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Summary. — 4 concept of total stability for continuous or discrete dynamical systems and o gen-
eralized definition of bifurcation are given: it is possible to show the link between an abrupt
change of the asymptotic behaviour of a family of flows and the arising of mew invariant sets,
with determined asympiotic properties. The theoretical resulls are a coniribuiion to the study
of the behaviour of flows mear am invariant compact set. They are obtained by means of an
extension of Liapunov’s direct method.

Introduetion,

Let us consider a flow, possibly induced by a differential equation, which is sup-
posed to deseribe the evolution of a physical system. One may ask which regions
in the phase space are relevant for a significant picture of the analyzed phenomenon.
First of all it is clear that we may restrict our attention to those regions which are
left invariant by the flow. In many cases we are actually concerned with compact
invariant sets only. In this respect one has to remember that, in a concrete case,
the initial data will not be known with arbitrary precision, so that it is essential
that a small perturbation will not result in a drastic change in the behaviour of the
flow near the compact invariant set M of interest; that is that Liapunov stability
be guaranteed. Further, if all trajectories starting in a neighbourhood of M will
asymptotically reach it, then the set M will dominate the behaviour of the system
in a whole neighbourhood. Such sets are asymptotically stable and are those of
special physieal significance.

We emphasize this interest in view of the following consideration: we must
take into account not only perturbations in the initial data but of the whole system
(e.g. of the right hand side in a differential equation), since a determined flow arises
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from a specific schema, neglecting a number of side effects which are judged not es-
sential, but that are in fact equivalent to a perturbation of the whole system. For
such a procedure to be reasonable it is fundamental that any «small perturbation »
of the system will not drastically alter the local behavicur of the flow: that is that,
roughly speaking, total stability be gnaranteed. It is remarkable that for asympto-
tically stable sefs total stability is assured, under not restrictive smoothness condi-
tions. Here is another significant reason for the physical relevance of asymptotically
stable sets.

In this paper we shall give a concept of total stability for continuous or discrete
dynamical systems defined on a locally compact metric space E: this kind of total
stability implies the classical one according to the definition due to DUBOSIN [1],
in the case of dynamical systems induced by ordinary differential equations with
lipschitzian right hand side. It is possible to show that asymptotic stability of a
compact subset M of F implies its total stability in our sense. Note that, if we con-
sider a system with a uniformly continuous dependence on a parameter, a small
change in the parameter will induce a «small perturbation » (following our defini-
tion) of the system. We next prove that if for a fixed flow a certain compact in-
variant set is asymptotically stable, then under a «small perturbation » a compact
asymptotically stable set will appear in a neighbourhood of the original one. What
about the first set? If it changes its behaviour to a «complete instability » we can
add that new asymptotically stable sets disjoint from it arise in a neighbourhood
of it; this situation will be better described in the fellowing.

‘We can compare these general facts with models such as those proposed by
LANDAU for turbulence [2]. Starting from the Navier-Stokes equation for a certain
value of a suitable parameter (e.g. the Reynolds number) we first have a stationary
solntion asymptotically stable. For values of the parameter greater than a certain
constant, the stationary solution becomes completely unstable but a periodie
asymptotically stable solution appears in its neighbourheod. Now it can be assumed
that further increases of the parameter will cause analegous phenomena with higher
and higher dimensional tori appearing, carrying quasi-periodic motions. An alter-
native model is that of D. RUELLE and F. TAxuNs [3] which is not based on quasi-
periodic motions for the deseription of turbulence, but relies all the same upon
this kind of phenomenon. This successive « branching » of compact invariant sets
is usmally called bifurcation. Particular and well-known cases are branchings of
stationary or periodic solutions of differential equations from stationary ones [4, 5]
and analogously for diffeomorphisms [3](*). All of these papers rely upon an in-
spection of the spectrum of the linear approximation of the right hand side of the
differential equation or of the diffeomorphism. A common feature is that a switching
of the asymptotic behaviour induces a bifurcation, under suitable hypotheses on
the spectrum.

(*) For a wide list of references concerning this kind of problems see [6].



