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A D ~ I O  G~A~PI, pour son 70-~me anniversMre 

R 6 s u m 6 .  - On ddmontre la semi.invarianee ou la quasi-inva~iance des ensembles limites pour 
une d~uation di]]drentielle ~ retard, sans supposer l'unicitd n i  la protongeabilit~ des solutions, 
et sans supposer non pl~ts que la solution engendrant l'ensemble l i ~ t c  soit contenue dans 
un ensemble compact ou ]ermd. 

1 .  - I n t r o d u c t i o n .  

B y  way  of in t roduct ion,  let  us consider the  posi t ive  l imit  set  A+(y) of a solu- 

t ion y(t)  of an  au tonomous  differential  equat ion  y'----](y), whose second m e m b e r  is 
defined and  cont inuous on some open subset  to of R ~. The  invar iance  of such a l imit  

set  has  of ten been s tudied in a se t t ing  where one assumes  the  following: 

(1) uniqueness  of the  solut ion th rough  eve ry  init ial  po in t ;  

(2) cont inuabi l i ty  of every  solution up  to - -  ~ to the  left  and  -~ ~ to the  

r igh t ;  

(3) the  solution y(t) genera t ing  ~he l imit  set e i ther  is bounded,  or remains  in 

some compac t ,  or a t  leas t  closed, subset  of t0 (Amongs t  m a n y  others ,  

see e . g . J . P .  LASALLE [ t ]  and  [2]. 

Bu t  it  is also well known  t h a t  the  invar iance  p r o p e r t y  is t rue  i r respect ive  of 

these  hypotheses .  Of course, when  A+(y) is considered as a subset  no more  of to b u t  
of its closure ~ (i.e. when p a r t  of A+(y) m a y  belong to the  b o u n d a r y  of to), the  in- 
v a r i a n t  set  is no more  A+(y) bu t  A+(y) (~  to (cf. P.  ]:IART~AN [3]). This observa-  
t ion  is i m p o r t a n t  because  for  m a n y  equat ions  arising f r o m  var ious  physica l  or 

technical  fields, condit ions (2) and  (3) a t  least  are  not  verified. For  a conspicuous 
example  of this  fact ,  see J .  L. C o ~ E  and  ~ .  ]~0VCHE [4]. 

W h e n  the  invar ianee ,  or some k ind  of pseudo- invar iance  of l imi t  sets has  been  

s tudied  for  s i tuat ions  more  general  t h a n  the  one associa ted with  au tonomous  or- 
d inary  differential  equat ions,  p a r t  or all  of hypotheses  (1) to (3) ~bove have  been 

(*) Entrata in Redazione il 7 maggio 1975. 
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re ta ined,  mutatis mutandis, by  most  authors ,  for instance J.  P. ]-JASALLE [5] (periodic 
ord inary  differentiM equations),  T. Y0SmZAWA [6] (asymptot ical ly  autonomous or- 
d inary  differentiM equations),  t%. K.  MILLE~ [7] (asymptot ical ly  almost  periodic 
ord inary  differential  equations),  F.  KAPPEL [8] (autonomous funct ional  differential  
equations),  F. KAPPEL [8] (autonomous funct ionM differential  equations),  1%. K.  MIL- 
LE~ and  G. 1%. SELL [9] (Volterra in tegral  equations),  M. A. C~LTz and  J .  K.  HALE [10] 
(functionM equat ions of neu t ra l  type) ,  J .  K.  HALE [11] and M. 1%. HILDEB~A~])O [12] 
( re tarded differential  equations).  As an exception,  i.e. a paper  where none of con- 
di t ions (t) to  (3) has been used, cf. A. STnAVSS and J .  A. YORKE [13] (asympto- 
t ical ly autonomous  ord inary  differentiM equations).  

