Abstract. - We give here an existence result of minimizers for a class of one dimensional integrals of the Calculus of Variations with non convex, non coercive integrands.

1. - Introduction and main result.

Let us consider the functional

\[F(u) = \int_0^1 f(x, u(x), u'(x)) \, dx \]

defined in the class \(\mathcal{W}_p = \{ u \in W^{1,p}(0, 1): u(0) = 0, u(1) = \lambda, u' \geq 0 \, \text{a.e.} \} \) with \(\lambda \in \mathbb{R}_+ \) and \(p \geq 1 \). The integrand \(f = f(x, s, \xi) \) is not assumed to be neither coercive nor convex with respect to \(\xi \). The closure of \(\mathcal{W}_p \) in the (either strong or weak) topology of \(W^{1,p}_{\text{loc}}(0, 1) \) is given by

\[\overline{\mathcal{W}}_p = \{ u \in W^{1,p}_{\text{loc}}(0, 1): u(0) \geq 0, u(1) \leq \lambda, u' \geq 0 \, \text{a.e.} \}, \]

where the values \(u(0) \) and \(u(1) \) are defined by

\[u(0) = \inf_{x \in (0, 1)} u(x), \quad u(1) = \sup_{x \in (0, 1)} u(x). \]

The extension of \(F \) «by lower semicontinuity» from \(\mathcal{W}_p \) to \(\overline{\mathcal{W}}_p \) is the functional \(\overline{F} \) defined for \(u \in \overline{\mathcal{W}}_p \) by

\[\overline{F}(u) = \inf_{\{u_k\}} \left\{ \liminf_{k \to \infty} F(u_k): \{u_k\} \subset \mathcal{W}_p, \ u_k \rightharpoonup^w u \right\}. \]

Let us precise the hypotheses on the integrand function \(f \):

\[(*) \text{ Entrata in Redazione il 10 dicembre 1990, versione finale ricevuta il 7 gennaio 1991.} \]

Indirizzo degli AA.: Dipartimento di Matematica Pura e Applicata, Facoltà di Scienze, Università dell'Aquila, 67100 L'Aquila, Italia.
This work was performed as part of a national research project supported by M.U.R.S.T. (40%).
Authors are members of G.N.A.F.A., C.N.R.
A1) \(f \) is a Carathéodory function on \([0, 1] \times R \times R\);
A2) there exist \(K \geq 0 \), a convex function \(h = h(\xi) \) and continuous functions \(a = a(x, s) \) and \(b = b(x, s) \) such that for every \(x \in [0, 1], s \in R, \xi \in R \)
 i) \(a(x, s) h(\xi) - K \leq f(x, s, \xi) \leq a(x, s) h(\xi) + b(x, s) \),
 ii) \(|\xi| \leq h(\xi) \leq L(1 + |\xi|^p), L \in R_+ \),
 iii) \(a(x, s) \geq 0 \).

Then the function \(f^{**} \) (which is the greatest function convex with respect to \(\xi \) and less than or equal to \(f \)) satisfies the same assumptions and the lower semicontinuous extension of

\[
G(u) = \int_0^1 f^{**}(x, u(x), u'(x)) \, dx, \quad u \in \overline{\mathcal{V}_p}
\]

to \(\overline{\mathcal{V}_p} \), can be represented as

\[
G(u) = \int_0^1 f^{**}(x, u(x), u'(x)) \, dx + \int_0^1 a(0, s) \, ds + \int_0^1 a(1, s) \, ds,
\]

where, for simplicity, we set \(\bar{h} = h_+ = h_- \),

\[
\bar{h}_\pm = \lim_{\xi \to \pm} \frac{h(\xi)}{\xi},
\]

(see [B.-M., Theorem 2.4]).

We are interested in the existence of solutions, for the following problem:

\[
\min \left\{ \int_0^1 f(x, u(x), u'(x)) \, dx + \int_0^1 a(0, s) \, ds + \int_0^1 a(1, s) \, ds \right\}, \quad u \in \overline{\mathcal{V}_p}
\]

where \(\overline{\mathcal{V}_p} \) is defined by (1.2).

Usually existence for a non convex problem is achieved in two steps: find a minimizer \(u_0 \in \overline{\mathcal{V}_p} \) of the relaxed functional (here (1.3)) and then prove that, for such \(u_0 \), \(f(x, u_0(x), u_0'(x)) = f^{**}(x, u_0(x), u_0'(x)) \) a.e. in \(\Omega \).

Therefore we need assumptions on \(f^{**} \) in order to prove existence of minima of the functional (1.3) in the class (1.2):

B1) \(f^{**} \) admits continuous partial derivatives

\[
f_{\xi \xi}^{**}, f_{\xi \xi}^{**}, f_{\xi \xi \xi}^{**}, f_{\xi \xi \xi \xi}^{**};
\]

B2) there exist an exponent \(p \geq 1 \) and a function \(M: R_+ \times R_+ \to R_+ \) such that for \(\varepsilon, r > 0 \),

\[
|f_{\xi \xi}^{**}(x, s, \xi)| \leq M(\varepsilon, r)(1 + |\xi|^p), \quad \forall (x, s, \xi) \in [\varepsilon, 1 - \varepsilon] \times [-r, r] \times R.
\]
REMARK 1. - The assumptions B_2 implies that the functions defined by

\[(1.5) \quad \varphi = \varphi(x, s, \xi) = f^{**} - f_{s}^{**} - f_{\xi}^{**},\]

\[(1.6) \quad \psi = \psi(x, s, \xi) = \varphi_x + \varphi_s \xi,\]

are continuous.

