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Abstract: We construct infinite-dimensional Wiener processes with interactions by 
constructing specific quasi-regular Dirichlet forms. Our assumptions are very mild; 
accordingly, our results can be applied to singular interactions such as hard core 
potentials, Lennard-Jones type potentials, and Dyson's modeL We construct non
equilibrium dynamics. 

0. Introduction 

Infinite-dimensional Wiener processes with interactions are diffusion processes with 
state space (JR d )N (or 8, where 8 is the set of all locally finite configurations 
of particles on lR d) with interactions. When interactions come from a smooth pair 
potential w and martingale terms have constant coefficients 1, these processes are 
described by the following SDE; 

. . 00 1 . j 
dX:=dB;- I: -\lw(X!-Xi)dt (1:;:;;i<oo), (0.1) 

j=l,j*i 2 

where B; ( 1 :;:;; i < oo) are independent Brownian motion on lR d, and (/) : lR d --" JR. 
The associated 8-valued process is 

00 

X 1 =I: bx; (ba is the delta measure at a.) (0.2) 
i=] I 

The study of (0.1) has been initiated by Lang [La1, 2]. He solved (0.1) under 
suitable conditions on interactions for a set of initial configurations. Shiga [Sh] 
completed a gap of Lang's proof. Initial configurations for which (0.1) is solved 
were specified by Lippner [Li] and Rost [Ro] ford= 1, and Fritz [F] ford :;:;; 4. 

Since Lang used SDE approach, a smoothness of (/) was cruciaL He assumed: 

(L.1) (/) E cg (lR d), that is, (/) is finite range and of class C3 . 

(L.2) (/) is super stable in the sense of Ruelle. 

As a consequence some interesting examples were excluded. 
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The purpose of this paper is to construct infinite-dimensional Wiener processes 
with interactions by constructing specific quasi-regular Dirichlet forms on a space O 
of configurations of infinitely many particles. The forms are governed by probability 
measures # on O representing interactions of particles. We restrict our attention to 
O-valued processes like (0.2). One might construct labeled particle dynamics (0.1) 
from O-valued processes (0.2) as functionals of  Xt. We will not pursue this here. 

The advantage of our approach is the following: 1) Our assumptions are quite 
mild and weaker than Lang's assumptions. In our situation V ~  may be distribu- 
tions. In particular our results can be applied to singular interactions such as hard 
core potentials, Lermard-Jones 6-12 potentials, and Dyson's model [Sp2]. 2) Non- 
equilibrium dynamics can be constructed in the sense that we construct a family of  
diffusion measures {lP0}0~o starting from each 0 E O; however, the uniqueness of  
diffusion {IP0}0~o for a given equilibrium state # holds only except for a set ~2~ 
of capacity zero. See also Remark (4) (stated after Theorem 3) about a remaining 
problem of identification in Lang's case. 

We begin with some notations. A Radon measure 0 is called a locally finite con- 
figuration if 0 is of  the form 0 = ~n6x,.  Here {xn} is a finite or infinite sequence 
in IRa with no cluster points and 6a is the delta measure at a. By convention we 
regard zero measure as a configuration. Let O denote the set of  all such configura- 
tions in IRa. We equip O with the vague topology. O is a Polish space with this 
topology. (See Prop. 3.17 in [Re]). Throughout this paper # will denote a prob- 
ability measure on (O, ~3(O)). Of  course we are interested in the case such that 
#({0; 0(IR e) = ec}) = 1. We do not a priori assume # is a Gibbs measure with a 
potential (b. 

We introduce a bilinear form related to infinite dynamics (0.2): Let Oi =  
{ 0 E O ;  0(IR ~ ) = i }  for i E N U { e o } .  Let I R ( 0 = I R  di for i E N ,  and IR (~176 
{(Xi)l<=i<oo" ~ (Xi)l<=i<cx~ have no cluster points in lRd}. A map xi:Oi--+ IR (0 

i (1 _< i _< o0) is called a ]R(i)-coordinate of 0 if  0 = ~j=i6xJ(O) for all 0 ~ 0 i, 
where xi(0) = (xl(0) , . . . ,xi(0)) .  Let for 1 _< i < 0% 

1 i 
Di[f  ,g](x) = ~ ~ V j f ( x )  �9 Vjg(x) . 

j= l  

Here Vj = (0@j~)~___k_<d and �9 means the inner product on IR d. Let --~l~ be the set 

of  all local, smooth functions on O given by (1.2) in Sect. 1. For ~, 9 E @1oc we 
set D[~, 9] : O ---, 1R by 

D[~,g](0) =Di[ f i ,  gi](xi(O)) for 0 ~ o i, 1 _< i _< oo 

= 0  f o r 0 E O  ~ . 

Here x i is a lR(i)-coordinate, and f i  is the permutation invariant function on IR (i) 
such that f(0) = fi(xi(O)) for all 0 E 0 i. We set gi similarly. Note that such f i  
and gi are unique for each i (1 _< i < ec) and D is well defined. We set 

g(f, 9) = f D[~, g](0) dg, 
O 

~ = {f ~ #1o2 nL2(O,#) ;E(~ , f )  < ~ } .  (0.3) 

Our infinite dynamics are diffusion associated with (d ~, @oo) on L2(O, #). If  one 
takes # as the Poisson random measure on IR a whose intensity measure is Lebesgue 
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measure, then ((d~ ~oo),L2(O,#))  is associated with lBt = ~i=l(~B~,~ where (Bt)ic~qi 
are infinite-many, independent copies of Brownian motion. 