The  same invar iance problem has been s tudied for processes, a process being a 
k ind of non autonomous  generalizat ion of a dynamica l  sys tem:  see C. M. DAFn~OS [14] 
aS well as J .  K.  HALE, g. P. LASALLE and M. SLEMROD [15]. But  (1) and (2) above 
are conta ined in the  axioms of a process, and when a hypothes is  like (3) has been 
discarded (C. M. Dafermos,  loc. cir.), only posi t ive invar iance has been proved.  

The only object ive of this  paper  is to give some answer to the  following quest ion:  
for a re ta rded  ord inary  differential  equation,  wha t  propert ies  of pseudo-invariance 
is it possible to prove  wi thout  assuming uniqueness or continnabil i ty,  and with or 
wi thout  a boundedness  condit ion? In  part icular ,  can we generalize to  r e t a rded  dif- 
ferent ia l  equat ions the  most  elegant and seemingly fundamenta l  p roper ty  quoted 
above,  saying tha t  A+(y) n t~ is invar iant?  I t  seems t h a t  the  answer is no in general: 
to  prove  more  than  some kind of posi t ive invariance for the  unbounded  case, we 
shall need a supplementary  hypothesis ,  namely  uni form cont inui ty  of the  solu- 

t ion  y(t). 
We th ink  tha t ,  as a by-produc t  of our s tudy,  some proofs have been simplified 

with respect  to  previous works in this field. As is expected,  most  of t hem rely 
heavi ly  on Ascoli's theorem.  Following the  model  given b y  P.  H A i T i A n ,  loc. cir., 
we have t r ied  to  reduce t h e m  to some s t ra ightforward applicat ion of a pre l iminary 
theo rem on the  regular i ty  of solutions. On a s tudy  like this  one, bu t  regarding non 
autonomous Carath6odory differential  equations,  see I% R o v c ~ E  [16]. 

2. - Notat ions  and general  hypotheses .  

Most of our notat ions  for r e t a rded  equations are s tandard  (J. K.  HALE [11]). Let  
US recall  t hem rapidly.  Le t  r be some real  number ,  r > 0, and let  C = C([-- r, 0], R =) 
be tile real  l inear vec tor  space of cont inuous funct ions on [-- r,  0] into R% A norm 
in R ~ will be chosen arbi t rar i ly  and symbolized b y  H" [[" There will be no possible 
confusion if we use the  same nota t ion  for the  norm of uni form convergence on C. 
Thus~ if ~ ~ C and 0 designates the  a rgument  of 9, we have 

[I ll = s u p  l! (0t!l. 
0~[--T,0] 
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I f ,  for a g iven b>O,  x: [a- -r ,  a +  b] --->R ~, t~->x(t) is a cont inuous funct ion,  t hen  

for every  t ~ [a, (r + b] we define t he  func t ion  x t ~ C b y  xt(O) : x(t + O) for 0 E [-- r, 0]. 
I f  x is defined only on the  half  open in t e rva l  [~ - -  r, a + b[, the  xt will be  defined 

al ike for t ~ [g, (r -~ b[. 
L e t  D ~ R × .Q where  $2 is an  open set  of C, and  let  :Y be the  class of cont inuous 

funct ions  ]: D - > R %  For  some ( t o , % ) e D ,  we consider he rea f t e r  t he  ini t ial  va lue  

p r o b l e m  

(1) ~ = ! (t, x , ) ,  

(2) Xto = % ,  

where the  dot represents  a de r iva t ive  wi th  respect  to t. We adop t  the  usual  defi- 
n i t ion for the  solution of this  p roblem.  Fu r the r ,  we shull deal  wi th  a sequence of 

s imilar  problems.  I f  (to~, Fo~)ED for k----1,2,  . . . ,  these  problems read  

(3) ~ = f~(t, x~) ,  

(4) x ~ 
to ~ ~ O k  " 

We say t ha t  the  funct ions  ]7~, k =  1 , 2 , . . . ,  take closed bounded subsets o] D into 
bounded sets o] R ~ uni fo rmly  wi th  respec t  to  k, if for every  closed bounded  subset  
F c D, the re  exis ts  an  m > 0 such t h a t ,  for  k = 1, 2, . . . ,  and  every  (t, ~ ) ~ F ,  one 

has  I!t~(t, ~)II < m.  

