider the  
system of two differential equations 

2.4.1 
2 = aoX - -  y 4:- alx(x 2 -~- y~) @ a2x(x ~ A- y2)2 + . . .  _~_ a.x(x~ .~ y,)~ 

~1 = aoy @ x + aly(x ~ + y*) + a~y(x 2 + y~)2 _~ ... + a~y(x ~ -4- Y~)', 

which admits  the null solution x ~ y -  0. 

(i) Suppose now tha t  for any  #>~0, ao(#), . . . ,  a~(#) are such tha t  the following 
ident i ty  is t rue:  

ao + alz  + . . .  + a~z~ = - (z - # V ( z -  2/~)' ... (z - k # ) ' [ z -  (k + 1)/~], 

where n = 2k -}- 1. One has no(O) = al(O) . . . . .  a~_l(O) = 0; a,,(#) -- -- 1; no(#) > 0 
for # > O. I t  is s t raightforward to check tha t  for every tt > 0 the circumferences 
C~(#), h e  {1, . . . ,  k + 1}, with the  origin as center and radius V ~ ,  are cycles of 2.4.1. 
In t roduce  now the funct ion V(x, y ) =  (x~@ y2)/2 whose derivative along the solu- 
t ion of 2.4.1 is 

l~(x, y) = (x~ + y2)[ao + al(x~ + y~) + . . .  + a~(x2 + y ' ) q .  

Then it  is easy to see t ha t  the  origin of R ~ is asymptot ical ly  stable for tt-= 0 and 
completely unstable for # > 0. Fur ther ,  one gets 

V(r) ~ o 

~(r)  = 0 

if and  only if O<r<~/(k@ 1)/ t ,  

if and only if r ~ {0, ~/9, V?-~2~, . . . ,  ~/(k + 1)Z},  
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where r - - V / i x  ~ + y~). I t  follows immedia te ly  t h a t  no o ther  cycles of 2.4.1 exist  

except  the  circumferences Ca(g ) and t h a t  for  every  # > 0 there  exists a unique 
set M~ satisfying conditions (a), (b) of Th.  2.2: the  compact  ring included between 
Cl(/x) and C~+~(#). 

(ii) Suppose t ha t  t he  hypotheses  of (i) hold and n = l .  Then  the  sys tem2.4 .1  
admits ,  for  a n y / ~ >  0, the  unique cycle C~(#) which is a t t rac t ive .  

(iii) Suppose tha t ,  for any  ix>O, ao(/.t), . . . ,  a,(la) are such t h a t :  

ao + al z + a~z ~ + . . .  -~ a,,z '~ = -- (z- -  # ) ( z - -  2#) . . .  (z- -  n/x). 

I t  can be easily shown tha t  the  circumferences Ca(/x) , h e { l ,  2, . . . ,n} ,  with the  
origin as center  and  radius V ~ ,  are  the  only  cycles of 2.4.1. For  any  # > 0 the  
set M', will be the  a t t r ac t ive  cycle C~(/~) or, if n > 3 ,  any  compact  ring included be- 
tween C~(#)and  C~(#), j e { 3 , 5 ,  . . . ,n} .  
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