Let Q~ = {x E 1Rd; Ixl =< r}. Let Qi be the i times product of Qr. We set 

0 i = {0 E O; O(Qr) = i} .  
oo i We note O = ~-~i=oO~. We define rcr : O ~ O by lr~(0) = 0( �9 N Qr). A function 

x :  Oir --+ Qi is called a Q~-coordinate (or a coordinate on O~r) of 0 if 

i 
7~r(O ) = 2(~xk(O),  x ( O )  = ( x l ( O )  . . . . .  x i ( O ) ) .  ( 0 . 4 )  

k = l  

i .  i ]R-F Permutation invariant functions o- r Qr--+ are called density functions of 
# if 

1 i i ~ . f  f~a~dx -- f ~d# for all bounded a[ur]-measurable functions f .  
�9 Q/ '  O i  

(0.5) 

Here f ~ :  Qi ~ IR is the permutation invariant function such that f~(x(0))  = f(0) 
for 0 c O~, where x is a Q~-coordinate. 

We assume: 

(A.1) ( g , ~ )  is closable on L2(O,#) ,  

oo 
i �9 i (A.2) ~r E L ~ ( Q  i, dx) for all i, r, z#(Or) < cx~ for all r 

i--1 

By (A.1) we denote by ( C , ~ )  the closure of ( (g ,~oo) ,L2(O,#)) .  Now we state 
one of our main theorems: 

Theorem 1. Suppose that (A.1) and (A.2) hold. Then (g,@) is a local, quasi- 
regular Dirichlet form on L2(O, #). 

We refer to Ma and R6ckner [MR] for the notion of quasi-regularity. Note 
that 1 E @ and ~(1, 1) = 0. By virtue of Theorem V.2.13, Proposition V.2.15 and 
Theorem V. 1.11 in [MR] we get the following: 

Corollary 1. Suppose that (A.1) and (A.2) hold. Then there exists a diffusion 
{lP0}0co associated with ((d ~,~),L2(O,#)). Moreover {IP0}0co is reversible with 
invariant measure #. 

We reduce (A. 1 ) to a local condition (A. 1"), which will be used to check (A. 1 ) 
for Gibbs measures. 

Theorem 2. (A.1) follows from (A.I*): 

(A.I*) (Ei ,~oo)  are closable on L2(O,#) for all 1 < i, r < oo, 

where gi is given by (1.4)�9 
c~o i We next consider two types of finite dynamics: Let gr = ~i=lg~ and assume 

(A.I*). Then by Lemma 2.2 we see (g~,~oo M ~ )  and (gr,@oo) are closable on 
L2(O,#), where Nr is given by (1.1). Let ( g r , ~ r )  and (gr,~r) be closures of 
(o~,~o~ N Nr) and (d~,~oo) on L2(O,#), respectively. Then ((gr,~r),L2(O,#))  
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are our finite dynamics; ((gr,~r),L2(O,#)) are finite dynamics studied by Lang. 
These two sequences of finite dynamics converge to infinite dynamics in the sense 
of Theorem 3 below. 

Let 113r,~ and 113~ be resolvents of ((gr ,~r) ,L2(O,#))  and ( ( f f , ~ ) ,L2 (O ,# ) ) ,  
respectively. Since Nr is not dense in L2(O,#), we define 113r,~ in the sense 
of [Si]. Let (E,~)  denote the closed form on L2(O,#) given by ~ = ~r=l~r~ ^ 
and ~(~,~) = l i m r ~ g r ( f , f ) .  (See Lemma 2.2.) Let ~r,~ and ~J~ be resolvents of 
((gr, ~r) ,  L2(O, P)) and ((~, ~) ,  La(O, #)), respectively. 

Theorem 3. (1) ~3r,~ converge to 113~ strongly in L2(O,#)  as r --+ co for  all ~ > O. 
(2) 113r,~ converge to ~J~ strongly in L2(O,#) as r--+ go for  all ~ > O. 

Remark. (1) Suppose # is a Gibbs measure in Theorem 4 below. Then there exists 
diffusions {~,0}0~o associated with ( (g r ,~ ) ,L2(O,# ) )  on L2(O,p). {~r,0}o~o 
correspond to Lang's ones when g satisfies the Lang's assumptions. 

(2) ((St, ~r),L2(O, #)) is not quasi-regular because ((gr, ~r) ,L2(O,  #)) do not 
separate the points in O. Let Qr denote the quotient space of Qr identified 3Qr = 
{Ixl = r}  with one point. Let 6)r denote the set of all configurations on Qr. Then 
we can regard ( ( g ~ , ~ r ) , L ( O , #  o ~Z-1)) as a quasi-regular Dirichlet form on 6)r. 
Accordingly, we can construct the associated diffusions on Or. 

(3) We will see in Lemma 2.2 that ~ C ~ and g(f,[)  = g(f,~) for all ~ c ~.  
(4) Suppose (L.1) and (L.2) hold. If ~ = ~ ,  then the distribution of our infinite 

dynamics {IP0}0eo is the same as that of (0.2) obtained by Lang [Lal,2]. We 
however do not know how to prove ~ = ~ .  It seems to be related to the explosion 
of tagged particles; we conjecture that ~ = ~ holds when all tagged particles have 
no explosion. 

We next give a sufficient condition for (A.1) and (A.2) when # is a Gibbs 
measure with potential ~b (see Sect. 3 for the definition of Gibbs measure). It is 
known [Ru2] that for each z > 0 a Gibbs measure # with pair potential ~ and 
activity z exists if 4~ satisfies (A.3)-(A.5): 

(A.3) 45 is superstable in the sense of Ruelle [Ru2]. 
(A.4) r is lower regular in the sense of Ruelle [Ru2]; there exists a pos- 

itive decreasing function (~1 on  ]R + such that 4~(x) > -~bl([xl) for all x, and 
f o r  < ~ .  