MARCHETTI - NEGRINI - SALVADORI - ScarLia: Liapunov divect method, etec. 213

Our purpose is to show that the qualitative aspect of this phenomenon depends
only on the switehing in the asymptotic behaviour, regardless of any particular
structure of the linear approximation. Moreover this analysis goes over, without
changes, to more general cases (e.g. when no linear approximation exists at ail).
The core of our approach is an extension of the so-called Liapunov direct method
of qualitative analysis to continuous dynamical systems not necessarily induced by
differential equations [7]: it can easily be fitted to cover discrete dynamical systems
too (these systems arise in a natural way, e.g. when considering Poincaré maps of
continuous flows; transversal mappings are often used in the study of bifurcation
phenomensa). A remarkable result of this theory is that asymptotic stability is
equivalent to the existence of a continuous function strictly decreasing along the
trajectories. It is through the use of such a function that we can prove that, if each
dynamical system of a one-parameter family admits an invariant compact set
M,c B, asymptotically stable for p==y, and completely unstable for x> u,, then,
for u> py, & new invariant compact set M,; exists, encireling the corresponding My,
digjoint from it and asymptotically stable. In this framework the case of R2 is
investigated as an application of general results and some examples are given (*).

I. — Preliminaries,

1. ~ Let I be either the set R of real numbers or the set Z of integers. Let E
be a locally compact metric space and p the distance in E. Let U be a non-empty
subset of E. For ¢>0 we set 8(U, &)= {wcH: o(x, U)<e} and S[U,e]={weE:
o(w, U)<e}. For a map I': B —-2%, we set I'(U)= U {{'(#): we U}. Consider the
set S of continuous mappings from I X F into E such that for each me 8: (i) m(0,2) ==
for all we B; (il) m(ty, w(ts, 2)) = m(ty + 1, #) for all £;,¢,€I and xe E. The triplet
{I, B, 7} defines a dynamical system, continuous or discrete, according to wether
I=R or I=2Z.

For each ze E we denote by: (i) v7 (#)[y, (x)] the positive [negative] n-semitra-
jectory through z; (ii) A} (x)[A(x)] the positive [negative] m-limit set of ;
(iii) J(@)[J; (#)] the positive [negative] n-first prolongational limit set of z; that is

Va (@) = {alt, @): te I} ;
A (x)= {y€ E: there exists a sequence {t,} c I+, such that
tn = 4 o0y Alta, @) >y} .
Ji (@) = {y € E: there exist sequences {t,} cI*, {x,}C E, such that
by —> 4 00, Ty =, Wy Ta) =Y} -
Analogously for y, (), A, (z), J, ().

(*) Most of these results have been furnished, in a preliminary version, as a communication
to the «II Congresso Nazionale AIMETA » [8].
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Let us recall some well-known definitions and theorems concerning a hon-empty
compact subset M of B. The set

A M) = {we E: o(n(t, z), M) -0 as t - + oo},
is said to be the region of attraction of M with respect to .

1.1 DEFINITIONS. — M is said to be:
1.1.1 a m-attractor, if Az(M) is a neighbourhood of M;

1.1.2 a m-uniform attractor, if M is a m-attractor and for any x € 4.(M) and for
any neighbourhood V of M there exist a neighbourhood U of x and Tel*
such that =, U)cV for i>T;

1.1.3 =z-stable, if (Ye>0)(36>0): p(S(M, 0)) c S(M, &);
1.1.4 m-asymptotically stable, if 1.1.1 and 1.1.3 are both satisfied;

1.1.5 m-unstable, if it is not m-stable.

1.2 THEOREMS.
1.2.1 If M is o m-attractor, then An(M) is open.
1.2.2 If M is m-stable, then it is m-positively invariant.

1.2.3 If M is a m-uniform attractor, then the set
{weE: J](x)% 0, Jix)c M}

is a neighbourhood of M (and coincides with An(M)); the inverse holds if the
dynamical system is conlinuous, or if a compact neighbourhood of M exists that
18 m-positively invariant.

1.2.4 If M is m-positively invarient and a sm-uniform atiractor, then M is m-asymp-
totically stable.

1.2.5 If M is m-asympiotically stable, then M is o m-uniform atiractor.

1.3 REMARKS. — Dual coneepts are trivially defined with respect to the asymp-
totic behaviour in the past: in this case we shall use the word «negative» (e.g. we
say «negative attractor », «negative stability », and so on). Thus A (M) will be
the region of the m-negative attraction of M. The negative asymptotic stability
will also be called « complete instability ».

2. — We conclude these preliminaries by recalling some concepts and theorems
about relative stability and attraction for a non-empty compact set M C E.
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2.1 D=EPFINITIONS, — Let U be a non-empty subset of E. M is said to be:

2.1.1 a m-attractor relative to U, if Uc 4a(M);
2.1.2 m-stable relative to U, if (Ve>0)(35>0):p} (S(M, )N U)c 8(M, &).

2.2 THEOREMS.

2.2.1 If UckE is a n-positively invariant set and M is a m-stable attractor relative
to U, then M is a m-uniform attractor relative to U.

