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Résumé. — On démonire la semi-invariance ou la quasi-invariance des ensembles limites pour
une dquation différeniielle 4 retard, sans supposer Punicité ni la prolongeabilité des solutions,
et sans supposer non plus que la solution engendrant Uensemble limite soil contenue dans
un ensemble compact ou fermé.

1. — Introduetion.

By way of introduction, let ns consider the positive limit set A*(y) of a solu-
tion y(f) of an autonomous differential equation y'= f(y), whose second member is
defined and continuous on some open subset 2 of R*. The invariance of such a limit
set has often been studied in a setting where one assumes the following:

(1) uniqueness of the solution through every initial point;

(2) continuability of every solution up to — oo to the left and -+ co to the
right;

(3) the solution y(t) generating the limit set either is bounded, or remains in
some compact, or at least closed, subset of £ (Amongst many others,
see e.g. J.P. LASALLE [1] and [2].

But it is also well known that the invariance property is true irrespective of
these hypotheses. Of eourse, when A*(y) is considered as a subset no more of £ but
of its closure £ (i.e. when part of A+(y) may belong to the boundary of 2), the in-
variant set is no more A+(y) but AHy) N2 (cf. P. HARTMAN [3]). This observa-
tion is important because for many equations arising from various physical or
technical fields, conditions (2) and (3) at least are not verified. For a conspicuous
example of this fact, see J. L. CorNE and N. ROUCHE [4].

When the invarianece, or some kind of pseudeo-invariance of limit sets has been
studied for situations more general than the one associated with autonomous or-
dinary differential equations, part or all of hypotheses (1) to (3) above have been

(*) Entrata in Redazione il 7 maggio 1975.
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retained, mutatis mutandis, by most authors, for instance J. P. LASALLE [B] (periodic
ordinary differential equations), T. Yosu1ZAWA [6] (asymptotically autonomouns or-
dinary differential equations), R. K. Mirrer [7] (asymptotically almost periodic
ordinary differential equations), F. KaprpPrL [8] (autonomous functional differential
equations), F. KAPPEL [8] (autonomous functional differential equations), R. K. Mir-
LER and G. R. SELL [9] (Volterra integral equations), M. A. Cruz and J. K. HALE [10]
(funetional equations of neutral type), J. K. HALE [11] and M. R. HILDEBRANDO [12]
(retarded differential equations). As an exception, i.e. a paper where none of con-
ditions (1) to (3) has been used, ef. A. STrAUss and J. A. Yorxkz [13] (asympio-
tically autonomons ordinary differential equations).

The same invariance problem has been studied for proecesses, & process being a
kind of non autonomous generalization of a dynamical system: gee C. M. DAFERMOS {14]
a8 well as J. K. HALE, J. P. LaSArne and M. SLEMROD [15]. But (1) and (2) above
are eontained in the axioms of a process, and when a hypothesis like (3) has been
digcarded (C. M. Dafermos, loec. cit.), only positive invariance has been proved.

The only objective of this paper is to give some answer to the following question:
for a retarded ordinary differential equation, what properties of pseudo-invariance
is it possible to prove without assuming uniqueness or continuability, and with or
without a boundedness condition? In particular, can we generalize to retarded dif-
ferential equations the most elegant and seemingly fundamental property quoted
above, saying that A+(y) N Qisinvariant? It seems that the answer is no in general:
to prove more than some kind of positive invariance for the unbounded case, we
shall need a supplementary hypothesis, namely uniform continuity of the solu-
tion w(#).

We think that, as a by-product of our study, some proofs have been simplified
with respect to previous works in this field. As is expected, most of them rely
heavily on Ascoli’s theorem. Following the model given by P. HARTMAN, loec. cit.,
we have tried to reduce them to some straightforward application of a preliminary
theorem on the regularity of solutions. On a study like this one, but regarding non
autonomous Carathéodory differential equations, see N. RoucHE [16].

2. — Notations and general hypotheses.