(A.5) There exist a R1 > 0 and a positive decreasing function ~2 on ]R + such 
d - 1  t a~ o<~. that q'(x) =< r for Ix I => RI, and fRlO2(t)  < 

We will use the following condition to prove (A. 1). 
(A.6) There exists a R E ]R such that �9 is finite and upper semicontinuous on 

{Ix[ > R} and ~(x) = cx~ on {Ix I _<_ R}. 
The constant R in (A.6) is a diameter of hard core particles when R > 0. If 

R < 0, (A.6) means 4~ is upper semicontinuous on ]R d. 
Now we state our second main result: 

Theorem 4. Suppose ~b satisfies (A.3)-(A.6). Then for  each z > 0 there exists a 
Gibbs measure p with pair potential q~ and activity z satisfying the assumptions 
in Theorem 1. 
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We refer to [Rul, 2] for examples of pair potential ~ satisfying the conditions 
in Theorem 4. We note that Lang's conditions (L.1) and (L.2) imply the conditions 
in Theorem 4. 

We now give four examples; the first three examples satisfy the assumptions in 
Theorem 4, and the last one satisfies ones in Theorem 1. No examples below are 
covered by Lang's results because their potentials are singular. 

To help reader's understanding we give SDEs corresponding to these models. 
We emphasize that we do not solve these SDEs; we construct diffusions in the 
category of Dirichlet form theory. 

Example 1 (Hard Core Potential). Let ~hard be a hard core potential; R > 0 and 

�9 hard(X) = OO for Ixl < R, ~h,rd(X) = 0 for Ix[ > R.  (0.6) 

We call #hard a Gibbs measure with hard core interaction if #h~d is associated with 
the potential ~bhard and an activity z > 0. The diffusion obtained by Theorem 1 
for #hard describe the motion of infinitely many hard core Brownian balls with 
diameter R. 

Example 2 (Lennard-Jones 6-12 Potentials). Let d = 3 and 

~6,12(X) = 2C{]x[  -12 - Ix] - 6 }  ( C  > 0 is a constant). 

Then ~b6, 12 satisfies the conditions in Theorem 4 with R = 0. See [Rul,40p]. In 
this case the corresponding SDE is 

dXti=dB~ + ~ C(Xti-xtJ){121X/-XtJl-14-61X/-XtJ]-S}dt (1 ~ i < oo).  
j=l , j :4: i  

(o.7) 
Example 3 (Lennard-Jones Type Potentials). Let a > d. Set q~a(x) = 2Ix] -a. Then 
~a satisfies the conditions in Theorem 4 with R = 0. See [Rul, 40p]. In this case 
the corresponding SDE is 

oo 
dXt i = dB~ + ~ a(X/ -X/ ) IX/ -X/ l -a-2dt  (1 __< i < oc ) .  (0.8) 

j=l , j . l=i  

Example 4 (Dyson's Model). Let d = 1. Set ~Dy(X) = --2 log Ix I. The correspond- 
ing SDE is 

oo 
dX/=dB I+ ~ (X / -XJ ) - ld t  (1 < i < ec ) .  (0.9) 

j=l , jOei  

In [Sp2] Spohn studied (0.9) and called this Dyson's model. The potential ~oy 
does not satisfy Ruelle's conditions, so the existence of the associated Gibbs measure 
does not follow from [Ru2]. He constructed an associated equilibrium measure # 
and obtained correlation functions p~ of # explicitly. He proved the existence of 
the equilibrium dynamics, in the sense of the appropriate Markov semigroup. He 
however obtained neither the associated diffusion nor the solution of SDE (0.9). 
We can apply Theorem 1 to this model. Indeed (A.1) follows from Proposition 4 
in [Sp]. The correlation functions ~i obtained by Spohn are 

~i(Xl . . . . .  Xi) = detRm,n, where Rm, n = (27c) -1 f eiS(xm-x~)ds , 
Is[ <=~z 
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where z is a constant. Since correlation functions are bounded, we see # satisfies 
(A.2). We thus construct diffusions associated with q~Dy by Theorem 1. We note 
finite dynamics (d~r, 9 r )  for CbDy exist because density functions a~ arc continuous. 
We however do not know whether ( g r , ~ r )  exist or not. 

Now we return to the general situation. One advantage of the Dirichlet form 
approach is to give a perturbation result. Combining Theorem 1 with the stated 
results in [MR], we can construct non-symmetric diffusions: 

Corollary 2. Let (g* ,9 )  be a (non-symmetric) Dirichlet form on L2(O,#) such 
that 

Clg(1, f) <= g*(I,I) for all f E 9 , 

g*(1, g) =< C2~(I, I)1/2~( 9, g)l/2 for all i, g ~ 9 .  

Here 6", (i = 1, 2) are positive constants. Then there exists a diffusion {IP~} asso- 
ciated with ( ~*, 9 ) with invariant measure #. 

In the forthcoming paper we will apply Corollary 4 to construct diffusions de- 
scribing infinite many hard core vortexes in viscous planer fluid, and prove a central 
limit theorem for tagged particles of this model. 

