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A Vortex Free Boundary Problem: 
Existence and Uniqueness Results 

for the Physical Solution(*). 

ALESSANDRO TORELLI 

Summary. - In this paper it is studied a vortex free boundary problem using some Complex 
Analysis and~or Harmonic Analysis techniques. It is obtained an existence and uniqueness 
result for the solution. A numerical method to approximate the problem is described. 

1.  - I n t r o d u c t i o n .  

The present paper is devoted to the study of a free boundary problem connected 
with the steady plane irrotational vortex motion for a non viscous and incompressible 
fluid. Let us now formally describe this problem (a precise formulation will be done in 
the next section). 

Let us assume that Q is the region of the complex plane occupied by the fluid in 
vortex motion and that 0 ~ t9 is the singularity of the vortex (see Figure 1). If ~: ~ - 
- {0} --. R is the stream function defining the motion, then we have that ~g is a har- 
monic function in t~ - { 0 } (since the motion is steady and irrotational). Near the sin- 
gularity of the vortex we also have the following asymptotical behaviour: 

(1.1) ~(z) - - log ]z I as z ~ 0. 

We also assume that t9 is symmetric with respect to the imaginary axis and that t9 is 
,,like a ball, which wraps around the singularity of the vortex in 0. Two conditions 
apply on the (free) boundary of Q (cl, c2, g being real constants, the constant g being 
the gravity acceleration): 

1 i (Vg0(z) i~ (1.2) ~(z) = C 1 , ~ + g Im Z = C2, Z e aQ.  

(*) Entrata in Redazione il 28 settembre 1995. 
Indirizzo dell'A.: Dipartimento di Matematica, Universith di Pavia, Via Abbiategrasso 209, 

27100 Pavia (Italy). 
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= s t r e a m  f u n c t i o n  
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Fig. 1. - The vortex free boundary problem in terms of the stream function ~(z) = ImF(z) - 

- l o g  z 

The former of such relations tells us that the boundary of t) is a stream-line; the 
latter expresses Bernoulli law (assuming the external pressure as a constant). Notice 
that in (1.2), the constant cl is arbitrary, whereas the constant c2 is an unknown quan- 
tity. To obtain a well-posed problem, we must add a further condition: for instance we 
can specify the value of the speed in an assigned point of ~9 (see Problem A 

later). 
In what follows the previous problem is studied using elementary results of Hat- 

monic Analysis or (equivalently) elementary results of Holomorphic Functions The- 
ory in the unit disc of C. This study is done in several steps. 

I begin giving a precise complex mathematical formulation of the problem (see 
Problem A in section 2) and stating the main results of the paper. 
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In section 3 (by a suitable conformal transformation) I reduce the vortex problem 
to an equivalent problem (see Problem B in section 3) defined in the unit ball of the 
complex domain. Problem B (called conformal problem) consists in finding a confor- 
mal map defined in the unit ball of C verifying a suitable boundary condition. In such 
a way I can reduce a free boundary problem to a fLxed boundary problem. 

In section 4, I reduce Problem B to a new equivalent problem defined in the unit 
circle of the complex domain (which I call weak formulation of the problem). This re- 
suit allows to represent the solution as the fixed point for a suitable operator: see 

Problem W. 
Afterwords (section 5) an existence theorem is given for the weak formulation 

(for any value of g I> 0), using a topological method. In section 6, a uniqueness theo- 
rem is also given (when g/> 0 is small enough), by the use of the contraction mapping 
theorem. Consequently, using the equivalence between Problem A (the physical for- 
mulation) and Problem W (the weak formulation), I can obtain an existence result 
also for the physical formulation (for all non negative values of the gravity accelera- 
tion g) and an existence and uniqueness result when g I> 0 is small enough. Moreover I 
shall prove that, if g/> 0 is small enough, then the domain of motion t2 is a convex sub- 
set of the complex domain. 

The formulation of Problem W is very simple and is constructive, that it is easy to 
approximate. In section 7 I briefly describe a method to compute an approximate sol- 
ution obtained discretizing Problem W: the graph of figure 1, for example, is obtained 
by this method (see also later figure 2). 

In a sequence of papers ([6], [10], [11]) and [12]) Lezzi and the author have already 
studied the vortex free boundary problem using a more complicated weak formula- 
tion. In [6] an existence and uniqueness theorem for the weak formulation when g i> 0 
is small enough is proved. In [10], [11] and [12], the author gives the idea to obtain 
an existence result for the weak formulation when g I> 0 is arbitrary. In the present 
paper I prove the equivalence between the physical and the weak formulation and 
then I can give some existence and uniqueness result directly in the physical formula- 
tion. Moreover we determine a condition for the convexity of the domain of 
motion Q. 

In my opinion, the present problem is only a simple model problem. Later I think I 
will apply the present method to other problems. 

Now we are working in a more general vortex free boundary problem: see paper 
[1] in which we study a vortex free boundary problem with an obstacle. 

I refer to [6] for a detailed physical motivation of the present problem and for an 
extended bibliography on this subjet. 

T E R M I N O L O G I C  N O T E ,  -- In what follows we use the notation: 

D={z C: ]z] < l } ,  T = a D .  �9 
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2. - Prec ise  formula t ion  o f  the  problem and main  result.  

Recalling that  T is a harmonic function in $2 - (0},  relation (1.1) can be precised 
by assuming that  there  exists a function B: $2---)R with AB = O in $2, such 
that: 

(2.1) T ( z )  = B( z )  - log Izi in $2 - {0}.  