Most of our notations for retarded equations are standard (J. K. HALE [11]). Let
us recall them rapidly. Let r be some real number, » > 0, and let C= G([—r, 0], R~)
be the real linear vector space of continuous funetions on [—r, 0] into E*. A norm
in R will be chosen arbitrarily and symbolized by |-[|. There will be no possible
confusion if we use the same notation for the norm of uniform convergence on C,
Thus, if e € and 0 designates the argument of ¢, we have

loll = sup ]M(p(e)zf )

fe[—r,0
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If, for a given b>0, »:[g—r, 0+ b] - R*, t+>x(t) is 2 eontinuous function, then
for every te [0, 0+ b] we define the funetion x,€ € by x,(0) = x(t4 0) for fe[—r, 0].
If z is defined only on the half open interval [¢—#, o -+ b[, the x, will be defined
alike for telg, o b[.

Let D= R X {2 where £ is an open set of €, and let F be the class of continuous
functions f: D — R». For some (i, ¢,) €D, we consider hereafter the initial value
problem

(1) z =f(t @),
(2) Ty = @,

where the dot represents a derivative with respect to . We adopt the usual defi-
nition for the solution of this problem. Further, we shall deal with a sequence of
similar problems. If (o, @or) €D for k=1,2, ..., these problems read

(3) &= filt, @) ,
(4) Ty = Py -

We say that the functions f,, k=1,2,..., take closed bounded subsets of D into
bounded sets of R* uniformly with respect to %k, if for every closed bounded subset
Fc D, there exists an m >0 such that, for k=1,2,..., and every {t,p)cF, one
has [[fi(t, @) < m.

3. — Invariance of limit sets of bounded solutions,

The lemma to follow deals with a sequence of solutions corresponding to the
sequence of problems (3), {(4). All these solutions will be defined on one and the same
compact time interval, all will remain in a single closed bounded subset of Q.

Lemwma 1, — In the general hypotheses above, assume that:

(1) @or —>@o as k — oco; for every (t,p)e D and every sequence {@.} such that
Pr—>@ a8 k— cor filt, @) = f(t, ¢) as k — oo;

(i) the functions [ and f;, take closed bounded sets into bounded sets, uniformly
with respect to k.
For some a>0 and b>0, let {x*} be a sequence of solutions of problems (3), (4),
all defined on [{,—r —a,t,- bl; assume that

(iii) there ewists a closed bounded set M C £ such thai for every L and every
te(ty—a,ty+ bl:ate M;

=
to—a

(iv) the sequence {&¥_} is equi-continuous.
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Then

() there ewists a subsequence {&*®|:i=1,2,...} and a function x: [t,—r— a,
1o+ b] — B* such that *°(t) —x(t) as i — oo, uniformly on [ty—r—a,t,-+ b];

(b) x i3 a solution of problem (1), (2);

(e} if there ewists no other solution of problem (1), (2) on [{y— ¥ — a, t,+ b], then
o*(1) = 2(t) as k — oo, uniformly on this intervel.

Proor. - Due to hypothesiz (iii), the x* are uniformly bounded. Since
[te—a,to+ 6] x M is closed and bounded, we know by (ii) and (3) that there exists
an m >0 such that [&*()] <m for every k and te[f,— a,l,- b]. This shows the
equicontinuity of the ax* restrieted to [f,— a, %+ b] and at last, because of {iv), the
equicontinuity of the «* themselves. Thesis (@) results therefore from Ascoli’s theorem.

For ease of notation, let us now write {w*} for the subsequence of thesis (a),
and « for its limit. One has for every % and te[f,—a, %+ b] that

t
2F(t) = @o{0) +ff;c(r, aFydr .

By hypotheses (ii) and (iii), the integrand is bounded, uniformly with respect to k.
Therefore we may pass to the limit for & —» oo, using the dominated convergence
theorem. The equation obtained in this way, i.e.

2(t) = go(0) + [z, @) dr,

along with the fact that z, = @, proves thesis (b). At last, thesis (¢) is obvious.