3.  - I n v a r i a n c e  o f  l i m i t  sets  o f  b o u n d e d  so lut ions .  

The l e m m a  to follow deals wi th  a sequence of solutions corresponding to the  
sequence of p roblems (3), (4). All these  solutions will be  defined on one and  the  same 
compac t  t i m e  interval ,  all will r ema in  in a single closed bounded  subset  of ~ .  

L E M ~  1. - In  the general hypotheses above, assume that: 

(i) %k--~q~o as k - ~ - ~ ;  ]or every ( t , ~ ) ~ D  and every sequence {~k} such that 

(ii) the ]unctions ] and fk take closed bounded sets into bounded sets, uni]ormly 
with respect to k. 

For some a~O and b >O, let {x ~} be a sequence o] solutions o] problems (3), (4), 
all defined on [ t o - - r - -a ,  to~-b]; assume that 

(iii) there exists a closed bounded set M c ~  such that ]or every k and every 
t ~ [ t o -  a,  to + b]: x~ c M ;  

X ~ (iv) the sequence { ~o_~} is equi-continuous. 
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Then 

(a) there exists a subsequeuce {x~(*)]: i :  1, 2, ...} and a ]unction x: [ t o - - r - - a ,  
to ~ b] -->R" such that x~(~)(t) --~x(t) as i ---> ~ ,  uniformly on [to -- r -- a, to q- b]; 

(b) x is a solution o] problem (1), (2); 

(c) i] there exists no other solution o] problem (1), (2) on [ t o - - r - - a ,  to+ b], then 
xk(t) -->x(t) as I¢ -+ ~ ,  uniformly on this interval. 

P~OOF. - Due to  hypothesis  (iii), the  x k are un i formly  bounded.  Since 

[to --  a, t o ~ b] × M is closed and bounded,  we know b y  (ii) snd  (3) t h a t  the re  exists 
~n m > 0 such t h a t  [l~(t) tt ~ m  for every  k ~nd t e [to-- a, to ~- b]. This shows the  
equicont inui ty  of the  x ~ res t r ic ted  to  [ to--a ,  to+ b] and  ~t ta, st, because of (iv), the  
equicont inui ty  of the  x ~ themselves.  Thesis (a) results therefore  f rom Ascoli's theorem.  

For  e~se of nota t ion,  let  us now write {x ~} for the  subsequence of thesis (a), 
and x for its l imit .  One has for every  /~ and t e [ to- -a ,  to + b] t h a t  

t 

x~(t) = %~(o) ÷ f ]~(% x~) d~. 
to 

By  hypotheses  (ii) and  (iii), the  in tegrand is bounded,  un i formly  with respect  to k. 
Therefore  we may  pass to the  l imit  for k --> c~, using the  domina ted  convergence 
theorem.  The equat ion obta ined in this w~y, i.e. 

t 

x(t) = (i%(o) + f l (~ ,  x~) d~, 
to 

along with the  fact  t ha t  xt0----%, proves thesis (b). At last, thesis (c) is obvious. 
Some fu r the r  preliminaries axe needed before we can int roduce the  main deft- 

nit ions of semi- and qttasi-invari~nce. Firs t ,  the  translate b y  s given ~mount  a > 0 
of a funct ion ] e  5 r is the  funct ion  ]o ~ -  defined for every  (t, ~ ) e D  by  f~(t, ~)---- 
--= ](t ~ a, ~). The following hypotheses  on ] will be called upon repeatedly :  

(A) There exists an ]* ~ Y such that /or every (t, ~ ) e D  

1o(t, ~) - >  ]*( t ,  ~) 

as a--> oo and y~-~.% 

(B) For every sequence {a~} tending to 0% there exists a ]unction ]* e ~ and a 
subsequence {ak(~) } such that ]or every (t, q~)~D and every sequence {(p,} tending to q~: 

]~(o( t ,  ~(~))  --> ?*(t, qg) a s  i --> o o .  