2.2.2  Suppose that M is m-positively invariant and denote by M the largest n-invariant
set contained in M. Then M is a m-stable attractor relative to M; therefore
(by 2.2.1) it is a m-uniform aftractor relative to M.

The proofs of Theorems 1.2 and 2.2 are performed in the same way as for con-
tinuous dynamical systems (see e.g.[7]).

I1. — Total stability for continuous er discrete dynamical systems.

1. — The concept of total stability for ordinary differential equations is well-
known as well as the interest of such a concept as a test of evolution schemes con-
structed in order to describe physical dynamies. Now we shall give a definition of total
stability, that allows to consider dynamical systems (not necessarily generated by
autonomous differential equations) in terms of a suitable «measure» of the per-
turbations in the phase space. Let M be a non-empty compact subset of E. Foram,
peS and £>0, te I\ {0} we put

D(p, m; &, t) = sup {o(p(t, ), a2, )): 0 <t<£a wveS(M,e)}.
1.1 DEFINITION. — Let € 8. We say that M is m-totally stable if:

1.1.1 (Ve > 0)(Vie I™N{0})(3dy, 6,> 0)(Vp € 8: D(p, 75 e, £) < &,):
s (S(M, 6,)) c S(M, &) (*) .
1.2 REMARKS. — We easily have:

1.2.1 if M is n-totally stable, then M is m-stable;

(*) Another coneept of total stability, for generalized continuous dynamical systems,
has been previously given by P. Sisrrr in [9]. The extension of Def. 1.1 to these dynamical
systems and its connection with the definition due to P. SEIBERT, have been recently discussed
by P. Boxpr and V. Moauro in a fortheoming paper.
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1.2.2 if for given values of ¢, { there exist positive numbers &;, 8, which fulfill
condition 1.1.1, then this eondition is still satisfied by the same numbers
b1y Oy, for any &' e, />4

1.2.3 Dby virtue of 1.2.2 if I=Z and M is z-totally stable, the numbers &,, &,
in Def. 1.1 can be chosen independent of £.

1.3 DErFINITION. — The compaet M is said to be z-totally stable with respect
to a subset 8’ of 8§ if condition 1.1.1 holds with 8§ substituted to 8.

2. - We want now to give a connection between Def. 1.1 and the concept
of total stability due to Dubosin, when we restrict ourselves to dynamical systems
generated by autonomous ordinary differential equations in R

2.1 Let A be the set of continuous mappings from R into R" such that, whatever
be ge A, for the differential equation

2.1.1 Z = g(wx)

uniqueness and global existence in R” of solutions through every point xe R* be
guaranteed. For xe R* we denote by p,(-,«) the solution such that p 0, x)=x.
Then the triplet {R, R”, p,} defines a continuous dynamical system and we obtain
a subset 8* of 8§ as g varies in #. Let -] be any norm in R and p the induced
distance. Let M a non-empty compact subset of R*. For f, g A4 and ¢/ >0 we put

A(f, g5 &) = sup {e(f(@), g(@)) : we S(M, &)} .

2.2 DEFINITION. Let fe £ and {R, R*, p,} be the dynamical system generated
by eq. 2.1.1, ge £. M is said to be f-totally stable with respect to #, in the sense
of Dubosin, if
2.2.1 (Ve'>0)(38, 0,> 0)(Vg & 4: A(f, g; &') < 6,): v, (S(M, 8)) c S(M, &') .

We have the following

2.3 THEOREM. — Let fe A be a locally lipschitzian function. Let {R, R* m} be
the dynamical system defined by the equation & == f(x). If M is n-totally stable with
respect to 8% (in the sense of Def. 1.3), then M is f-totally stable with respect to o
{(in the sense of Def. 2.2).

Proor. — From Def, 1.3 it follows that

2.3.1  (Ye> 0) (V> 0)(3dy, 6, > 0)(Vp, € 8%: D(p,,7;¢,8) < ) : Vo, (S(M, 8,)) c S(M, ¢) .
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We have to show that 2.3.1 implies 2.2.1. Let ¢/>0 and let k> 0 be a Lipschitz con-
stant of f in S[M,&']. Take L=max{|f(#)|:2eS8[M, ]} and A>0. Set
U={pe: |p@)] <L+ 4 in S[M,&']}. It is easy to prove the existence of a
t=1#(s', A) so that for any ge U eq. 2.1.1 defines a dynamical system {R, R", p,}
with the property

2.3.2 polt,2)e8(M, &'y  V(t,2)e[0,{]1x8(M,&[2).