Some further preliminaries are needed before we can introduce the main defi-
nitions of semi- and quasi-invariance. First, the translate by a given amount ¢ >0
of a function fe F is the function f,€F defined for every ({,¢)eD by £, ¢)=
= f(t+ a, ¢). The following hypotheses on f will be called upon repeatedly:

(A) There exists an [*eF such that for every (1, ¢)cD
Lt ») =@, ¢)
as o — oo and P ->@.

(B) For every sequence {a;} tending to oo, there exists a function f*€ §F and a
subsequence {a,,} such that for every (I, )€ D and every sequence {ps} tending to ¢:

j‘lk(i)(t7 Prw) > ¥, ¢) as i-—>co.
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A function of the type of f* in hypotheses {4) and (B) will be called a limii
function. The corresponding equation & = f*(,x;) will be called & limit equation.
The following observations are important:

1) If f possesses property (4), then for any 7>0 and every (f,¢)eD

fa+1(t7 P) »f*(ta P)
but also
f( 47, 9) >0+ 7, 9)

as @ — oo and g —>g@. Therefore f*(f -+ ¢) = f*(t 4 7, ) and f* doesn’t actually vary
with ¢, In this sense, property (4) characterizes asympiotically autonomous equations.

2) Suppose f(t,p) possesges property (B). One might wonder what kind of
funetion of # it is for fixed ¢. But property (B) implies that for every sequence {a,}
there exists a function f*e & and a subsequence {a,,,} such that for every (¢, ¢) €D

fﬂk(i)(i’ 97) '_>f*(ff; ??) a8 41— co.

Consider the case where this convergence of the f, = towards f* is, for any r€ R,
uniform on {7, oo[. One knows then (cf. M. FRECHET [17]) that f(}, ¢) is the sum of
two functions g(f, ¢) and h(?, ¢) such that, for fixed ¢, ¢ is almost periodic in the
sense of Bohr and A{f, ¢) >0 as t — co. In this case, a function possessing prop-
erty (B) is asymplotically almost periodic. It would probably be interesting to
characterize further the class of functions with property (B).

(3) (4) implies (B).

(4) & being a linear vector space for the usual sum of functions and product
of a funetion by a real scalar, the subset of functions of F verifying hypothesis (4)
is a vector subspace of F. A similar property holds true for (B).

A gubset Fc 2 will be said to be semi-invariant with respect to equation (1),
whose second member is supposed to possess property (A) if, for every (i, @) €
€ B x P, there exist a<Ci,— 7, w>1, and a non continuable solution x: o, o] — R
of the Cauchy problem Z= f*(t,x,), #, = g,, such that, for every t€Ja+7, w[: 2,6 F.

A subset Fc 2 will be said to be quasi-invariant with respect to equation (1),
whose second member is supposed to possess property {(B) if, for every (i, @) €
€ R X ¥, there exist a limit function of the type mentioned in hypothesis (B), two
quantities a<t,—7r, w>17, and a neoncontinuable sclution #: lx, w[ —R* of the
Cauchy problem &= f*({, #), @, = @,, such that, for every ¢t€la+ 7, w[: ;€ F.

In this section, where we study bounded sclutions only, we shall always have
o= — oo and == co. The definition of a semi-invariant set becomes that of an
invariont one in the well known sense, in case equation (1) is autonomous and it is
specified further that all solutions of the Cauchy problem #= f*(t, @), %, = ¢,
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remain in F. This restriction is of course superfluous if uniqueness of solutions is
assumed throughout D.

Let us at last reeall that if »:[{,—r, oof is a solution of problem (1), (2), its
positive limit set (or, in this context, its limst set), written A*+(z), is the set of points
weg for each of which there is a sequence {tk}c[to, oof, such that #, — oo and
z, =y a8 k— oo.

THEOREM 1. — Assume that
(i) f verifies hypothesis (A);
(i) for every sequence {a}C [0, oo[, @y — oo, the functions f and f, lake closed

bounded sets into bounded sets, uniformly with respect to k; let x: [ty — v, oof — E" be
a solution of problem (1), (2) and assume further that

(iii) for some closed bounded set M c 2 and all te[ty, oof: e M;
then A+(x) is semi-invariant.