A motivation of our work was to construct infinite many hard core Brownian 
motions in Example 1. We consider this as a reflecting barrier Brownian motion Xt 
on OR = {0 C O; 0 = ~CSx i such that [xi -x j [  > R} and, to some extent, construct 
this from O-valued Brownian motion lBt. Recalling the Dirichlet form approach 
to reflecting barrier Brownian motion on domains in IRd IF] [FOT], one may ex- 
pect that Xt can be constructed from the Dirichlet form ~(I, g) = foRD[f, g]dA on 
L(OR, A[oR). However this idea is formal as it is because A(OR)= 0, unlike the 
finitely dimensional case. The point is that we can justify this by replacing A]oR by 
Gibbs measure #hard with hard core potential ~hard. This observation is generalized 
to Theorems 1 and 4. 

Dirichlet forms associated with (0.1) have been considered in several papers 
(see [De, Gu, Spl,2].)  In these works except [Sp2] the construction of associated 
processes depends on the solution of (0.1) obtained by Lang. In [Sp 1, 2] equilibrium 
fluctuations were studied. In [De, Gu] a central limit theorem for a tagged particle of 
(0.1) was proved. Recently Tanemura [T] solved SDE (0.1) for hard core potentials. 

The organization of this paper is as follows: In Sect. 1 we prepare notations. In 
Sect. 2 we prove Theorems 1-3. In Sect. 3 we give a definition of Gibbs measures. 
In Sect. 4 we prove Theorem 4. 

1. Notations 

In this section we introduce bilinear forms describing finite dynamics. 
Let ~ : O - + O  be such that ~ ( 0 ) = 0 ( .  N{IR a - Q r } ) .  For f : O - - + I R  a 

function f~,o(X) : O • Q~ --+ IR is called the Qi-representation of I if fir, o satisfies 
the following: 

(1) f~,o(X) is a permutation invariant fimction on Q / f o r  each 0 E O. 
( 2 )  = = f~,oo)(x) * fr, O(2)(x) i f  7rrc(O(1)) rcrc(O(2)), 0(1),0(2) E O r. 
( 3 )  i i fr, o(Xr(O)) = I(0) for 0 C O/, where x/(0) is a Q~-coordinate of 0. 
( 4 )  e fr, o(X) = 0 for 0 ~ O/. 
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i x; 0 Note that f i ,  o is unique and ~(0) = ~i:of~,o(  r( ))" When ~ is a[rc~]-measurable, 
Q~-representations are independent of 0. In this case we often write f /  instead 
of f~,o" Let N* = {~: 0 --+ IR; ~ is a[rcrl-measurable} and Nr = {i E N*; f is 
bounded}. We set 

~ g  = U ~ ; ,  ~ = ~ .  (1.1) 
r=l r=l 

Moreover 
i 91~ = {~ E ~*~; f~,o(X) are smooth on Q~ for all i,r,O}. (1.2) 

Here  fir, O are Q~.-representations of f. It is easy to see 

@ioc C C(O). (1.3) 

We will prove in Lemma 2.4 that 9 ~  is dense in L2(O,#). 
For ~ and g E ~1oc we set - - O O  

Dir [f, g](0)  i i i i i i D~[f ,g](O) 0 (0 r 0 ~ )  = D [fr, o,g~,o](x~(O)) (0 C O r ) ,  = . 

Here x/~(0) is a Q~-coordinate, and f i ,  o and gi~,o are O~-representations of ~ and 
g, respectively. Note that D~[f,g] is well-defined, that is, it is independent of the 
choice of Q~-coordinate x~(0). We now define bilinear forms on 9oo" 

= D i g~(~, g) f r[~, g](O) d/z. (1.4) 
o 

2. Quasi-Regularity of  Dirichlet Forms: Proof of  Theorems 1, 2 and 3 

In this section we prove Theorems 1-3. We begin with a monotone convergence 
theorem on closable forms. 

Let {(gn, 9")}  be a sequence of positive definite, symmetric bilinear forms on 
L2(O,#). We write ( ~ a l , 9 1 )  ~ (g2,92)  if 

91 D 92 and gl ( f , f )  < g2(~,f) for all f E 9 2  . 

We say {(gn, gn)} is increasing if (d~ ") < (g"+1,9~+1) for all n, and we say 
{(g~,gn)} is decreasing if (gn,9~) > (g"+1,9~+1) for all n. 

For a given (g, ~ )  with a dense domain ~ we denote by (~reg, ~r~g) the largest 
closable part less than (~ ,~ ) ;  that is, (~reg,~reg) is closable, (~reg,~reg) < (~ ,~ ) ,  
and, if (a , ,~ , )  is closable and ( E . , 9 . )  < ( g , ~ ) ,  then ( g . , 9 . )  < (greg,~r~g)- 
It is known [Si] that the largest closable part exists uniquely. 

In the next lemma domains of symmetric forms are not necessary densely 
defined. So their resolvents are defined in the sense of [Si]. 

Lemma 2.1. (1) Suppose {(d ~, ~ ) }  is increasing. Let $~(f ,  ~) = lim~__.~ d~(~, ~) 
with the domain 9 ~ = {f c ~ 9 " ; s u p g ~ ( f , f )  < oc}. Then ( ~ , 9  ~ )  is closable 
on L2(O, #). 

(2) In addition to the assumptions o f  (1), assume (g",@~) are closed Then 
(g~176176176  is closed and G~ converge to G~ strongly in L2(O,# ) fo r  all c~ > O. 
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Here G~ and G~ are resolvents of (g~,~") and ( g o o , ~ )  on L2(O,#), respec- 
tively. 

(3) Suppose {(gn, ~n)} is a decreasing sequence of closed forms. Let g~(~, ~) = 
l i m ~ g ~ ( ~ , f )  with the domain @~ oo n ~oo , = U , = I N .  Suppose is dense. Then G~ 
converge to G~,~eg strongly in L2(O,#) for all cr > O. Here G~,C~eg are resolvents of 
the closure of (gre~,~re%) on L2(O,#) and (g~e~,~reg) is the largest closable part 
less than ( goo, ~ ). 