For instance if the norm in R" is Euclidian, one can assume {=¢'[2vVn(L-+ )T
Let d;, &, be such that

8,=190,, 0<d,<min{l,di exp[—kil},

where &;, 8, are positive numbers asscciated through condition 2.3.1 to e=2¢'|2,1.
Then, for any g< A satisfying

2.3.3 Alf, g5 ') < 05,
it turns out ge U, and hence, by virtue of Gronwall’s lemma,
D(p,, w58, t) <016 < 8,.

Therefore, since 5;:51, eondition 2.3.1 implies that, for all ge A satisfying 2.3.3,
one has y; (S(M, 8;)) c B(M, &) c 8(M, &').

3. — Consider again any dynamical system {I, B, x} continuous or discrete and
a non-empty compact subset M of H. The following theorem holds:

3.1 TuroreM. — If M is m-asymplotically stable, then it is m-totally stable,

Proor. — (i) By virtue of the m-asymptotic stability of M, there exists a con-
tinnous function V: A,(M) - Rt such that:

3.1.1 V(xy=0 for all xe M; V(x)>0 for all ze A,(M)\ M ;
3.1,2 Vi@, 2)) < Vi) for all teI™N\{0} and e A(MN\M .

This fact is well-known in the case I=R (see [7], V, 2); the extension to the
case of discrete dynamical systems is trivial. For w e M it is V(a(t, »)) = 0 Vie I+,
inasmuch as M is m-stable and therefore m-positively invariant. Assume A>0
such that S[M, 1] be a compact subset of A,(M): this is possible by virtue of the
local compaectness of F and because Ax(M) is a neighbourhood of M. Let
tel ™N {0} ; there exist three mappings a, b, ¢ from R+ into R* of class K (in the sense
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of W. HanN, that is continnous, strictly increasing and equal to zero in the origin)
such that for every ze S[{M, i]:

3.1.3 a(o(z, M)) < V() <b(olz, M)) ;

3.1.4 V(a(t, ) — V()< — c(o(z, M)) .
(i) Fix 110, A[ and choose £€10, A[ so that
3.1.5 v (S(M, &) cS(M, ).

The existence of such an ¢ is gnaranteed by the z-stability of M. Analogously assume
&1€10,¢[, £&,€10, &, e5€ 10, b-Y(a(ey))[ in such a way that

3.1.6 ya (B(M, &) c S(M, ),
3.1.7 v (S(M, &) cS(M, &),
3.1.8 i (S(M, &) c S(M, &) .

By virtue of 3.1.3 it is b-(a(e,)) <e,. We now give two positive numbers d;, d,

and we want to show that they fulfill condition 1.1.1 relatively to the couple &, &.
First we assume 0,€ 10, &[ with the condition

3.1.9 v (S[M, 8,]) c S(M, &5) .

Take Le 0, 4 oo such that

¢(dy)

3.1.10 \V(y) — Vie)|<Lely, ») + —

for all y,ze8[M, 11;

this is possible because V is continuous and of the compactness of S[M, 1]. Then
we assume J, in the following way:

3.1.11 0 < d,< . min {%%l s A=, & — &1, &1— &5, b ales)) — 83} .

(iii) Consider a dynamical system {I, B, p} satisfying the condition

3.1.12 Dz, p;e,t) < 0y5
it follows that

3.1.13 o(p(t, 2), M) < o(n(t,2), M) -+ 0, for all tel:0<i<? and ze8(M,¢).
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Let ze 8{M, ;). Suppose now that there exists 0 € I+ such that p(0,«) ¢ S(M, ¢).
Set

t'=min {teI: 0<t<0, p(t,v)¢8(M,¢)},

t'=max {tel: 0<t<t’, p(t,x)e S[M, 6,1} .
For every rel: 0<t<! one gets, by 3.1.9, 3.1.13, 3.1.11,
pt'+ T, 2)e S(M, 85+ 8) C S{M, g,)c S(M, &) ;
hence by virtue of 3.1.7, and again 3.1.13, 3.1.11,
P+ 27, @) =p(z, p(t'-+ 1, 2)) € S(M, &, + ;) c S(M, &) .

Then t’—1'>2{, Thus we can put ¢'=1t'- (N 4 «) where N>2 is an integer and
ael:0<a<l. Define

w,=p{t'+nt,x) for nef{l,2,..., N} and o*=p(t'-- (N + ), x) .
One gets
0, < olw,, My<e for nef{l,2,...,N};

jurther taking into account 3.1.5, 3.1.13 and the fact that 14 d,< A, we have
e<o(w®, M)< 4.
Now, by virtue of 3.1.4 one obtains

< V(plt, ) — Vialt, ) —e(dy) for ne{l,2,...,N—1}.