PRroOF. — Consider any ¢, e A+(z) and t;eR. Let {,}c[t,, ocof be a sequence
such that ; = oo and z, ——>ng as 1 — oco. We shall write x, = @y, and suppose,
without loss of generality, that ¢, —t, > 0 for every 4. Let f* be the limit function
mentioned in hypothesis (4). Thus, for every ({,p)cD and every sequence {p;}
such that ¢, - ¢,

fts;—t;(ts Qﬂz) %f*(@) as 1 — oo.

Putting w"(t):m(i—%—ti—-t:), we observe that () is a solution of the Cauchy
problem

(5) &= fi, -t @),
(6) m;: :mti .

Let @ and b be two arbitrary numbers, ¢ >0, b>0. For ¢ sufficiently large, the
solution just mentioned of problem (b), (6) is defined on [t: —r-—a,ly +b]. The
hypotheses of lemma 1 are verified for the sequence of second members f,_.(l, z,),
the sequence of initial points @, = ¢,; and the sequence of solutions zi(t). In par-
ticular, as it can be supposed that the selutions x‘(t) are defined far enough in the
left direction, hypothesis (iv) of lemma 1 is but a consequence of hypothesis (ii) above.
Of course, the final sequence z(f) has to begin with some ¢ large enough. We con-
clude that there exists on [t: —F—d, to* 4+ 5] a solution «*(f) of the problem
&= (1, mf), mZ:qa:. And since the #?(t) converge uniformly towards x*(f) on
[t; —r—a, ty1 b, every @ belongs to At(x) for te [ty —a,t,-+b]. The thesis of the
theorem results from the fact that @ and b have been chosen arbitrarily.

THEOREM 2. — If one replaces, in theorem 1, property (A) by property (B), then
A ®) is quasi-invariant.

The proof is similar to that of theorem 1.
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4. — A regularity theorem.

The regularity theorem to follow will prove helpful in our attempt, postponed
until next section, to get rid of hypothesis (iii) of theorem 1. Let us first introduce
some preliminaries. Consider, for n=1, 2, ..., the sets

W, — [Q\B(&Q, }Z)] N B0, ),

where 98 is the boundary of 2, B(62,1/n)= {pe U: d(p, 02) < 1/n} representing
the distance from a point to a set in ¢. Further, consider the sets 0, =[—n, +n]x
XW¥,c D. Their union is equal to D.

LeMMa 2. — For every n==1,2,..., there exist b >0 and p>0 such that, for
every (to, @) € Oyt

(@) the cylinder T = [t,,t,+ b]x{p: |@ — @] <@} is contained in O,,,; if
(1) {(POIC} C@na Por — Py AB k- o}

(i1) the f, take closed bounded sets into bounded sets, uniformly with respect fo k; then

(b) for k large enough, all solutions of problems (3), (4) ewist on [ty—r,t,— b] and
(t, 25 e T for tety, t,-+ b].

Proor. — Thesis (a) is obvious. In order to prove that (I, z¥) remains in 7, we
shall need the following expressions for #%(r)= x*({ -+ 7):

t+r
24 T) = gos(0) -|~ffk(a, ddo  ly—t<T<0,
iy
== @oi(T 4 £ — 1) —r<T<t 1.

Let m be a bound on the f;, associated with 6,,,. If necessary, reduce the value
of b in order that

; 2
(7) b<m1n(7,%).

Also choose b small enough in order that

(8) (ITl-“ Ty < b) = (”‘Po(ﬁ} — Po{Ta) H) <

?