Since $2 is ~,like a ball, ,  to the harmonic function B, we can associate a harmonic 
function A: $2 -~ R (with A(0) = 0) such that  A + i B  is a holomorphic function on 52. 
At this point we could consider the speed potential function O(z) = A ( z )  + arg ( z / i ) ,  

where arg is the principal branch of the argument  function. But  we have that  the com- 
plex potential function ~ + i ~  is a holomorphic function only in the open set: 

$2' = $2 - {z �9 $2: Rez  = 0, Im z  ~< 0}. 

More suitable is the use of the holomorphic function F: $2 --~ C given by A + iB.  Re- 
calling (2.1), we obtain that  T ( z ) =  I m P ( z ) -  log I z l .  Hence: 

(2.2) atP (z) + i 9 ~  i $2, 3---y -~x (z) = F ' ( z )  - ~ , z �9 . 

Then, in terms of the function F,  the problem described in section I can precisely be 
stated in the following way: 

PROBLEM. A - P h y s i c a l  f o r m u l a t i o n .  Given g I> 0, we look for an open subset $2 of 
C with 0 e $2 and such that: 

i) $2 is the inner domain of a C ~-Jordan curve, 

ii) $2 is symmetric and balanced (later we will explain what  this means) with re- 
spect to the imaginary axis. 

Moreover the function 

(2.3) F e H($2) A C ~ ($2) 

characterized by: 

(2.4) I m P ( z )  log ]z = I ,  z �9 952, with ReF(O) = 0,  

verifies the supplementary boundary conditions (where b = sup (y  �9 R: i y  e $2}): 

(2.5) t F ' ( z )  - i / z l  2 + 2 g I m z  = constant, z �9 352, 

(2.6) F ' ( i b )  = (1 - b ) / b .  �9 

REMARK 2.1. - We call y: T -~ C a Ca-Jordan  curve if ~ e C | (T)  with y '(t)  ~ 0 
(t E T)  and y is simple and positively oriented. With this notation, the inner domain of 
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is called balanced with respect  to the imaginary axis if R e T ( t ) <  0 implies 

Im 7 '  (t) < 0. A consequence of this relation is that  the point ib is the top of tO (hence 
b >  0). �9 

REMARK 2.2. - The relation F �9 H(tO) N C ~ (tO) means that  F is a holomorphic 
function in tO and that  all the derivatives F (n) have a continuous extension to 
t O .  �9 

REMARK 2.3. - Relations (2.4) and (2.5) are the translations of (1.2) in terms of the 
function F (with cl = 0). By relation (2.2), we can easily verify that  relation (2.6) sim- 
ply prescribes tha t  the speed in the highest point of atO is 1. Notice that  the constant 
in (2.5) is not a datum of the problem. �9 

REMARK 2.4. - F rom the physical point of view, the open set to is expected to be a 
convex set. La te r  we shall t ry  to exhibit some condition connected with the case in 
which tO is a convex set. �9 

REMARK 2.5. - I f  g = 0 then to = D is a solution of Problem A. �9 

The main result  contained in the present  paper  is the following: 

THEOREM 2.6. - For  all g 1> 0, there  exists at least one solution of Problem A. I f  
g/> 0 is sufficiently small, there  exists one and only one convex solution of 
Problem A. �9 

3. - Transformation of the problem. 

We now introduce: 

PROBLEM B. - Conformal formulation. Given g ~> 0, we look for a conformal map 
�9 H(D)  N C | (D) such that: 

(3.1) 

(3.2) Re 3C(1) = 0, 

(3.3) 

(3.4) 

(3.5) 

(~C)'(w) g 0,  w �9 D ,  

Im~C(1) > 0,  ~c ' (1)  = i ,  ~c(0) = 0 ,  

~ ( w )  = - ~c(~),  w �9 D ,  

d i:)C,(eiO)l_2+2gRe[~,(eiO)e~O]= 0 O e  [ - z ,  z ] .  
dv~ 

Problem B is equivalent 
by: 

to Problem A (the physical formulation) as stated 
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THEOREM 3.1. - Given g/> 0, we have: 

a) ff ~ is a solution of Problem A, then the function 

(3.6) A: ~ --+ C defined by A ( z )  = - iz  exp ( i F ( z ) ) .  

is a conformal mapping of ~ onto D- and A-2  is a solution of Problem B; 

b) if 0C is a solution of Problem B, then 0C(D) is a solution of Problem A. 

PROOF. - We begin proving part  a) of the theorem. Recalling relation (2.4), if 
z e 8~2 it follows that: 

iA(z)] = [z l exp(  - ImF(z))  = Iz[ exp( - l og lz l )  = 1, 

which means that  A(St'2) c 3I). Moreover we have that  A(0) = 0 (with multeplicity 1). 
This fact (see, for instance, [8], Th. 1.9 and 2.6) proves that  A is a conformal mapping 
of t-2 onto D. Using the C~-regulari ty of the Jordan curve 8t9, we obtain that  
A - l e  H ( D ) N  C ~ (D) and that  relation (3.1) holds (see again [8], Th 3.5 and 3.6). 

By the symmetry  of t-2 and the boundary  Dirichlet behaviour of I m F ,  it 
follows: 

(3.7) F ( -  5) = - F(z) ,  F ' (  - 5) = F ' ( z ) ,  z e ~ .  