Since p(t, #,) and z(l, #,) belong to S[M, 1] and the conditions 3.1.10, 3.1.11, 3.1.12
hold, we have

e(dy)

V(wn +1) - V(wn) < Laz + 1

—e(dy) < —

0(21) for ne{l,..., N—1}.

Analogously, keeping 3.1.2 in mind in place of 3.1.4, we get

Via*) — Viay) < 0(51) .
Then
3.1.14 Vie*) — Vo) < — V-2 e(6,) <0 .
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On the other hand it is V(z*)>a(e), and
Vi) <b(o(@:, M)) < bley+ 8,) < b(b(ale))) = ales) < a(e) ;

that is V{e*) > V{2,), in contradiction with 3.1.14. Thus the theorem is proved.
Indeed feI™\{0} has been chosen arbitrarily; as for ¢ recall Definition 3.1.5 and
Remark 1.2.2,

3.2 REMARK. — The statement of Th. 3.1 still holds if the hypothesis that M
is m-asymptotically stable is replaced by the weaker one that M possesses a fun-
damental system of m-asymptotically stable compact neighbourhoods.

3.3 ReMARK. — Let {R,R", n} be a dynamical system generated by a diffe-
rential equation %= f(z), where fe £ iy locally lipschitzian. Then, by virtue of
Th. 2.3, one gets a well-known result which follows as a corollary, in the case of
autonomous differential equations, from the classical theorem of GoORsIN and
MALKIN [10,11].

Iil. ~ Bifurcation and total stability.

1. ~ Let >0 and p be a map from [0, into S, ur>pu. Assume that
p: [0, gl XIXE — B, plu,t,x)=put,x), is a continuous function. We shall say
that p defines a one-parameter continuous family of dynamieal systems. In the
following we shall denote by C the set of all proper compact subsets of E other than 4.

1.1 DerixiTiON. — Consider a map M from {0, g[ into C, u — My, such that
(1) for every ue[0, [ the compact set M, is py-invariant;
(2) max {o(w, My): we My} -0 as u —0.

Then w= 0 is said to be a bifurcation point for the mapping M if there exists a
u*€10, A[ and another mapping M': 10, u*[ — C, g > M,, such that

(«) for every ue ]0, u*[ the compact set M,: is p,-invariant and M;; N M,=0;
(B) max {o(z, My): we M,} ~0 as g —0.

Our aim is now to give a sufficient condition in order to ensure the occurrence
of bifurcation and to characterize the asymptotic behaviour of bifurcated sets.
First of all we have to premise the following

1.2 THEOREM. — Let M,c E be a compact set which is po-asymptotically stable.
Then there exist a p*€10, il and a function v: Rt — R+ of class K such that for
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every pe 0, u*[ the set Py,= y;i (S( My, v())) satisfies the following conditions:

(a) Py, is a pu-asymplotically stable sompact set;

(b) there exists a neighbourhood N of M, for which

BT eI (Ve e Ny(Vi=T): pu(t, x)e Py

Further we have:
(¢ Pu—> M, as p—0, in the Hausdorff metric (*).

PROOF. — (i) M, is p,-totally stable (LI, Th. 3.1). Fix teI*\{0} and 1> 0 so
that S[M,, 1] be a compact subset of 4, (M,). By virtue of condition II, 1.1.1 and
the continuity of pu, t, z) it is not difficult to prove the existence of two mappings h, k,
from Rt into R+ of class K for which

1.2.1 y;;(S(Mo, he))) c S(M,, &) for all ee[0, 1] and pe([0, k(e)].

where k(1)<j. Let V:A (M, —R* be a continuous funetion associated to the
Ppe-asymptotic stability of M, in the way we have specified in the proof of Th. 11, 3.1.
This function satisfies in S[M,, 2] the conditions 3.1.3, 3.1.4 of Sect. II, with
mw=1p, and M= M,. For each £€]0, 2] there exists (cfr. II,3.1.10) & number
Lig)e |1, +ocf so that

e(h(e))
4

1.2.2 [V(y) — V(e)| < Loly, ) + for all y, ze 8{M,, 1] .

Because of the continuity of the function p, one can prove the existence of another
function y: Rt — R+ of class K for which

1.2.3  o(plu, t, x), p(0, ¢, 2)) < g%g)—) for all we[0, ple)1, (¢, ®) [0, F1 X S[M,, A].