WD

which is possible, as ¢, in uniformly continuous. Then choose % large enough to get

l@o— @] < g .
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As long as (t,4%) is in 7, one has

totd

sup ”(po(":) - wlg(r)” < sup ”‘PO(T) - 990(0)” + “‘PO(O) - %k(O)H "|“J‘”fk(0‘7 y) ” do<p.
to

bo— I<T<0 —bT<0

Further

<
S

sup - |lgo(v) — 74(7)]

—r<{T<lg— 4
< sup  {lpo(r) — @olT + t—1to) || + [@olz 4 t —to) — @or(z + t—t} |} < 0.

—r T~
Therefore (¢, #}) cannot come out of T for e[t o4 b].

THEOREM 3. — In the general hypotheses of section 2, assume that:

(i) @or —> @ as k — oo; for every (¢, p)€D and every sequence {p,} such that
@ —>@ as k — oo: filt, gu) > F(t, @) as k — oo;

(ii) the functions f and f, take closed bounded sets into bounded sets, uniformly
with respect to k.

Let @*: [ty—r, oo > R", k=1,2,... be a sequence of solutions of problems (3), (4).
Then there exists an o >>t,, @ non-continuable solution x:[t,—r, w[ — B of prob-
lem (1), (2) and a subsequence x*?, i=1,2,..., such that, for every time-value t, with
< t, << @, #*(E) —>z(t) as i — oo, uniformly on [t,—r, 1]

PRrOOF. —~ Let {@,} be the sequence of sets considered in the lemma. As
(toy @o) € D, there is an integer n, such that (t,, ¢,)€ 6, . Let b, and g, be the length
and radius of the cylinder associated with @, ., in thesis () of lemma 2. This lemma,
along with lemma 1 proves the existence of a solution x(f) of (1), (2) on
[to— 7, t, -+ by] and of a subsequence of the %, again written {#*}, such that &*(t) —x(f)
as k — oo, uniformly on [t,—r,t, -+ b,]. Bither (f, + bi, #(% + b,)) belongs to 6, ,
or it does not. If it does, we start from this point as a new initial point to prove,
by the same argument, the existence of a new subsequence, again written {o*}, with
the same convergence property, but this time on [{,—r, f, - 2b;]. Repeating this
process proves either the existence of a subsequence {z*} converging to x(t) uniformly
on every finite subinterval of [f,— 7, oo[, or allows one to reach a point outside &, .
But this point will be in 6, ,,, and we can repeat in this set what we have done
previously, cheosing of course new dimensions b, and g, for the cylinder. The rest
of the proof is obvious.

REMARK. — It is possible, without substantial modification, to prove a more
general theorem: for instance D would be an arbitrary open set of B x C, variations
of the initial time t, would be considered (a sequence #y, —>1, as k — oo) and the #*
would no more necessarily be continuable up to + co. We refrain here from con-
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sidering such generalizations, because they are not needed to study the invariance
of limit sets, and further, up to small variations, similar theorems exist, for instance
the one given by J. K. HaLr [11]. Here, we could not content ourselves with merely
quoting Hale’s theorem, because it assumes uniqueness of solutions. Further, the
proof presented here is simpler than the usual one: it is a straightforward application
of Ascoli’s theorem and requires no use of Schauder’s fixed point theorem.

5. — Invariance of limit sets of unbounded solutions.

We can now easily prove some positive invarianee properties of the limit set
for a golution which is no more confined in the future to some closed bounded sub-
set of L.

A subset F ¢ £ will be said to be positively semi-invariant with respect to equa-
tion (1), whose second member is supposed to possess property (4), if, for every
(toy o) € R X F, there exists a solution x:[t,—r, o[ - R" of the Cauchy problem
%= f*(, @), ., = @, such that it is not continuable to the right and for every
tet,, w[: z,eF.

A subset F ¢ £2 will be said to be positively quasi-invariant with respect to equa-
tion (1), whose second member is supposed to possess property (B) if, for every
{5, @o) € B X F, there exist a limit function f* of the type mentioned in hypothesis (B)
and a solution #: [} — 7, w[ — R of the Cauchy problem = f*(i, ,), =, = @, such
that, for every te R: z,e F.