Hence A ( - - 2 )  = A ( z )  (z ~ ~), which implies (3.3). Using again (3.7), we have that  
R e F ( i b )  = 0. Hence, since b > 0 and recalling (2A), it follows that: 

A ( i b )  = b exp ( - I m  F(ib)) = b exp ( - log(b)) = 1, 

which proves that  R e A - ~ ( 1 )  = 0 and I m A - l ( 1 )  = b > 0. By (3.6), we have that: 

(3.8) A ' ( z )  = z [ F ' ( z )  - i / z ] e x p ( i F ( z ) ) ,  z e D - {0}, 

which implies, using (2.6), A ' ( i b ) =  - i ,  hence (A 1 ) ' ( 1 )=  i. Also relation (3.2) is 
proved. By (3.2) and (3.3), already proved, :~ = A-1  maps the upper semidisk into 

N {z e C: Rez < 0}. We remark that  A - 1 :  T - ,  C is a parametrization of 8Q (the 
con forma l  parametrization): since the tangent  direction of a curve does not depend on 
the parametrization, we obtain (3.4) as a consequence of the hypothesis that  ~9 is a bal- 
anced set. By (3.8) and (2.4) we have: 

I A ' ( z ) l  = lzi  IF~(z)  - i / z l e x p (  - I m F ( z ) )  = I F ' ( z ) - i / z l ,  z ~ 8 ~ ,  

which, recalling (2.5), implies I A ' ( z ) 1 2 + 2 g I m z = c o n s t a n t  ( z e S t ) .  Taking z =  
= A -2 (e~e), we obtain: 

i( A -1 ) , ( e~) t -2  + 2 g I m  [A -1 (ei~)] = constant ,  z e 8 ~ ,  
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hence: 

d -1),(eO ) -2 d~ I(A I + 2g Im[ ie iO(A-1 ) ' ( e i~ ) ]  = O, z e 9t~, 

which implies (3.5). Par t  a) is completely proved. 
Now we shall prove pm~ b). Taking ~(t) = ~ ( e  it) (t e [ - z ,  z]) and by (3.1), we ob- 

tain that  ~9 = ~ ( D )  is the inner domain of a C~-Jordan curve, which is symmetric 
with respect to the imaginary axis (by (3.3)). Recalling (3.4), ~9 is balanced with re- 
spect to the imaginary axis. 

Let  now A = ~ - 1 .  We also have that  A �9 H(tg). Since A ( z )  = 0 if and only if z = 0 
(with multeplicity 1), there exists F �9 H(tg) such that: 

(3.9) e iF(~) : i A ( z ) / z ,  z �9 ~ - {0}. 

By (3.3) we have that  A(  - ~) = A ( z )  (z �9 Q). Since R e ~ ( 1 )  = 0 and I m ~ ( 1 )  > 0, we 
obtain that  i A ( z ) / z  > 0 for all z �9 ~9 N {Rez = 0}. Then we can choose F such that  
R e F ( i y )  = 0 for all y �9 R verifying iy  �9 ~ .  Hence we have ImF(z)  = - log I A ( z ) / z l ,  
(z �9 ~9 - {0}). Recalling that  ]A(z) I --* 1 as z --~w �9 atg, we obtain: 

lira ImF(z)  = log Iwl , Vw �9 a ~  
Z --> ~) 

and, by the C ~-regularity of at) ,  it follows that  Im F �9 C ~ (tg) and that  (2.4) holds. We 
have also that  F �9 H(52) f-~ C ~ (~9) (and that  A e H(~2) A C ~ (~9)). Since: 

: Im[  l ~e[-~ ,~] ,  

relation (3.5) can be written: 

IA'  (M(eiO))] 2 + 2g Im:~(e io) = constant ,  0 e [ - z ,  z ] .  

I f  we put z = ~C(e i~ e atg, this relation becomes: 

(3.10) I A ' ( z ) l  2 + 2 g I m z  = constant ,  z e 9~9. 

Differentiating relation (3.9) we have: 

A ( z )  
(3.11) eir(z)[l + i z F ' ( z ) ] = i  -~ [ l  + i z F ' ( z ) ] = i A ' ( z ) ,  z e ~ - { 0 } .  

I f z  E 3~2 then [A(z)[ = 1. Hence [i /z  - F ' (z ) [  = ]A'(z)  I (z e a~9). Thanks to relation 
(3.10), we obtain (2.5). 

I t  only remains to prove relation (2.6). Since ~ ( 1 )  belongs to the positive imagi- 
nary axis, we can put: ~ ( 1 )  = ib. By (3.4) ib is the top of aQ. Then we have: A( ib)  = 1 
and A ' ( i b ) = - i .  Using (3.11), we have 1 / b - F ' ( i b )  = 1 and relation (2.6) fol- 
lows. m 
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4 - Weak  formula t ions  o f  the  problem 

a) Preliminary considerations. 

NOTE 4.1. - A conformal map f defined in D and such that  f (0 )  = 0 is called a con- 
vex (resp. starlike) function, if f (D) is a convex subset of C (resp. a starlike subset 
of C with respect  to the origin). I t  is well known that  a function f is convex if and only 
ff the function wf'(w) is starlike (for more details see, for instance, [3], Sec- 
tion 2.5). �9 

Now we assume that  ~ is a solution of Problem B and t9 the corresponding sol- 
ution of Problem A (as stated in Theorem3.1).  We can introduce the following 
function: 

(4.1) 2: D - ~ C  defined by: ~(w) = - i ~ ' ( w ) .  

The following result  contains some preliminary propert ies  of the function ~: 

PROPOSITION 4.2. - We have that: 

(4.2) ~ e H(D)  A C ~ (D),  

(4.3) ~ ( ~ )  = ~(w)  ~ 0, w ~ D ,  

(4.4) s  = 1. 

Moreover we have that  t~ = :~(D) is a convex set if and only if the function w e D -~ 
~ w 2 ( w )  is starlike. 