~ICOLAS ROVCHE: The invariance o] limit sets, etc. 129 

A funct ion  of the  t ype  of ]* in hypotheses  (A) and  (B) will be called a limit 
]unction. The corresponding equat ion 2 ~ ]*(t, xt) will be called a limit equation. 
The following observat ions are impor tan t :  

1) I f  ] possesses p rope r ty  (A), t h e n  for any  ~ > 0  and every  (t,c?)~D 

bu t  also 

]o+.(t, ~) -+ t*(t, ~) 

to(t + ~, ~) ----> t*(t + ~, ~) 

as a --> oo and F -+ ~. Therefore  ]*(t ~ ~v) = ]*(t ~ % ~v) and ]* doesn ' t  ac tual ly  v a ry  
with t. In  this sense, p rope r ty  (A) characterizes asymptotically autonomous equations. 

2) Suppose ](t~ ~0) possesses p rope r ty  (B). One might  wonder  what  kind of 
funct ion of t i t  is for  fixed ~. B u t  p rope r ty  (B) implies t h a t  for  eve ry  sequence {a~¢} 
the re  exists a func t ion  ]* ~ 5 ~ and a subsequence {a~(~)} such t h a t  for  every  (t, q~) ~ D 

]~.~(t ,  cp) ---> ]*( t ,  ~)  a s  i ~ o o .  

Consider the  case where this  convergence of t h e  ]~(~ towards  ]* is, for a n y  T ~R,  
uni form on [T, c~[. One knows t h e n  (cf. M. Fn~CHET [17]) t h a t  ](t, ~) is the  sum of 
two funct ions g(t, q~) and h(t, ~) such tha t ,  for fixed % g is a lmost  periodic in the  
sense of Bohr  and h(t, q~) -~.0 as t - ,  c~. In  this case, a funct ion possessing prop- 
e r ty  (B) is asymptotically almost periodic. I t  would probably  be interest ing to 
character ize fu r the r  the  class of funct ions with p roper ty  (B). 

(3) (A) impl ie s  (B). 

(4) ~- being a linear vector  space for the  usual  sum of functions and product  
of a funct ion by  a real  scalar, the  subset of funct ions of 2- verifying hypothesis  (A) 
is a vector  subspace of 5 v. A similar p rope r ty  holds t rue  for (B). 

A subset /~czQ will be said to  be semi-invariant with respect  to equat ion (1), 
whose second member  is supposed to  possess p rope r ty  (A) if, for  every  (to, ~o) 
~ R × F ,  the re  exis t  z¢< to--r ,  oJ> to and  a non  cont inuable  solution x: ]c¢, 09[-~R ~ 
of the  Cauchy problem ~ =  ]*(t, x~), Xto= ~'o, such tha t ,  for every  t e  ]~-~ r, co[: x ~ F .  

A subset  /~c .Q will be said to  be quasi-inw~riant with respect  to  equat ion (1), 
whose second member  is supposed to  possess p roper ty  (B) if, for every  (to, ~vo) 
e R×_F~ the re  exist  a l imit  funct ion of the  t y p e  ment ioned  in hypothesis  (B), two 
quant i t ies  ~ < t o - - r ,  co>to  ~nd a noneont inuable  solution x:  ]~  w [ - + R  ~ of the  
Cauchy problem 2 =  ]*(t, x), xt° = %, such that~ for every  t e  ] ~ +  r~ w[: x~e/~. 

In  this seetion~ where  we s tudy  bonnded  solutions only, we shall always have 
- - ~ -  c~ and  ~ = ~ .  The definition of a semi- invariant  set becomes t h a t  of an 

invariant one in the  well known sense, in case equat ion (1) is autonomous and it is 
specified fu r the r  t ha t  all solutions of the  Cauchy problem 2 =  ]*(t, xt), xto-~ % 
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remain  in F.  This res t r ic t ion is of course superfluous if uniqueness of solutions is 
assumed th roughout  D. 