Consider a function y: R+ — R+ of class K such that y(e) <min {k(e), p(e)} for every
e€[0,4]. Let v=hoy* and p*==y(h*(4)), where h* = hok. Then

1.2.4 = y(h¥)) <z <k(A)<i.
(i) For every u €10, u*[ consider the set P,= ﬁ:(_s—(Mw v(u))). First of all, we

note that S(M,, k2(1)) is an open neighbourhood of P,: this is a consequence of 1.2.1

(*) This theorem extends well known results ([12], Chap. VI, Th. 25.3) to the case of
perturbed dynamiecal systems (eontinuous or diserete) not necessarily defined by differential
equatbions.

15 ~ dnnali @i Maiematica
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when we assume ¢ = y~Y(u), p €10, u*[. We prove that if x e S(M,, h*(4)), then there
exists a 7,1+ 50 that pu(ts, #)€ 8(M,,»(n)). Indeed suppose y, (x) N S(My, v(n)) = 6
and let ¥ be a positive integer. Setting x,= pu(nt, ») for ne{0,1, ..., N}, one has
@, € 8(M,, ) by virtue of 1.2.1, 1.2.4; the same holds for the points po(£, ,). Then,
taking into account inequalities 1.2.2, 1.2.3 for the values &= y~(u), p<l0, u¥,
we easily obtain (as in the proof of Th. II, 3.1) that V(@,..) — V(z.) <—[e(v(p)) ]2,
for all ne{0,1,..., N—1}, and therefore V(pu(N¢,a)) — V(z)<— N[e(v(w)]/2.
Henee V(pﬁ(NZ, #)) —— oo a8 N — -+ oo, which is absurd. The existence of the
required number 7, is then proved. Further, as S(M,, v(u)) C Py, and P, is pu-posi-
tively invariant, one has that pu(f, 2} Py for all i>7,0 We can assume as 7, &
number 7 independent of xe S(M,, h*(1)), e.g. any integer greater than the number
max{ZV(m)/c(v(m):meS[Mo,hz(l)]}. Thus (&) is proved. In particular the set P,
is a compact py-uniform attractor, and therefore by virtue of I,1.2.4 it is also proved
that P, is pyasymptotically stable.

Finally we have M,c P,c 8(M,, x(u)), from which (¢) immediately follows,
since yte K.

Now we can prove the following

1.3 THEOREM. — Suppose that E be connected. Let >0 and M:[0, [ —C be a
mapping satisfying conditions (1), (2) of Def. 1.1. Suppose that M, be p-asymptotically
stable and that for each ue 10, i[ the compact set My be puy-completely unstable. Then,
p="0 is a bifurcation point for the map M. Further the positive number u* and the
map M' (of Def. 1.1) can be determined so that, for each pe 10, p*[:

{a) M ; 15 pa-asymptotically stable;
(5 M‘;: Pa\A;,; (M), where DB, is a compact set containing A;“ (M)
ProOF. — We keep the notations introduced in the proof of Th. 1.2.

(i) Since max {o(w, M,): #€ M} —0 as u->0, there exists a funetion
o: R* — R+ of class K such that

1.3.1 M, 8(M,, h(z)) for all ue[0, o(e)] and e€[0, 1],

where A is now chosen so that S[M,, 1] be a proper compact subset of 4, (M,). We
choose the function ye K (also used in the proof of Th. 1.2) subject to the addi-
tional condition

y(e)<o(e) for all e€[0, 2],

and again correspondingly define y = hoy™* and u*= y(h*(1)). For every ue 0, u*]
the compact set P, = ;"P‘:u(S(MO, »(u))) satisfies conditions (a), (b), (¢) of Th. 1.2. Let
P, be the largest pu-invariant subset of Py; B, is a compact p,uniform attractor
with respect to P, (I,2.2.2). Then, by virtue of the condition (b) of Th. 1.2, P, is
a py-uniform attractor, hence a py-asymptotically stable set (I,1.2.4).
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(ii) Now we can prove: PMDA; , where for sake of simplicity we have set
A: = A;” (M. From 1.3.1 it follows that there exists 7, > 0 such that S{(My, ) C
c 8(My, »(p)). Let yed, . M, is p.unegatively asymptotically stable; then there
exists a t'eI- such that pu(t’, y) € S(My, 7.) c 8(M,, »()) C Pu. But P, is pu-posi-
tively invariant; then pu(—t', pu(t’,y)) =y P,. Hence A, c P,. By the definition
of P, and because of the pu-invariance of 4., we have B> A; : The open set 4,
is a proper subset of P,, by virtue of the connectedness of E and because
Buc 8[M,, 1]+ E.