PROOF. - Relations (4.2)-(4.4) are easy consequences of the definition of ~. Using 
Theorem 3.1, we have that  ~9 is a convex set if and only if the function ~ is a convex 
function, and, by  Note 4.1, this is equivalent to the condition that  the function w:~' (w) 
is a starlike function. �9 

Le t  us now consider the classical complex Poisson kernel: 

1 + re  ie 
Hr(v~)= 1 - r e  i~ ' re[O,  1[, v ~ e R .  

Pu t  also Pr(t~) = ReHr(v~) and Qr(O) = ImH~(O) which are (respectively) the ordi- 
nary Poisson kernel and the conjugate Poisson kernel. Then we can easily obtain: 

PROPOSITION 4.3. - The function ~ may be represented  as: 

(4.5) ~(re ~~ = exp 
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I t  is well known that (see for instance [5]): 

(4.6) lim 1 I ~ ~ Q~ (v~-t)h(t)dt 
- - $ [  

= (Sh, v~), 0 e R, h �9 C O, 1 (~) ,  

where ~ is the so-called conjugate operator defined by: 

(4.7) (-~h)(v~) = (-~h, v~) - 
1 ; h (  v~ + t ) - h ( v  ~ - t )  dt 

2 
- -  $ g  

REMARK 4.4. - Notice that the definition of E, suitably adapted by the use of a 
principal-value integral, can be extended to h �9 L 1 (T )  (see again [5]). �9 

Given a �9  1[ and n �9 N,  let C ~' a (T) the space of the functions defined in T such 
that the derivatives h(k)~ C~ (k ~< n), i.e. are HSlder continuous functions (with 
exponent a), with the norm: 

(4.8) Ilhl[~,, = sup { Ih(O) l, v~ �9 [ - z ,  z]} + 

+ ~ sup I h ( k ) ( 9 + t ) - h  (k)(9) I 

k = o  It1 a 

Taking into account of the extension of the conjugate operator described in Re- 
mark 4.4, if h �9 C O, a (~j~) t]~e conjugate operator -~h can be expressed as in (4.7) using 
an ordinary Lebesgue integral. We have that (a e]0, 1[) ~: C o, " (T ) - - - ) c~  is a 
linear and continuous map. This is a result due to Fatou (see, for instance, [2] or [4]). I t  
is elementary also to prove the following results (a �9 1[): 

(4.9) if h~cn'a(T) then Sh�9 and (~h)(k)=Sh(k)(k<~n) 

(4.10) the map -~: C n' ~ ( T ) - ~  C ~' ~(T) is linear and continuous. 

By (4.2)-(4.4) we can introduce the following function (as usual, identifying T with 
the interval [ - z ,  z]): 

(4.11) ~: T - - ~ R  such that: of(0) = 0, 2(e i~) = I~(ei~) I exp(icf(v~)), 

that is e is (a branch of) the argument  of s 

, 9 ,  t � 9  with t ~ 0 } .  

(4.12) 

(4.13) 

(4.14) 

(4.15) 

PROPOSITION 4.5. - We have that c; c C ~ (T). Moreover: 

~( - 9) = - cf(v~), ~ e [ - ~, ~], 

0 < ~ + of(0) < z , ~'v~ ~ ]0 ,  z [ ,  

12(eie) l-3 = 1 + 3 g [ s i n ( ~ ( t )  + t)dt, Oe [ - z ,  z], 
0 

(f(v~) = (-~h, ~), v ~ �9 [ - z ,  z ] ,  
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where the function h is defined by h(v~)=logi2(e~O) I (OeT).  Moreover we 
have: 

(4.16) M(D) is a convex set if and only if cf'(O) I> - 1 ,  v~e [0, z] .  

PROOF. - Since ~ e  C ~ (D) and since 2 never vanishes in D, it follows that 
cp e C ~ (T). We also have that relation (4.3) implies (4.12). By (3.5) we have: 

d ]2(ei~)l-2 _ 2gim[eie2(eie)] = d-~ i~(e~) l -2  _ 2gl2(eie)t sin (v~ + of(O)) = 0. 
dO 

Since 2(1) = 1 and by the identity: 

we obtain relation (4.14). Taking the limit when r 1' 1 in relation 4.5, it follows: 

(lim i ~ -- I ~ ( e i t ) t  dt) 12(e~e)lexp(icf(O)) = 12(e~) I exp I Q~(O t)log \ r  ~ 1 2"~ 

hence (recalling that ~(0) = 0 and by the fact that ],t~(eit) I is an even function and the 
function t---) Q~(t) is an odd function): 

~(v ~) = lira 1 f $1 ~ - Q~(~- t)l~ 

and by the property (4.6), we obtain relation (4.15). Since: 

dO 

and, recalling relation (3.4), we obtain that Im [e~s > 0 (0 ~]0, zc[), which eas- 
ily implies (4.13). 

Recalling Proposition 4.2, we obtain that M(D) is a convex set ff and only if the 
function O-~arg[e i~2(e~) ]  = v ~ + cp(~) is non decreasing. This fact concludes the 
proof of the present Proposition. �9 

REMARK 4.6. - Relation (4.15) gives a representation of the argument of the bound- 
ary value of 2, that is the value of ~, in terms of the boundary value of 121. We also 
remark that relation (4.15), connected with equality (4.14), suggests a fixed point pro- 
cedure to characterize the value of ~. Actually, if we propose a starting value of cf on 
T = 9D, we can evaluate the value of i~(e~)  I (using relation (4.14)). Then replacing 
this value in (4.15), we must find again the starting value of of. This fixed point proce- 
dure will be used to study the present problem (see later). This method will also be 
employed for the numerical treatment of the present problem, m 
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b) Weak formulat ion.  