Le t  us a t  last  recall  t h a t  if x: [to--r,  c~[ is a solution of problem (1)7 (2), its 
positive l imit set (or, in this  context ,  its limit set), wri t ten  A+{x), is the  set of points 
~E ~ for each of which there  is a sequence {tT,} c [to, oo[, such t h a t  t~0-~ co and 
x~ -+~0 as k - +  pp. 

THEOREM 1. -- Assume that 

(i) ] veri]ies hypothesis (A); 

(it) ]or every sequence (ak} c [0, co[, a T~ -+ co, the ]unctions ] and ]~ take closed 
bounded sets into bounded sets, uni]ormly with respect to k; let x: [to--r, o o [ - ~ R  ~ be 
a solution o] problem (1)~ (2) and assume ]urther that 

(iii) ]or some closed bounded set M c l 2  and all te[to,  o o [ : x t e M ;  
then A+(x) is semi-invariant. 

Pl~ooF. - Consider any  ~* e A+(x) a.nd t* e R. Le t  (t~} c [to, col be a sequence 
* 

such t ha t  t~-+ co and  xt , -+~o as i - +  o¢. We shall wri te  xt, = ~0o~ and  suppose, 
wi thout  loss of generali ty,  t ha t  ti -- t* > 0 for every  i. Le t  J* be the  limit funct ion 
ment ioned  in hypothesis  (A). Thus,  for every  (t, q ) )eD and  every  sequence (~} 

such that ~-->9, 

]._,:(t,  ~ )  -+]*(~)  as i -+ ~ .  

P u t t i n g  x*(t) x(t + t, * - - to)  , we observe t h a t  x~(t) is ~ solution of the  Cauchy 

p rob lem 

(5) 5, =/ , ,_~:(t ,  x~), 

(6) ~ :  = x , , .  

Le t  a and  b be two a rb i t r a ry  numbers~ a ~  0, b ~ 0. For  i sufficiently large, the  
solution just  ment ioned  of problem (5), (6) is defined oll [ t * - - r - - a ,  t * +  b]. The 
hypotheses  of l emma 1 are verified for the  sequence of second members  Jt~_t:(t, xt), 
the  sequence of initial points x t , ~  9o~ and the  sequence of solutions x~(t). In  par- 
t icular,  as it  can be supposed t h a t  the  solutions x~(t) are defined far  enough in the  
lef t  direction, hypothesis  (iv) of l emma I is bu t  a consequence of hypothesis  (it) above. 
Of cours% the  final sequence x~(t) has to begin with some i large enough. We con- 
clude t h a t  there  exists on [t*-- r - -  a, t* + b] a solution x*(t) of the  problem 
5*-= ]*(t, x*), Xto-= 90. And since the  x~(t) converge uni formly  towards x*(t) on 
[ t * - - r - -  a, t o +  b], every  x* belongs to  A+(x ) fo r  t e [t o - a ,  t * +  b]. The thesis of the 
theorem results  f rom the  fact  t h a t  a and  b have been chosen arbi trar i ly.  

THEOI~E)I 2. - -  1I one replaces, in theorem 1, property (A) by property (B), then 
A+(x) is quasi-invariant.  

The proof is similar to t ha t  of theorem 1. 
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4. - A regular i ty  theorem.  

The regulari ty theorem to follow will prove helpful  in our a t tempt ,  pos tponed 
unti l  next  section, to get rid of hypothesis  (iii) of theorem 1. Let  us first introduce 
some preliminaries. Consider, for n =  1 ,2 , . . . ,  the  sets 

[ (1)] 
T,~--- Q ~ B  ~Q, n ~ B(O' n) ' 

where ~/2 is the  bounda ry  of [2, B ( ~ ,  1 / n ) =  {~e  C: d(% ~.Q)< 1/n} represent ing 
the distance from u point  to a set in C. Fur ther ,  consider the  sets O ~ =  [--n, + n ]  × 
× T~ c D. Their union is equal to D. 