Proof See [MR, Prop. 1.3.7] for (1), and [Si, Theorem 4.1] for (2) and (3). [] 
oo i Lemma 2.2. Let g~ = ~i=lg~. Suppose (A.I*) holds. Then 

(1) ( g ~ , ~  N ~ )  and (g~,@~) are closable on L2(O,#) for each r. 
Let (gr, Nr) and ( g r , ~ )  denote the closures of (g~,@~ ANt)  and (gr ,~oo) ,  
respectively. 

(2) { ( g r , ~ o ~ ) } ~  and { ( g ~ , ~ ) } r ~  are increasing. 
(3) { ( g r , ~ ) } ~  is decreasing. 
(4) lim~__+~gr(~, f) = g(~, ~) < oc for all ~ E ~ .  

Proof By (A.I*) m i m i (~/=~gr ,~o~)  are closable. Since {(~i=lgr, Noo)}~<=i<~ is 
increasing to converge to (gr, ~ ) ,  (g~, ~ ) is again closable by Lemma 2.1. The 
closability of ( g ~ , ~  N Nr) follows from that of ( g ~ , ~ ) .  We thus obtain (1). 

Let f ~ @~ and r < s. Let f~,o(X) and f~,o(X) be representations of ~ on 
O / and OJs respectively. Then for 0 E O / N O~s (i =< j )  and a Q~-coordinate 
xi(0) = (x~ . . . . .  x/), we can choose Q~s-coordinate of 0 such that x J ( 0 ) =  (x~,..., 
x~, x i+1, ,...,x~). Then for 0 E O~ N O~ (i =< j ) ,  we see 

i j 
~ V k f  r, O(Xr(O)) �9 < v k _ r ,  o x,_O = 

k = l  l = l  

Noting O~ N O~ = 0 if i > j,  we see 

}-~D~r[f,f](0) < D~[f,f](0) for all 0 E O. 
i = 1  i = 1  

Integrating both sides we obtain {(gr, ~oo)} is increasing. So its closure {(gr, ~r)}  
is also increasing. This completes the .proof of (2). 

Let ~ C ~ N ~ .  Then 2i~lD~[~,' f ]=~i~lDiq[~ , f ]  for all r =< q. Hence 
g~(f,f) = gq(~,~) = g(~,f). This implies (3) and (4). [] 

Proof of Theorem 2. Theorem 2 follows from Lemma 2.1 (1) and Lemma 2.2 (1), 
(2), (4). [] 

Proof of Theorem 3. By Lemma 2.1 (2) and Lemma 2.2 (2) we obtain (2). Let 
(greg,(UNr)reg) be the largest closable part less than (g, UNr) and ~ .  its closure. 
Recall that ~ is the closure of ~ with respect to (g, L2(O,/l)). By Lemma 2.1 
(3) and Lemma 2.2 (3) it only remains to show ~ .  = @. By using gr(~, ~) = ~(~, f) 
for f E @~ N Nr, we obtain 

o~r(~,f)=S(f ,f)  f o r b e a r  and ~ r C ~ .  
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Hence U g r  C (Ugr)reg C ~ .  So taking closures, we see 9 .  C 9 .  Since ~ = 
U(9oo N Nr)  C Ugh, we see @oo C (U~)re0-  Hence we have 9 C 9 . .  Combining 
these yields 9 =- 9 . .  [] 

L e m m a  2.3. (g , . , 9~ ) , (g~ ,~r ) , (g ,9 )  and (g ,~)  are Markovian. 
Proof  For e > 0 there exists (p, E C ~ 1 7 6  such that 9 , ( t )  = t for all t E [0, 1], 

l (pc(t) E [ - e ,  1 + e] and I~o~(t)l __< 1 for all t E IR. Then ~0~ o 7 E ~oo for all 7 E 9oo,  
and 

er(~0, o 7, ~o~ o 7) 

1 oo i t i i 2 i i 
= _ Vkfr,  o(xr(O))dff 2 f S S{(Pe(fr ,  o(Xr(O)))} Vkfr,  o(Xr(O)) " i i 

O i=1 k = l  

_-< G(7,f) ,  
where f i  0 is the Qi-representation of  f. This implies ( g r , ~ r )  are Markovian. (See 
PropositiOn 1.4.10 in [MR].) Other statements can be proved similarly. [] 

We next introduce a mollifier on ~ .  Let j : IR d ---+ IR be a non-negative, 
smooth function such that f ~ a j d x  = 1 and j (x)  = 0 for Ix[ > 21-. Letj~ = edj( �9 /e) 
and -i i J,(xl . . . . .  xi) = ~[j=l j~(xj). For ~ E ~ we set U~,~[ " 6) ~ IR by 

^i 
3r,~7(0) = j~ * f r(X(O)) for 0 E 6)Jr, i > 1 

= 7 ( 0 )  for 0 C 6 )  ~  

where i ^i ]Rdi fr, o(x) = f~(x)  is a representation of  ~ on oil, a n d f ~  �9 --+ IR is the 
^i ^i 

function defined by f r ( x )  = f~(x)  for x E Q~ and f~(x)  = 0 for x ~ Q~. Moreover 
x(0)  is a Q~-coordinate o f  O, and . denotes the convolution. Since ~ is o-Ires]- 
measurable, f i  is independent o f  0 and ~ is constant on O ~ It is clear that r, 0 

3~,~f ~ ~ .  
L e m m a  2.4. (1) Let 0 < b < r and 7 E ~ _ ~ .  Then we have the following: 

3~,dE@c~ for 0 < e < 6, (2.1) 

lim 113~,~7 - 71k2(o,   = 0.  (2.2) 
r 

(2) Let ~ E ~r  such that f~ E C~176 for all i, where f~ are Q~-representations 
of  7. Let 3 > 0 and 6)~,~ = {0 E 6); O(Q~+~ - Q~) = 0}. Then 

lim ~+6,~7(0) = ~(0) for all 0 E 6)~,6. (2.3) 
~---+0 

(3) 90~ is dense in La(6),#). 