Let  us introduce the following linear space: 

x =  {~ e C~ R): ~(0) = - / ~ ( - 9 ) ,  9 e  [ - ~ ,  z]} ,  

with the norm: 

(4.17) ][tt]] = max{ ]tt(O)], 0 �9 [ - z ,  z]} .  

Then (X, I] []) is a Banach space. Define now: 

:: { t te  X: 0 < it(t) + t < z ,  t e]0, ~[}, 

= {it eX:  t t ( t ) - t~ (s )  1> s -  t, 0 ~< s ~< t ~< z} .  

Later  we will also need the set ()[ 1> 0): 

x~ = {~ �9 x:  0 ,< 9 +/~(0) -< z + e()[), 9 �9 [0, ~]}, 

where f(0) = z / 2  and, if)[ > 0, f(~) = min {z/2 ,  1/(6~z)}. Notice that  g~ c 3C~ r X ()[/> 
/> 0). Le t  us also introduce the space: 

~3 = {h e C~(T, R): h(0) = 0, h(O) = h ( - 0 ) ,  0 �9 [ - z ,  z]} 

with the norm: 

(4.18) [Ihll~ = max { Ih ' (9) [ ,  9 �9 [ - z ,  z]} .  

The space 9,  with this norm, is a Banach space. We can now introduce the following 
operator S~ : X~ -~ ~ ()[ I> 0), defined by: 

1( 
(4.19) (Sztt)(9) = - F log  1 ) + 3)[ I sin (it(t) + t) dt . 

0 

For  every tt �9 X~ the function S~tt has a meaning since the argument  of log is always 
1> 1/2. Since the function tt is an odd function, we have that  (Sgtt)(O) = (Sgtt)(9 + 2z) 
(9 e R). Hence S~: 5C~---> c 9 is well defined. Moreover we have: 

PROPOSITION 4.7.  - Given )[ I> 0, for every t~ �9 X~ (hence for all tt �9 g~) we have that  
-~Sxtt e 5C. 

PROOF. - Since the function tt is an odd function, we obtain that  (Szt t)(9)= 
= (Sx/D( - 9) (0  ~ T).  Hence (~Sz/~)(9) = - (-~S~tt)( - 9). �9 

Let  us now consider the :following: 

PROBLEM W. - Weak formulat ion.  Given g I> 0, we look for a function c; e g~ such 
that  ESg~ = cp. �9 
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Problem W and Problem B (or Problem A) are equivalent as stated by the 
following: 

THEOREM 4.8. - We have: 

i) if ~ is a solution of Problem B, then the function cf defmed in (4.11) (the 
function 2 being introduced in (4.1)) is a solution of Problem W. 

ii) given cp solution of Problem W, if we put: 

[li ] ~(re ~)  = exp H~(O - t)Sgq~(t)dt , (r, O) e [0, 1[ x [ - ~ ,  ~],  
- -ST 

then the function : ~ d H ( D ) ,  such that  2 C ' = i ~  with ~ ( O ) = 0 ,  is a solution of 
Problem B. 

iii) we have that  ~'(D) is a convex set if and only if ~ e g~o. �9 

Par t  i) of Theorem 4.8 is an ob~ous consequence of Proposition 4.5. Par t  iii) is im- 
plied by parts i) and ii) and by (4.16). To prove part  ii) we need some preliminary 
results. 

LEMMA 4.9. - I f  g t> O and if cf e :~g with -~Sgcf = c;, then cp e C ~ (T). Moreover 
there exists a sequence k~ > O such that, for all 2 e [0, g] and for all cpz e Xg verifying 
ZSz cfz = ~ ,  we have !1~ I1~,, < k~. 

PROOF. - I t  is enough to prove that  for all n e N,  we have that  c;~ belongs to a 
bounded subset of cn '~ (T ) .  Since ~ E 2Cg, then c;~ belongs to a bounded subset of 
C O (T), hence S~ cf~ belongs to a bounded subset of ~ and then, by (4.10), we can deter- 
mine k0 > O such that  !1~o;~ II0, a < k0. 

By induction, we assume that  there exists ks > 0 such that  Ilcf~ll~, a < kn. Then 
S~cf~ belongs to a bounded subset of C ~§ 1, a (T) and then, by (4.9) and (4.10), there 
exists ks § > O such that  Ilcf~ I1~ + 1, a < kn + 1 .  �9 

PROOF OF P A R T  i i )  OF THEOREM 4.8. - By Lemma 4.9, if ~ is a solution of Problem W, 
it follows that  ~ e C ~ (T). Using the fact that  cp e X and t + cp(t) e]O, z[ (t e]0, z[), it 
follows that: 

o 
I sin(t + q~(t))dt >1 O, O e  [ - ~ ,  z ] ,  

0 

hence we obtain that  Sgcp e C ~ (T). Put  now: 

7~ 

~ ( r e  ~~ = ~ H~(O - t)Sgq~(t)dt ,  (r, O) e [O, 1[ x [ - s ~ ,  ~] ,  

we have that  Re :X is a harmonic function in D which has C ~ boundary value given by 
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Sa~0. Then R e ~ e C |  and so : ~ e H ( D ) ~  C~(D). This result  implies that  2 =  
= exp (:~) e H(D) ~ C ~ (D). We easily obtain that  (~ e [ - z ,  z])~ 

(4.20) 12(e~)l  -~ = exp( - 3S~(v~)) = 1 + 3 g I sin (t + of(t))dt ~ O, 
o 

(4.21) (a rg2)(e  io) = ~(v~), v ~ e [ - z ,  z ] ,  

(4.22) 
m 

2(~)  = 2(w), w e D .  