LE~IMA 2. - - F o r  every n = = 1 , 2 , . . . ,  there exist b > 0  and ~ > 0  such that, for 
every (to, %) ~ 0 , :  

(a) the cylinder T = [to, to + b] × {~0: ]]~0-- %H <e} is contained in O~+~; i] 

(if) the ]7~ take closed bounded sets into bounded sets, uni]ormly with respect to k; the~ 

(b) ]or k large enough, all solutions o] problems (3), (4) exist on [to--r, to+ b] and 
(t, x~;) e T / o r  t e [to, to + b]. 

P~ooF. - Thesis (a) is obvious.  In  order to prove tha t  (t, x~) rema.ins in T, we 
shall need the following expressions for x~(T)= x~(t + v): 

t+v 

÷ v) := %~:(o) ÷ j h ( ~ ,  x~)da to-- t < ~ < O, xk(t 

to 

= cfok(~ + t -- to) - -  r < V < t o  -- t .  

Let  m be a bound on tile ]~:, associated with O~+1. 
of b in order tha t  

(7) b < rain (r, 3~--~ ) . 

I f  necessary, reduce the value 

Also choose b small enough in order that 

(8) (1~1- ~2!< b) ~ (tl~o(q)- %(~)ll) < 5'  

which is possible, as % in uniformly continuous.  Then choose k large enongh to get 
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As long as (t, x~) is in T,  one has  

to÷b 

II,~o(~)- x~(-o It < sup II~o(~)- q~o(O)ll + I1~o(O)- ~o,~(o)lt +fllf,~(,,, x~)I[ do,< sup 
to-- t~v~O - - b ~ O  to 

F u r t h e r  

sup llVo(~)- x~(~)ll < 
--r<~v<~to--t 

< sup {11~0(~) - ~o(~ + t -  to)I] + I[~o(~ + t -  to) - ~o~(~ + t -  to)II} < ~. 
- r<~ , :<~ to -  t 

Therefore  (t,x~) canno t  come out  of T for t e  [to, to-F b]. 

THEORE~ 3. - I n  the general hypotheses of section 2, assume that: 

(i) ~o~-->~o as k--> oo; for every (t, 9~)ED and  every sequence {~} such that 

~ ~q~ as k -+ o~: f~(t, ~ )  ~ f(t, ~) as k -+ o~; 

(ii) the funct ions f and  f~ take closed bounded sets into bounded sets, uni]ormly 

with respect to k. 

.Let x~: [ to--r ,  c~[ ->R% k - ~  1, 2, ... be a sequence of solutions of problems (3), (4). 
Then there exists an (9 ~ to, a non-eontinuable solution x: [to-- r, ~o[ --> R ~ of prob- 
lem (1), (2) and  a subsequence x k(~), i = 1, 2, . . . ,  such that, for every t ime-value tl with 

to<  t~< (9, xk(~)(t) -->x(t) as i -~ 0% un i formly  on [ to--r ,  t~]. 

P ~ o o F . -  Le t  {On} be the  sequence of sets considered in the  l emma.  As 

(to, q~o) ED,  the re  is an  integer  no such t h a t  (to, ~o) ~ 0.o. Le t  bl and  ~1 be the  length 
und radius  of the  cyl inder  associa ted with  0~.+1 in thesis  (a) of l e m m a  2. This l emma,  

a long wi th  l emm~ 1 proves  the  exis tence of a solution x(t) of (1), (2) on 

[to - -  r, to ~- b~] and  of a subseqnence of the  x k, agMn wr i t t en  {xk}, such t h a t  x~(t) -+x(t) 

as k --> 0% un i fo rmly  on [ to--r ,  t o +  bl]. Ei the r  ( to+ bl, X(to-~ b~)) belongs to 0~o, 
or it  does not .  I f  i t  does, we s t a r t  f rom this  poin t  as a new init ial  poin t  to prove,  