Proof  Let g = ,3r,~7, and let fs denote its Q~-representation. Since gi, o E C ~ ( Q  i) 
for all i, we see fs E C~176 ) for all s < r and j .  Note that g is o-[~-6+~]- 
measurable. Hence we also have fs E C~176 for all s > r and j .  Combining 
these we see ~,e7 E _~.~a~ By this, ~ie~__l i#(6)ir) < O0 and the property of  the mol- 
lifier we obtain (2.1). 

Note that (2.2) is obvious if  # = A, where A is the Poisson random measure 
whose intensity measure is Lebesgue measure. For each 6 > 0 there exists an i such 
t h a t  # ( U j > i  ~ )  = < ~" Let C~ = Ilo~llL~(Qr~,dx> and C = sup{]7(0)[; 0 e 6)}. Then 
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we see 
oo i 

It~-~r,e~ 2 2 k ~ 2 - -  ~IIL2(O,/x) = ~ 113r,3 - fll~=(o~,~> = < ~ Cr [l~Sr,*~ -- ~IIL2(O~,A) + 2C2a" 
k=l k=l 

Combining this with (A.2) yields (2.2). Equation (2.3) is clear by the property 
of  the mollifier. Since ~ ( O ) =  ~y[TZr;r C N ] ,  ~b~oo is dense in L2(O,/z). Hence (3) 
follows from (2.2). [] 

Let A = {a = { a r } ~ ; a r  E N ,  ar < a~+t for all r}. For a = {a~} E A, let 
O[a] = {0 E O; O(Q~) < a~ for all r}. Then O[a] is a compact set. (See Propo- 
sition 3.16 in [Re].) We introduce a cut off function z[a] of  O[a] as follows: 

~ ~ }1/2 
z[a](0)  = p o d,(O), d,(O) = (r - Ixj(0)l) 2 (2.4) 

kr=l jEdr, 0 

Here {xj(O)} is such that 0 = E 6xj(O), IxAO)l <= [Xj+l(O)[ for all j ,  and 

J,',o = { j ;J  > a~, xj(O) E Or}.  

p : IR ~ [0, 1] is the function defined by p(t)  = l( t  < 0), p(t)  = 1 - t(O < t <_ 1), 
and p(t)  = 0(1 < t). Note that, ifJ~,o = 0 for all r, then da(O) = 0 and )~a(O) = 1. 

Let II II1 be the norm on ~ defined by Ilfll~ 2 �9 = II~llL=(o,~> + e(g,~).  

Lemma 2.5. (1) z[a] = 1 on O[a] and)~[a] = 0 on O[a+] ~, where a + = {1+ 
ar+l}rEN.  

(2) z[a] t  c ~ for  alI ~ ~ ~oo. 
(3) II)~[a]fHl < v/2[ l~l{1 for  all ~ E @oo. 

(4) II(1 - z[a])~lll _-< V/2 fO[ay{~ 2 + D E f , ~ l } d # f o r  all ~ E ~oo. 

Proof  (1) is clear by definition. We prove (2) and (3). Let z*[a] = p o d~, where 
ds(O) = { ~ = 1  ~J~J~,o (r - Ixj(O)l)2}l/2. Then )([a] E N and l ims- .~  z*[a] = z[a] 
in L2(O,#) .  A straightforward calculation shows 

2OKz~[a],zS[a]](0) = d~a(O) ~ (r - Ixs(O)l) 2 = pt(ds(O))2 ~ 1. 
) =l jEJr ,  O 

Then g()~'[a],)([a]) < 1/2 for all s. We next note that 

D[z~[a]f, )~[a]f] = f2D[)([a], z~[a]] + )([a]2D[f, f] + 2~)([a]D[f, zS[a]] 

=< 2{~2D[z'[a], x'[a]] + )([a]ZD[f, ~]} 

__< ~2 + 2D[f ,  ~]. 

Hence SUpsHzS[a]flll < v~ll~ll~. Combining these we see z[a]~ = l i m ~ ) ( [ a ] ~  
weakly in (~ ,  I1" II1) and IIx[a]~lll _-< v ~ l l f l l l .  Hence we obtain (2) and (3). The 
proof of  (4) is similar to (3). [] 

Lemma 2.6. There exist an = {an, r}r~N C A(n E N )  such that an, r <= an+l,~ and 
oo that #(Un=l O [ a n ] ) =  1. 
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Proof Since O is Polish, there exists an increasing sequence of compact sets K~ 
such that # ( U ~ l  K~) = 1. It is known (see [Re, Prop. 3.16]) that a subset A C O 
is relatively compact if and only if suP0~A O(Q~) < ec for all r. Hence a,,~ = 
suP0c& O(Q~) satisfy the condition. [] 

For the reader's convenience we give the definition of quasi-regular Dirichlet 
form. We refer to [MR] for detail and related notions. A symmetric Dirichlet form 
(e,F) o n  L2(O, I g) is called quasi-regular if (e,F) satisfies the following: 

(Q.1) There exists an e-nest consisting of compact sets. 
(Q.2) There exists an I1 " Ill-dense subset of F whose elements have e-continuous 

#-versions. Here II~H~ 2 = + 

(Q.3) There exist u, E F, n E N, having e-continuous #-versions a,, and an 
e-exceptional set N such that {ft,} separates the points of O - N .  