THEOREM 4. — Assume that
(i) f wverifies hypothesis (A);
(ii) for every sequence {a} C [0, oo, a; —= co, the functions f and 1., take closed

bounded sets into bownded sets, uniformly with respect to k if; x:[ty— 7, cof —> R is a
solution of problem (1), (2), At{z) N Q is positively semi-invariant.

ProoF. ~ The proof runs like that of theorem 1 up to equations (5) and (6).
Then one observes that the hypotheses of theorem 3 are verified for the sequence
of second members f,_p(t,#,), the sequence of initial points z, = ¢, and the se-
quence of solutions z%(¢). The conclusion follows from theorem 3 in the same way
that of theorem 1 followed from lemma 1.

THEOREM 5. ~ If one replaces, in theorem 4, property (A) by property (B), then
A+(xy N 2 is positively quasi-invariant.

Let us now try to answer a last question: can we find some further hypothesis
enabling us to convert the conclusions of theorems 4 and 5 from positive semi- or
guasi-invariance infto semi- or quasi-invariance? To achieve this, we have to go
back to our treatment of the regularity in section 4 and infroduce some substantial
changes.
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LeMMA 3. — If the sets O, arve defined as in section 4, then for every n=1,2,...,
there exist b>0 and 9 >0 such that, for every (t,, ) €6,:

(@) the cylinder T:[ty—b,t,+ bl x{@: ¢ — @) <o} s contained in @,.; further, if
(1) {gor} COus Por —>@o a8 k — oo;

(ii) for some a >0 and for k large enough, the solutions of problems (3), (4)
exist and are uniformly equi-continuous on [ty— 1 —a,l, 1 al; then

(b) for k large enough, (t,z¥)e T for te[t,—b,t,+ b].
PRrROOF. ~ Thesis (¢) is obvious. Let us suppose, without loss of generality, that

all the x* exist on [fg—r—b,4,--b]. Choose b small enough, in order that for
any k and &, f;efly—r—b, %+ b]

(Jta— 2] < 20) =>(Ha?"(t1) — @k(t,) | < g) ,
which is possible using hypothesis (ii), Then of course

[otir) — ()] < £

for t, —b<t<ty,+ b and —r <t <0, and therefore
“wfn_b—w’ﬂ}<g for to—b<t<ty+b.

If one chooses k large enough to get |@o— @o:| < 0/2 then (t,z,)e T for te[i,—b, 1,4 b]

THEOREM 6. — In the general hypotheses of soction 2, assume that:

(i) @or =@y @s k — oo} for every (i, p)c D and every sequence {p,} such that
Qr—>@ as k — oot fi(t, ¢r) > f(t, ) as b — oo

(ii) the functions | and f, take closed bounded sets into bounded sets uniformly
with respect to k.

Let x%: [ty—r — a3, oo — R, k=1,2, ..., be a sequence of solutions of problems (3),
(4) such that a, — co as k ~> oo and the a* are uniformly equi-continuous. Then there
ewist a<ty—7r, w>1ly, & non continuable solution x: Jo, w[ — B of problem (1), (2)
and o subsequence x*V, i=1,2, ..., such that, for every time values ty, t, with «<t; <
<ty < w, D) —x(t) as i —> oo, uniformly on [t 1,].

PRrOOF. ~ The proof is similar to that of theorem 3, but here continuation is
possible to the left, as well as to the right, using lemmas 1 and 3.

Now we get the following theorems on semi- and quasi-invariance of limit sets
for unbounded solutions.
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THEOREM 7. — If one adds to the hypotheses of thecorem 4 that x is uniformly con-
tinuous, then AHx) N L2 is semi-invariant.

ProoF, — This is due to the fact that, if » is uniformly continuous, the sequence
@i(t) = @(t — 1, — ;) is uniformly equi-continuous.

If f is bounded, then of course every solution of problem (1), (2) is uniformly
continuous. Naturally, one also gets the following theorem on quasi-invariance.

THEOREM 8. — If one adds to the hypotheses of theorem b that x is uniformly con-
tinuous, then At(x) N Q is quasi-invariant.
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