(iii) Congsider the py,invariant compact sef M,:= PH\A;. We prove that it
is prasymptotically stable. Because of (i) and I,1.2.3 the proof is obviously achieved
if we show that xe 4, M, = J;‘ ()% 0 and J;; (wyc oA, . Since 4, i8 a py-inva-
riant compact set, it is J (x)7 @ and J (m)c A4, . Thus we have to prove that
Y EJ;;(.’L‘) implies y ¢ A" . Indeed, if ye 4, we should have J;M(y) s @and I, (Y)C Mt
On the other hand, from the definition of J;)Z (@) it follows x e J, »nly). Then we M,
which is absurd.

Lastly we have max {o(x, M,): v M ;‘} -0 as u—0. This, taking into account
that M; c P,c P,, follows immediately from the condition (¢) of Th. 1.2.

2. — We may now apply Th. 1.3 to the study of the bifurcation of a critical point
with respeet to a family of dynamieal systems induced by ordinary differential
equations in R?. The analysis in the neighbourhood of this critical point will rely
upon hypotheses merely concerning the asymptotic behaviour of solutions near this
rest point (which will be chosen as the origin in R2). The specific results which will
be obtained are a generalization of a classical theorem due to E. Hopr [4] (a proof
of this theorem can also be found in [3]).

21. Let @>0 and f: [0, g xR2 > R? be a continuous map satisfying the fol-
lowing conditions:

(a) flu, 0)=0;
(b) for each pe[0, [ the differential equation

2.1.1 & = fule)
where fu(z) = f(u, #), defines a dynamical system {R, R% p,} on R2;

(¢) a neighbourhood £ of the origin 0 € R® exists such that for every
#€l0, g equation 2.1.1 does not admit any critical point other than 0.

Specialize now the map M: [0, a[ — C defined in Def. 1.1 assuming M, = {0}
for all pe(0,a[. The bifurcation of this map (with respect to the family of dyna-
mical systems {R, R2, p,}) will be called bifurcation of the origin as well as bifur-
cation of the static solution z = 0 of each equation defined by 2.1.1. One has the
following
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2.2 THEOREM. — Let {0} be p,-asymptotically stable and py-completely unstable for
every pne 0, gl. Then p=10 i¢ a bifurcation point of the origin. Further the number
u*>0 and the map M': 10, u*[ —C of Def. 1.1 can be determined in such o way that
for pe 0, u*[ these properties hold:

(a) M ; is pu-asymptotically stable;
by M ; i8 the compact annular region included between two cycles Oy, C; of

{R, R2, p,} both containing O in their interior, the inside one, 0;, being equal to 24, (0).

Proo¥. — (i) By virtue of Theorem 1.3, u==0 is a bifurcation point of the origin;
besides a number * > 0 and a map M": 10, ¥ — C exist (with M, — {0} as u —0)
such that, for each pel0,u*[, it results: (1) M, is p,asymptotically stable;
(2) MZ: P;,\A;, where A} is now the set A;;(O) and PMDA;' is a compaect sub-
set of Q, pyinvariant and pg-asymptotically stable. Choose u € ]0, u*{ and put
7, == max {¢(0, ): zeP,}. OChoose & €4, (Pﬂ) such that (0, §}>m: Now the limit
set A (£) is not empty and is centa,med in P,, since £e ;I (Pﬁ) Moreover, £ being
in the complement of the compact invariant set P, we may state that At‘(é‘) c oPy;
therefore A, () is bounded and does not contain any critical point (since 8P, c ONo}).
Then Ag‘ (§) is a cycle, whose interior contains the origin (by virtue of some well-
known theorems of Bendixon)., We put C’#:A;: (&) and dencte by D, the com-
pact region bounded by C,.

(ii) We now prove that P,c D,. Since 0 Dy, choose z€ P,\{0} and suppose
that 2¢ D,: we have to show that this is absurd. The set /1+(z) ig not empty and
AZ‘ (2)c PNJ0} c Q: then A, (z) is a cycle contained in B, and containing 0 in its
interior., By the uniqueness of trajectories, the only cases to consider are:
(@) A;(2)c Dy (B) Af(#)C BN\Dus (y) A7 (2) = Cu. () is impossible, for the set Dy
is invariant and z¢ D,. If (f) holds the point £ defined in (i) should be interior to
the cycle A;; (#) (which is contained in P,\{0}): this is obviously absurd. Then (y)
only is possible; analogously A;,; (#) = C4. Therefore O, should be both positive and
negative limit set for the point 2 ¢ C,: this is absurd (see e.g. [13], ‘Chap. IV, Th. 8).