Proof of Theorem 1, Let 

90 = {z[a~][; f E 9oo, n ~ N } .  (2.5) 

By (2) of Lemma 2.5 we obtain 90 c 9 .  By Lemma 2.5 (4) and Lemma 2.6 
we see 90~ c 90, where denotes the closure of �9 with respect to 1[ �9 I1 . By 

+ c 9 ~ = g w e s e e g o = 9 .  L e t g ( n ) = { f E g ; f = 0 a . e .  0 o n  O[a , ]  } . B y ( 1 ) o f  
Lemma 2.5 we see 

@0 C ~ ~ ( n ) .  (2.6) 
n=l 

Hence {O[a+]} is a compact nest. We thus obtain (Q.1). 
Since 9 ~  c C(O) and 9 ~  is dense in 9 ,  (Q.2) is clear. 
Let 

U / = {u E C~(Qi) ;  u is permutation invariant}. 

We regard elements of U i as functions on Qi/~. Here ~ is the equivalence relation 
generated by permutations. For each i, r E N let i {Ur, m}m~N be a sequence in U / that 
separates the points of Q~/~. We can c h o o s e  {uir, m}mCN SO as i < ~//,m(X) < i + 1 
for all x E Q~.. Let i u~, m E Nr be such that Hi,,(0) = 0 for 0 ~ O/, and ui~,(O) = 

0 u~,m(x(0)) for 0 E O~, where x(0) is a Q~-coordinate of 0. We set u~,~ - 0 when 
i 0. Then i = {Ur, m}i,r, mEN separates the points of O. 

Let 01 ~02 E O. Since {Ur, m}i .. . .  EN separates the points of O, there exists 
(i, r, m) such that 

ilir, m(01 i ) + G,m(02). (2.7) 

Let 0 < ~ E Q such that 01, 02 E O~,~, where O~,~ = {0 E O; O(Q~+~ - Q~) = 0} as 
before. By (2.3) and (2.7) there exists an e E II~ such that 

~r+j, eUr, m(O1)+~r+6,enr, m(02), 0 < e < ~.  

which implies Y{ ~ i = {~3r+~,~Ur, m}i,r,,~C~,O<~<~E~ separates the points of O. By (2.1) 
is a sequence in 9 ~ .  Hence we obtain (Q.3). 
Combining these we see ( ~ , 9 )  is a quasi-regular Dirichlet form. 
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We finally check the local property. Note that the local property is clear for 
(gr,  N~)- So we reduce the local property of  ( E , ~ )  to that o f  (gr,  N~). Let f and 

E ~ with supp[f] M supp[g] = ~. Since ( g ~ , ~ r )  is local, we see g~(f ,g)  = 0. 
Hence g ( f , g ) =  limr--+oo g ~ ( ~ , g ) =  0, which means ( g , @ )  is local. [] 

3. Gibbs Measures with Potential 

In this section we consider the case that # is a Gibbs measure with pair poten- 
tial ~b. 

Let �9 : IR a -+ 1R U {oo} be a measurable function with ~b(x) = ~ ( - x ) .  For x = 
(x k) EQ~, 0 E O ,  r < s ,  let 

H/,o,s(x)= ~ ~ ( x k - x l ) +  ~-]~ { ~ ~ ( x k -  y(O) ' )} ,  
l <=k<l<=i lCL(r,s) l <_k<_i 

where (y(O)l)t is such that 0 = ~l(5fl(o) and L(r,s) = {1;r < IS(0)[  < s}. We 
s e t  

Hi'~ = s~lim Hi o, s(X), whenever the limit exists . (3.1) 

Let Q(z) = Q1 + z, where z E ~d. Let 

0)O={0C6) ;  sup r -d ~ O(Q(z))2 < ~ } .  (3.2) 
r E N  zC•  a, [z[ < r  

It is known (see [Ru2, (5.11)]) that the limit in (3.1) exists for 0 E Oo. Let z > 0 
be a number. We set 

Z i 
mir, o(X) = Zr, ~ ~.exp[-Hr Zr, o = e -tQrl ~ z i f  /=0 # �9 exp[-Hi'~ dx. 

Here we set the summand to be 1 for i = 0. 

Definition. A probability measure tt on (0, ~(  0 ) ) is called a Gibbs measure with 
potential q~ and activity z if ix satisfies the following: 

#(O0)  = 1 ( tempered) ,  (3.3) 

#(Ala[~c])(0) = f mr,0(01)dA(01), for A E a[~,.], (3.4) 
A 

c where rcr : 0 -+ 0 such that 7rc(O) = 0 M (iRa _ Qr), and mr, o is the (r[~]-measur- 
able function defined by mr, o(O1)=mi, o(X(01)) for 01 c Oir. Here x(01) is a 
Q~-coordinate of  O1. 

i We similarly define Gibbs measures on finite domains Q~: For Hi o>s we set mr, o, s 
and mr,0,s similarly a s  mi~, 0 and mr, o, respectively. We define #s by d#s = ms, o,s dA. 
Note that m~,0,s is independent of  0. 