b y  the  same a rgumen t ,  the  exis tence of a new subsequence,  again  wr i t t en  {x~}, with 
the  same convergence p roper ty ,  bu t  this t ime  on [ t o -  r, to-[-2b~]. Repea t ing  this 
process proves  ei ther  the  exis tence of u subsequence (x ~} converging to x(t) uni formly  
on every  finite sub in te rva l  of I r e - - r ,  ~ [ ,  or allows one to reach a poin t  outs ide 0 . .  
But  this poin t  will  be in O~o+~, and  we can repea t  in this set wha t  we have  done 
previous ly ,  choosing of course new dimensions b2 and  ~o 2 for the  cylinder.  The res t  

of the  proof  is obvious.  

R E ~ A ~ : .  - I t  is possible,  wi thou t  subs tan t i a l  modificat ion,  to  p rove  a more  
general  t heo rem:  for ins tance  D would be an a r b i t r a r y  open set of R × C, var ia t ions  
of the  ini t ial  t ime  to would be considered (a sequence t0~ -+ to as k -+ oo) and  the  x ~ 
would no more  necessar i ly  be  cont innable  up to q- oo. We refrMn here f rom con- 
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sidering such generalizations,  because they  are not  needed to  s tudy  the  invarianee 
of l imit  sets, and  fur ther ,  up  to small variat ions,  similar theorems exist,  for instance 
the  one given b y  J .  K.  HALE [1:1]. Here ,  we could not  con ten t  ourselves with mere ly  
quot ing Hale 's  theorem,  because it  assumes uniqueness of solutions. Fur the r ,  the  
proof presented  here  is simpler t h a n  the  usual one:  i t  is a s t ra ight forward  application 
of Ascoli's theorem and requires no use of SchaudeFs fixed point  theorem.  

5.  - I n v a r i a n c e  o f  l i m i t  s e t s  o f  u n b o u n d e d  s o l u t i o n s .  

We can now easily p rove  some posi t ive invariance propert ies  of the  l imit  set 
for a solution which is no more  confined in the  fu tu re  to  some closed bounded  sub- 
set of ~ .  

A subset  F c  ~ will be said to be positively semi-invariant with respect  to equa- 
t ion (1), whose second member  is supposed to possess p rope r ty  (A), if, for every  
(to, ~o) e R × F ,  there  exists a solution x: [to-- r~ co[ - > / t  ~ of the  Cauchy problem 
2 =  ]*(t, xt), Xto= % such t h a t  it  is no t  eont inuable  to the  r ight  and for every  
t e  [to, ~[: x~eF.  

A subset  F c I2 will be said to be positively quasi-invariant with respect  to equa- 
t ion  (1), whose second member  is supposed to  possess p ro p e r t y  (B) if, for every  
(to, %) e R ×F, the re  exist  ~ l imit  funct ion ]* of the  type  ment ioned  in hypothesis  (B) 
and  a solution x: [to--r, co[ -->R ~ of the  Cauehy problem 2 =  f*(t, xt), x t =  % such 
tha t ,  for eve ry  t e / ~ :  x t e F .  

THEOREM 4. -- Assume that 

(i) f verifies hypothesis (A); 

(if) /or every sequence (ak} c [0, c~[, al~-~-co, the /unctions ] and /~ take closed 
bounded sets into bounded sets, uni]ormly with respect to k i]; x: [ to-- r ,  ~[-+R"  is a 
solution o/problem (1)~ (2), A+(x) N Q is positively semi-invariant. 

P~ooF.  - The proof  runs  like t h a t  of theorem 1 up to  equat ions {5) and (6). 
Then  one observes t h a t  the  hypotheses  of theorem 3 are verified for the  sequence 
of second members  /~_~(t, xt), the  sequence of initial points x,, ~--~o~ and  the  se- 
quence of solutions x~(t). The conclusion follows f rom theorem 3 in the same way 
t ha t  of theorem 1 followed f rom lemma 1. 