If  we introduce the function :~ by the conditions ~ '  = i2  with ~ ( 0 )  = 0, then we 
have that  ~ ~ H(D) ~ C ~ (D) and that (3.1) and (3.3) hold. By (4.20) and (4.21), we 
have ~(1)  = 12(1) I exp (i~(0)) = 1. Since s never vanishes, we obtain that  2 ( r )  > 0 
for all r e  [ - 1 ,  1]. Then ~ C ' ( 1 ) - - i 2 ( 1 ) =  i and relation (3.2) is proved too. We also 
have: 

d :)C(eiO) = ~,(eiO)ei~i = _2(eiO)eiO, 
dv~ 

hence (since ~ e g~): 

I m [ ~ o ~ ( e i O ) ]  = - I m I 2 ( e i O ) ] e  i(e*~(~))= -12(eiO)l  sin(O + cp(~))< 0, Oe  [0, ~] 

and (3.4) follows. By (4.20) we obtain: 

~ 0  3 ] 2(ei~) ] 3 ] r ( e i e ) l  -2 t ~ ( e i e ) ]  - 1  - -  - -1 d-~ Is = 3gsin (of(#) + v~), 

hence: 

d i~(ei~)l-2 = 2gl~(ei~)lsin(cp(O ) + v~) = 2 g I m [ ~ ( e ~ ) e ~ ] .  
dv~ 

Since 2(e  i~) = _ i:~' (e ie), it follows: 

d 
dO IM'(eie)l-2= - 2 g  Im[i:~'(eiO)eiO], 

which implies relation (3.5). 
It  only remains to prove that :~ is a conformal map on D. To this end, we begin 

proving that  R e : ~ ( w ) <  () for all w e D *  = { w e D :  I m w  > 0}. By (3.3), already 
proved, we have that  RePC(x) = 0 for all x E [ - 1 ,  1]. By contradiction, if Re :~  has a 
non negative maximum in D* ,  then (using the maximum principle for harmonic func- 
tions) there exists ~ e]0, .n[ such that: 

Re~C(e i~) ~ 0; R e ~ ( e  i~) I> ReM(eie) ,  0 e]0, z[ .  
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By the Hops principle ([9], Th. II,7), we obtain that: 

3 R e ~ ( e i ~  ) _  3 I m ~  
~rr 9~ (ei~) > 0,  

which gives a contradiction compared with (3.4). Hence Re ~ ( w )  < 0 for all w e D~.  
Similarly we can prove that  R e ~ ' ( w ) > 0  for all w e D *  = { w e D :  I m w <  0}. 
Hence: 

(4.23) R e ~ ( e  ~ )  > 0 if v~e] - z ,  0[, Re:~(e  ie) < 0 if v~ e]0, ~[.  

We can now prove that  :~ is a conformal map. By (3.4), the map v~ e [0, z ]  --> 2C(e ~e ) is 
an injective map. Similarly the map v ~ e [ - z ,  0]--~ ~ ( e  ie) is an injective map too. 
Using relations (4.23), it follows that  the map ~ e [ - z ,  z ]  -~ :~'(e i~) is a Jordan  closed 
curve. Since M(0) = 0 (multeplicity 1), we can conclude that  ~ is a conformal map in 
D (see [8], Th. 1.9). �9 

5. - An existence result for the solutions of  Problem W. 

We shall now prove the following existence result: 

Theorem. 5.1. - Fo r  every  g >I 0 there  exists at least a solution of Problem 

W. �9 

REMARK 5.2. - Recalling Theorems 3.1 and 4.8, Theorem 5.1 states that, for every 
g I> 0, there  exists at least a physical solutions t9 defined by Problem A. �9 

We now begin the proof  of Theorem 5.1. 

PROPOSITION 5.3. - Given g > 0 and ~ e [0, g], if # e 3:~ verifies relation -~S~# = #, 

then ,u e g~. Moreover if )~ > 0, then t~(#) > 0 (v~ e]0, z[). �9 

I f  )~ = 0 and -~S0/~ = Z, it easily follows that  tt - 0. Then the s ta tement  of the 
Proposition 5.3 is obvious in the case ;t = 0. Hence we can assume )~ > 0 in the proof  of 
Proposition 5.3. We need now the following auxiliary function (where # E 2C verifies 
the hypothesis of Proposition 5.3): 

C1; ) (5.1) G(re ie) = reieexp Hr(v ~ - t)(Sztt)(t)dt , (r,  v~) 
\ 

We can easily control (by Lemma 4.9) that: 

e [ 0 ,  1[ •  x ] .  

_ _  F 

(5.2) G e H(D)  N C ~ (D); G(~) = G(w), w e D .  
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The first step of the proof of Proposition 5.3 is contained in: 

LEMMA 5.4. - Given t t e  X verifying the hypothesis of Proposition 5.3, we have that  
v~ + ~(O) < Jr (0 e]0, x[). 

PROOF. - By contradiction, we can assume that  there exists v ~* ~ ] -  z ,  z[ such 
that: 

(5.3) z<<.O*+It(O*)<<.3z/2, ~* + tt(v~*) ~> 0 + kt(O), O e [ - z ,  z ] .  

We can now consider the restriction of the function G to the open set: D + =  
= {w e D: I m w  > 0}. Since G never vanishes in D + , we can consider a branch of the 
logarithm of G on D § , which is given by: 

log G(w) = log ]G(w) I + i arg G(w). 

The function a rgG can be chosen such that  (extended to a smooth function in 
D + -{0}) :  

arg G(e i~ = ~ + #(~), 
z ,  ff x e [ - 1 ,  0[, 

0 e [ - z , z ] ,  a r g G ( x ) =  O, f f x e ] 0 , 1 ] .  