(iii) D, is a py-invariant eompact set containing P,. It is easy now to show

that D, is p,-asymptotically stable. Obviously, there exists ¢>0 such that

8(Dy, eN\Duc 4, (P then for any @€ 8(Dy, ¢ D it happens that J; (s}~ 0 and

J t(co) cP,cD,. If weDu one gets trivially, by virtue of the p,-invariance of Dy,
J (%) C Du.

(iv) Let e AN\{0}. Since 4, c Pyc D,c  and A; is invariant, then the limit
set A‘“(C) is a cycle contained in D, and containing 0 in its interior. We sef
C’ = A*(C) and denote by D the compact region bounded by C‘ it is true that
D c D,. We prove that C’ = 9A . It is sufficient to show tha,t D= A, Ityed,
then A “(y {0} and there exwts i< 0 such that pu(t, ) ED Taking into ac-
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coun‘n that D is pg-invariant, 1t will be y eD , that is 4, CD Conversely, since
OEA“, suppose now that ye]) \{0} The limit set A*(y) is a cycle 0 contained
in D and containing 0 in its interior. It is easy to see that C =0; .5 otherwige
elther Vo (C} or v, ({), the semi-trajectories through {, would cross O in a point,
without commdmg with O This is absurd. Then in _D there exist a unique cycle,
¢, and a umque eritical point, 0, with respect to {R R ,pﬂ}, since A (y) = o

4 e

necessarily A4, (y) = = {0}. This means that ye A, that is CA“

{v) We can conclude that the set Mﬁ = Du\D,; satisfies all conditions required
by Theorem 2.2: indeed this is the ring between the two cycles C, O’,iz 04, of
{R, Rz, p,}, each having in its interior the origin. Secondly, it is true that M . — {0}
as u->0, since Py —{0} as u >0 (Ouc oP,). Lastly M, is py-invariant and asym-
pto‘mea,lly stable. To prove the p,-asymptotic stability of M; it is sufficient, by
virtue of (iii), to observe that weA;\{O} implies J;‘ (@)Y c aA;CM;;

2.3 REMAREK. ~ As o particular case, we note that if in the region £ the dynamical
system admits for each pe]0, #*[ a unique cycle, then this cycle is attractive and
one obtains the Hopf bifurcation.

2.4 It is now suggestive to provide some examples of bifurcation in R?2. Let n
be an odd integer and a,, a4, ..., a4, be functions of a parameter x>0: consider the
system of two differential equations

&= a0 — Y + a;3(x* + ¥?) + a@w(x® + ¥4+ .. et y)n
¥ =aoy -+ o+ ay(@? -+ ¥ - ay(@? 4 y2)2 -+ ...+ ay(@? 4 y?)n,

2.4.1

which admits the null solution # =y =0.
(i) Suppose now that for any p >0, a.(y),..., a,{y) are such that the following
identity is true:
o+ AZ 4 oo F A2 = — (2 — g2 — 2p)% .. (2 — ku) e — (kb 4+ 1) p],

where n=2k- 1. One has {0) = a{0)==...= 0,,{0) = 0; a,(g) = —1; a,{u) >0
for p>0. It is straightforward to check that for every p >0 the circumferences
C,(u), he{l,..., k- 1}, with the origin as center and radius Vhp, are cycles of 2.4.1.
Introduce now the funection V(w,y) = (#2- y2)/2 whose derivative along the solu-
tion of 2.4.1 ig

Vi, y) = (@4 y) a0+ au(@* + y*) + ... + an(z2 4+ y2)"].

Then it is easy to see that the origin of R* is asymptotically stable for y= 0 and
completely unstable for x> 0. Further, one gets

Vir)=0 if and only if 0 <r<V(k+ 1)p,
Viry=0 if and only if re{0, Vi, V2u, ..., V{k+ L},
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where 7= V/(z® + ¥%. It follows immediately that no other cycles of 2.4.1 exist
except the circumferences C,(u) and that for every g > 0 there exists a unique
get M, ; satisfying conditions (a), (b) of Th. 2.2: the compact ring included between
Oy(p) and O, (u).

{(ii) Suppose that the hypotheses of (i) hold and n=1. Then the system 2.4.1
admits, for any x>0, the unique cycle C,(z) which is attractive.

(iii) Suppose that, for any p>0, ay(u),..., a,(u) are such that:
o+ 0y 2+ a22 .. @2t = — (2 — u)(e—2u) ... (8 —nu) .

It can be easily shown that the circumferences C,(u), he{l,2,...,n}, with the
origin as center and radius vy, are the only cycles of 2.4.1. For any u>0 the
set M ; will be the attractive cycle Cy(u) or, if >3, any compaet ring included be-
tween Cy(u) and O,(u), j€{3,5,...,n}.
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