THEOREIK 5. - I] one replaces, in theorem 4, property (A) by property (B), then 
A+(x) n ~ is positively quasi-invariant. 

Let  us now t r y  to answer a last  quest ion:  can we find some fu r the r  hypothesis  
enabling us to  conver t  the  conclusions of theorems 4 and  5 f rom posit ive semi- or 
quasi-invariance into semi- or quasi-invariance? To achieve this, we have to go 
back to our t r e a t m e n t  of the  regular i ty  in section 4 and  int roduce some substant ia l  
changes. 
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LE~II~IA 3. - I f  the sets O, are defined as in section 4, then for every n -~ 1, 2, . . . ,  
there exist b ~ 0 and ~ ~ 0 such that, for every (to, Fo) ~ O,,: 

(a) the cylinder T: [to-- b, t o +  b] × {~: ]l~-- %11 <e} is contained in O~+~; further, i/  

(i) {~o~} c o~,  ~o~ - ~ o  as ~ -~ co; 

(ii) for some a > O and for k large enough, the solutions o] problems (3), (~) 
exist and. are uniformly equi-continuous on [to-- r - -  a, to-~ a]; then 

(b) for k large enough~ (t, x~) e T ]or t e [to-- b, to ~- b]. 

P~OoF. - Thesis (a) is obvious. Let  us suppose, without  loss of generality, tha t  
all the  x ~ exist on [to-- r - -  b, to + b]. Choose b small enough, in  order tha t  for 
any  k and t~, t ~ e [ t o - - r - - b ,  t o+  b] 

(,t~--t~I< 2b) ::>(llx~(t~)--x~(t~)II < ~) , 

which is possible using hypothesis (ii). Then of course 

9 

for to--  b < t < t o - ~  b and - - r < ~ < 0 ,  and  therefore 

x~ 9 for t o - - b ~ t < t o ~ - b  lI x Ii < 

I f  one chooses k large enough to get  [[~o--q~okII < ~/2 then  (t, xt)e T for re[to--b,  to+ b] 

THEOREm[ 6. - I n  the general hypotheses of section 2, assume that: 

(i) ~ 0 ~ - ~ o  as k --> ~ ;  for every (t, cp)eD and every sequence {~1~} such that 

(ii) the functions f and f~¢ take closed bounded sets into bounded sets uniformly 

with respect to k. 

Let xk: [to -- r -- a~, co[ ~ R% k : 1, 2, . . . ,  be a sequence of solutions of problems (3), 
(4) such that al~ -> co as k '-> c~ and the x k are uniformly equi-continuous. Then there 

exist ~ <  to- -r ,  co ~to~ a non continuable solution x: ]~, ~[-->R ~ of problem (1), (2) 
and a subsequenee x ~(~), i : 1~ 2, ...~ such that, for every time values t~, t~ with ~ t~< 

< t2< ~,  x~)(t) -->x(t) as i -~ co, uniformly on [t~, t~]. 

PI~OOF. - The proof is similar to t ha t  of theorem 3, bu t  here continuat ion is 
possible to the left,  as well as to the right,  using lemmas 1 and 3. 

17ow we get the  following theorems on semi- and  quasi-invariance of limit sets 
for unbounded  solutions. 
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T g n o ~ n ~  7. -- I] one adds to the hypotheses of theorem 4 that x is uni]ormty con- 

tinuous, then A+(x) (5 ~ is semi-invariant.  

PROOF. -- This is due to the  fact  tha t ,  if x is uni formly continuous,  the sequence 

x~(t) -~ x(t -- t~ -- t*) is un i formly  cqui-continuous.  

I f  ] is bounded,  then  of course every  solution of problem (1), (2) is uni formly  

continuous.  ~ t u r a ,  lly, one ulso gets the  following theorem on qu~si-invari~nce. 

T~EOlCE~I 8. - I]  one adds to the hypotheses o] theorem 5 that x is uni]ormly con- 

tinuous, then A+(x) ~ Y2 is quasi-invariant. 
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