It  is also easy to prove that: 

(5.4) max lim arg G(w) ~< z,  ~ e [ - 1, 1]. 
w--~  

The function arg G verifies: 

(5.5) z<~argG(eiO*)=t~*+tt(t~*); argG(eiO*)>>.argG(w), w e d  + - { 0 } .  

By the Hops principle ([9], Th. II,7), we obtain: (gargG/ar)(e ~* ) > 0. Since the func- 
tion arg G is the harmonic conjugate of the harmonic function logIG(w) l , we obtain 
that  (dlog I GI/dO)(e ie*) < 0. On the other hand, we easily obtain that: log I G(eiO) I = 
= (S~/t)(0). Hence: 

d l o g  IGI (eiO) = _ 
dO 

)~ sin (v~ +/~(v~)) 

1 + I sin (t + tt(t)) dt 
0 

and this relation implies (recalling (5.3)) that  (dlog I GI/dO)(e ~~ >1 O, which gives a 
contradiction. The proof of Lemma 5.4 is complete. �9 

Let  now: 

i 

= {/~ ~ 3C: 0 ~/~(t) + t ~ ~, t ~ [0, ~c]}. 
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LEMMA 5.5. - W e  h a v e  t h a t :  

i) if tt E g/~ and )~ > O, then  (~S~tt)(~) > 0 (0 ~] - z ,  ~r[) ; 

ii) if tt ~ g~ and 2 t> 0, then  (3S~tt)(~)  I> 0 (v ~ e [ -zc ,  :~]). 

PROOF. - We only p rove  p a r t  i), since the  p roof  of  p a r t  ii) is similar. Us ing  the  hy-  

potheses ,  we can easi ly ver i fy  that :  

Consequent ly :  

(5.7) (S~/~)(t2) < (&/~)( t l )  < o ,  if o < I t l l  < It21 < :~, ;- > 0 ,  ~ e : ~ .  

At  las t  we  have: 

(5.8) (S~z) ( t )  = (Sa t t ) ( ] t ] ) ,  if I tl <<. z ,  ;~ > O, t t ~  g~.  

W e  can prove  now: 

(5.9) (S~tt)(v ~ + t) < (S~tt)(~ - t) < 0 ,  v~, t e]O, z [ ,  2 > O, t t e  3E. 

To prove  this re la t ion we m u s t  consider  th ree  cases:  

Firs t  case: ~ - t, ~ + t e]  - z ,  ~[. This case is obvious. 

Second case: ~ - t e ] O , n ] ,  ~ + t e [ z ,  2:~[. This fact  implies 0 < v ~ - t < z -  

- t < 2 z  - ~ - t < ~. Hence  (by the  periodicity) (Sgtt)(v ~ - t) > (Sgt~)(2z - v ~ - t) = 

= ( S g # ) ( - O  - t) = (Sgt t ) (# + t). The  second case is proved.  

Third  case: 0 -  t ~] - z ,  0], v ~ + t e [z ,  2x[.  This fact  implies 0 < - ( ~ -  t) < 

< 2~  - ~ - t < z .  Hence:  (Sgtt)(~ - t) = (Sg#)( - (0  - t)) > (S~t t ) (2z  - 0 - t) = 
= (Sgtt)(~ + t). This comple tes  the  p roo f  of (5.9). 

as:  

By an easy  calculation we can ver i fy  tha t  the  value (ESgtt)(~) can be wr i t t en  

1 j [  ( sg~)(a  + t) - ( s~#)(o  - t) 
(-~Sg#)(~) - ~ ~ -~ / -~  d t .  

0 

/~ e : ~ ;  0 +/~(v~) < z ,  0 e]0 ,  z [ .  

CONCLUSION OF THE PROOF OF PROPOSITION 5.3. - If /~ ~ X satisfies the  hypo theses  
of Propos i t ion  5.3, thanks  to L e m m a  5.4 and 5.5, we  obtain tha t :  

Us ing  this r ep resen ta t ion  of  (-~Sg/~)(0) and recal l ing relat ion (5.9), we can complete  

the  proof,  u 
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Using Lemma 5.5, it follows that  ff(t~) i> 0 (t~ �9 [0, z]), hence: 

0 ~< ~ ~< 0 + if(a) < z ,  t~ �9 z[ ,  

which implies that  i t � 9  gr~. If  0 e]0, z[ and ~ > 0, it follows that/~(t~) > 0. Proposition 
5.3 immediately follows. �9 

To conclude the proof of Theorem 5.1 we use a topological method based on Schae- 
fer's fixed point theorem (see, for instance, [7], Th. 4.4.11). 

D E F I N I T I O N  5 . 6 .  - Let  Z be a normed space and ~ a bounded subset of Z. A map- 
ping T: J1" ~ Z is called compact if: i) T is continuous; ii) T(~) is a compact subset 
of Z. �9 

D E F I N I T I O N  5 . 7 .  - Let  Z be a normed space and ~ a bounded subset of Z. The map- 
ping ~ :  [0, 1] x 31"--->Z is called a homotopy of compact transfarmations on N if: 

i) for all t �9 [0, 1] the map ~] �9 Ji" --* ~ ( t ,  ,/) �9 Z is compact. 

ii) for all 7/�9 ~ the map t �9 [0, 1] --> ~ ( t ,  ~/) �9 Z is continuous. �9 

THEOREM ( S C H A E F E R ) .  - Let  Z a normed space and ~ a bounded ,  closed, convex 
subset of Z containing the origin in its interior. Le t  W: [0, 1] x ~ --e Z be a homotopy 
of compact transformations such that: 

(5.10) ~ ( 0 ,  9A ~) cN;  w( t ,  ~]) ~ ~],(t, ~])�9 [0, 1[ x & ~ .  