For # and #~ we define density functions as follows: 

l a ~ ( x )  = f mi~,o(x)d~, l a i s ( x )  = f mir, o,s(x)dtts. (3.5) 
0 0 
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We easily see that a~ are the same as ones given by (0.5). We quote (see Corollary 
5.3, Theorem 5.5, Theorem 5.6 [Ru2]): 

Lemma 3.1 (Ruelle). Suppose that q) satisfies (A.3), (A.4), and (A.5). Then 

ais(x) < r for all i,r,s, where ~ is a constant. (3.6) 

Moreover there exists a subsequence {sk} with sk T oc and a Gibbs measure # 
with potential �9 whose density functions a i and correlation functions pi satisfy 
the following: 

ai(x) = lim a~,sk(x ) uniformly in x for all i,r (3.7) 
k---~ ~ 

air(x) < ~i for all i,r, pi(x ) <= ~i for all i. (3.8) 

We will use the following in the proof of Proposition 4.1. 

Lemma 3.2. Let m be a nonnegative, bounded, lower semicontinuous function on 
Qi. Let g ( f , g ) =  fQ~r Di[f'g]mdx" Then (g,C~(Qi)) is closable on LZ(Q~,mdx). 

Proof Let Cn = {x E Qir; m(x) > 1/n}, and gn( f ,g)= f~ Di[f,g]mdx. Then (d ~n, 
C~(Q~r)) is closable on L2(Q~,mdx). Since the sequence {(g",C~(Q~))} of clos- 
able forms on L2(Qi, mdx) is increasing, its limit (g,C~(Qi)) is also closable by 
Lemma 2.1. [] 

4. Proof  of  Theorem 4 

In this section we assume p is a Gibbs measure with potential ~0 given by 
Lemma 3.1. The purpose of this section is to prove Theorem 4. 

/ be as in Sect. 3. Let for a.e. 0, Let mr, 0 

8ir, O( f , g )  = f Di[f ,g](x)mir,  o ( x ) d x  , (f ,g)ir,  0 = f f (x)g(x)mir ,  o ( x ) d x .  
Qi r Qi r 

Then a straightforward calculation shows for f, g E ~ ,  
i i i f er, o( f  r, o, gr, o)d# = gi ( f ,g) ,  (4.1) 

o 

i i i f (fr, o, gr, O)r, od# = f ~gd#, (4.2) 
o o'; 

where f~,o and 9~,o are Q~-representations of f and g, respectively. 

Proposition 4.1. Suppose �9 satisfies the conditions in Theorem 4. Then for a.e. 
O, i go i 2 i i (er, o,C~ (Qr)) is closable on L (Q~,mr, odx ). 

Proof For 0 c  O0 we set Q~,o={X=(X k) EQ~; ]x k - y j ( 0 ) ]  > R  for all k,j}. 
Here {y/(0)} is such that ~ (0 )  = }-~j 6fi(0), and R is the diameter of hard core 
given by (A.6). By (A.4), (A.5) and (3.2), 

~ s u p  { ~ lO(x~ - y/(O))l; x = (xk) c Qi, o} < o o  f o r a l l 0 C O o .  
j k = l  
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Hence by Lebesgue's convergence theorem ~j{~-]~2=l (i)( x k -  yJ(O))} is upper 
semicontinuous and bounded from below on Qi, o. We used here (A.6) and the 

i is lower semicontin- fact that �9 is bounded from below by (A.3). This implies m~, o 
i = 0 if Hi, o = oc, the same also uous and bounded from above on Q~,o" Since mr, o 

holds on Q/. Combining this with Lemma 3.2 and (3.3) we complete the proof. [] 

Proof of  Theorem 4. (A.2) is clear by (3.8). So we check (A.I*). Let {~(n)} be an 
g~-Cauchy sequence in ~o~ such that -~ o. Then by (4.1) and (4.2), 

lim f II (n) r OIIL <Qi m ro dx) = O, (4.3) 
lq - - -+c~ 0 ' ' 

i i i lim fer, O(~(m)~,o - f(n)ir, o, f(m)r,o - f(n)ir, o)d# = 0. (4.4) 
m ~ n - - ~  c ~  t 9  

Here ~(n)ir, O are Q~-representations of ~(n). 
We want to prove gi(~(n), f(n)) --40. For this purpose it is sufficient to show, 

for an arbitrary subsequence {f(n~)} of {f(n)}, we can choose a subsequence {f(nt)} 
of {~(nk)} such that gi(~(nl), f (n l ) ) -+  0. So let {~(nk)} be an arbitrary subse- 
quence. Then by (4.3) and (4.4) we can choose {~(nl)} in such a way that 

Here 
la(Az) < 2 -l, #(Bz) < 2 -1. (4.5) 

Az {0; n i > 2-t} = II ( t) ,OllL2 Q' mirod.> = , 

. i i i 2-2l} B1 = {O, er, O(~(nl)r,O - ~(nl+l)r,O, f(nl)i,o - f(nl+l)r,O)i > . 
By Borel Cantelli's lemma we see /~(limsupAz)= p ( l imsupBl )=  0. This means 

/1/ i for a.e.0, lira[If( Z)r,O][ZZ(Q~,mir, odx)=0 and f(nz)io is an d~,0-Cauchy sequence. 
Hence by Proposition 4.1, 

lim i i er, o(~(nl),-,o, ~(nl)i~ 0) = 0 for a.e.0. (4.6) 
l - - ~ o o  

Recall that {Vf(nl)ir, o(X)} is L2(Q i x O, mir, odxdt~)-Cauchy by (4.4) and the 
definition of er'i Combining this with (4.1) and (4.6) implies g~(f(nz), f(nz)) --~ O. 

[] 
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