Then there exists ff �9 3r such that  # = ~ ( 1 ,  it). �9 

I f g  = 0, Problem W has one and only one solution given by ff - 0. Then we can as- 
sume g > 0. Put  now Z = X r C 1 (T), which is a Banach space with the norm: 

IMI  = m a x  { a 

Put also (k  I being the positive constant introduced in Lemma 4.9): 

which is a bounded, closed, convex subset of Z containing the origin in its interior. Let  
also ~ :  [0, 1] • Jr Z defined by ~ ( t ,  ~]) = ZStg~]. Given t �9 [0, 1], the map ~] �9 Jr ---~ 
----> Stg y �9 C 2 (T) is continuous. By (4.10) the map ~] �9 N ~ EStg ~ �9 Z is continuous and 
compact. Similarly we can prove that, given y �9 3 ,  the map t �9 [0, 1] ~ ~Stg~] �9 Z is 
continuous. This means that  the map ~ :  [0, 1] • N ~ Z is a homotopy of compact 
transformations. We also have that  ~ ( 0 ,  X ) =  {0} c X ,  hence the former relation 
(5.10) is fulfilled. By Lemma 4.9 and Proposition 5.3, we also have that  i f #  �9 X verifies 
EStgtt = Z, then/~ belongs to the interior of 3r Then we have ~ ( t ,  ~]) ~ ~] (t �9 1[, 
~7 �9 8Jr and so the latter relation (5.10) is satisfied too. 

Using Schaefer's Theorem, we can conclude that  there exists tt �9 ~ such that  
/~ = ~ ( 1 ,  it) = -~Sg/~. This completes the proof of Theorem 5.1. �9 
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6. - An e x i s t e n c e  and u n i q u e n e s s  resu l t  for  the  s o l u t i o n s  o f  P r o b l e m  W. 

Put now: 

D'~ 1 : {/s E X :  I A t ( t ) - A t ( s ) l  -< I t -  si} .  

We have: 

PROPOSITION 6.1. - Given g i> 0 sufficiently small, if cf is a solution of Problem W, 
then cf e ~ 1 .  [] 

To prove this result we need: 

LEMMA 6.2. - Given g I> 0 and At egg ,  we have: 

a(.~Sg/~) <~ 2g[(1 + 6gz)(a(tt) + 1) + 3g], 

1 ; F(t) - F(-t)  

(6.1) 

where: 

(6.2) a(/~) = max{ IAt(t~) - , u ( ~ ) i / t #  - ~1, 0 ;~ ~}. 

PROOF. - If  F(t) = (Sgtt)(O + t) - (SgAt)(~ + t), it follows that: 

1 dt <<. -~ 

where i~(t)i < I t [ .  By an easy calculation we have: 

IF' (~(t)) I dt, 

IF'(~(t))[ <<. I ~ -  ~l[g(1 + 6gz)(a(/~) + 1) + 392], 

which completes the proof. [] 

PROOF OF PROPOSITION 6.1. - Let  cp a solution of Problem W. Thanks to Lemma 6.2, 
we obtain: 

a(cf) ~< 2g[(1 + 6gz)(a(~)  + 1) + 3g]. 

Recalling that  g >I 0 is small enough, we can conclude the proof. [] 

We can now prove the main result of the present section: 

THEOREM 6.3. - If  g I> 0 is small enough, then Problem W admits one and only one 
solution cp e Dg~. 

PROOF. - Using Lemma 6.2 we easily obtain that  (ESg)(ggl ) c ggl. By a simple cal- 
culation we obtain: 

lls ,  - -< g ( 1  + 6g )tl,  - Atll, At 

where the norms il H and II tll are defined in (4.17) and (4.18). Recalling (4.10), it follows 
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that  the map •: cl([-]g,  z])--> C~ ~]) is a linear and continuous map, hence 

there  exists a constant C > 0 such that  ]l-~hll ~< C]lhlh for all h e % Therefore:  

Llzs.~ - z s ~ l l  -< c I I s ~  - s ~ l l ,  -< Cg(1 + 6~)11~  - vii ,  7 , /2  E DT~ 1 

and then the map SSg : grCl --~ :~rcl is a contraction mapping (if g is small enough). This 

completes the proof. �9 

REMARK 6.4. - Recalling Theorem 4.8, Theorem 6.3 states that,  if g i> 0 is small 
enough, then there  exists one and only one physical solution t~ defined by Problem A. 
Moreover, by the par t  iii) of Theorem 4.8, since cf e 3E1 r g~o, ~9 is a convex subset 

of C. �9 

i 
(z=x+iy) 

--1 1 x 

- 1  

Fig. 2. - Monotone behaviour of the set t~ as a function of g. 
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7. - S o m e  n u m e r i c a l  e x p e r i m e n t .  

The weak formulation of the problem can be used to obtain an heuristic approxi- 
mation of the problem. Discretizing the integral which appears in the definition (4.19) 
of operator S~, we can introduce an approximate operator S~. In a similar way we can 
define an operator -~h start ing from the definition (4.7) of operator •. Setting now 
cfo = 0 and computing (by the program MATLAB) cf~+l = _ ~ h S ~ ,  we can experi- 
mentally obtain, after 7 - 8 iterations, that  I ~  + 1 - ~ 1 < 10-5. Choosing the values 
of g = 0, .3, 1, 5, 50, we can determine the corresponding shape of tg. The results, 
printed using the software POSTSCRIPT and described in Figure 2, show us a mono- 
tone behaviour of ~2 as a function of g: I am not able to verify this property from the 
theoretical point of view. 
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