Existence results for problem (1.4), when the integrand f is convex, are proved in [B.-M.]. Here the authors consider both the cases where $\varphi = f_s - f_{s\xi} - f_{\xi\xi}$ has a definite sign or it changes its sign.

The non convex case is considered in [M.2] under the assumption that the function φ given by (1.5) has a definite sign.

Our aim in this paper is to prove (see the theorem below) an existence result for (1.4) in the non convex case when φ changes its sign.

This framework could be a general approach to prove existence of a minimizer for the following non convex functional related to the problem of cavitation in non linear elasticity:

\[(1.7) \quad \text{Min} \left\{ \int_0^1 r^{n-1} \Phi \left[\frac{v}{r}, v' \right] dr + \bar{h} \frac{[v(0)]^n}{n} : v \in W_{\text{loc}}^{1,p}(0, 1); v \geq 0, v(1) = 0, v' \geq 0 \text{ a.e.} \right\},\]

where the energy $\Phi = \Phi(\gamma, \xi)$, satisfies assumptions of type A_1, A_2, B_2 and \bar{h} is defined as above. The functional to minimize in problem (1.7) has first been considered by P. MARCELLINI in [M.1].

Up to now, no existence result seems to be applicable to problem (1.7), when Φ is not convex with respect to ξ.

The problem of cavitation has been first studied by J. BALL in [B.1] and [B.2].

More exhaustive references on the subject can be found in [M.2].

We now state our main theorem.

THEOREM. - Assume that $f(x, s, \xi)$ satisfies A_1, A_2, B_1 and B_2 and that the functions φ and ψ defined in (1.5) and (1.6) satisfy the following assumption

\[C) \quad \begin{align*}
&\text{i)} \quad \varphi(x, s, 0) \equiv 0 \quad \forall x, s, \\
&\text{ii)} \quad \varphi(x, s, \xi) = 0, \xi \neq 0 \Rightarrow \xi \varphi(x, s, \xi) > 0.
\end{align*}\]

Then the variational problem (1.4) has a solution u_0 which belongs to $W_{\text{loc}}^{1,\infty}(0, 1)$ and satisfies the following estimate

\[(1.7) \quad |u_0(x)| \leq 4 \frac{A}{\varepsilon} \quad \forall x \in [\delta, 1 - \delta], \quad \varepsilon \in \left[0, \frac{1}{2}\right].\]
REMARK 2. - Let us point out that, if $h = + \infty$ and $a(0, s), a(1, s)$ are almost everywhere positive, the minimum u_0 satisfies $u_0(0) = 0, u_0(1) = \lambda$ and therefore u_0 is also a minimum of the functional F defined by (1.1) in the class W_p.

Moreover our theorem also looks at the case where $f = f(x, s, \xi)$ grows at most linearly when $|\xi| \to \infty$.

REMARK 3. - The existence result in [B.-M.] is related to a convex integrand f such that $\varphi = f_\epsilon - f_{\varphi\xi} - f_{\varphi\xi} \xi$ changes its sign according to the following assumption:

$\forall \xi \in [0, 1/2]$ and $r > 0$ there exists $k_0 = k_0(\varepsilon, r) > 0$ such that for every (x, s, ξ) belonging to $[\varepsilon, 1 - \varepsilon] \times [-r, r] \times R$ with $|\xi| > k_0$, if $\varphi(x, s, \xi) = 0$ then $\xi \varphi(x, s, \xi) > 0$.

The plan of the paper is the following: in Section 2 we define approximating problems which are convex and coercive and we prove some properties of their solutions.

In Section 3 we prove some geometrical properties (concavity-convexity properties) of the approximating solutions defined in Section 2 and a priori estimates.

Finally, in Section 4, we prove the main theorem.

2. - Approximating solutions, monotonicity properties.

In this section a double approximating scheme is introduced in order to obtain smooth convex and coercive integrand functions. We consider

\begin{equation}
\tag{2.1}
g_{\varepsilon k}(x, s, \xi) = \alpha_k s \ast f_{**}(x, s, \xi) + \varepsilon (1 + |\xi|^2)^{q/2} + k(\xi^-)^q
\end{equation}

where $q \geq \max \{p, 4\}, \alpha = \alpha(\varepsilon)$ is a positive mollifier with compact support in $[-1, 1]$, $\alpha_k(\varepsilon) = k\alpha(k\varepsilon)$ and $\xi^- = -\min \{\xi, 0\}$.

The variational problem

\begin{equation}
\tag{2.2}
\min \left\{ G_{\varepsilon k}(u) = \frac{1}{0 \leq} g_{\varepsilon k}(x, u(x), u'(x)) \right\} \text{\text{d}}x: u \in W^{1, q}(0, 1), u(0) = 0, u(1) = \lambda
\end{equation}

related to the convex and coercive integral $G_{\varepsilon k}(u)$ admits a solution $u_{\varepsilon k}(x)$ which satisfies the properties stated in the following lemma.

Lemma 2.1. - For $\varepsilon \in [0, 1]$ and $k > 0$, $u_{\varepsilon k} \in C^2[0, 1]$ and satisfies

\begin{equation}
\tag{2.3}
\frac{d}{dx} [g_{\varepsilon k}(x, u_{\varepsilon k}, u_{\varepsilon k}')] = g_{\varepsilon k}(x, u_{\varepsilon k}, u_{\varepsilon k}').
\end{equation}

Moreover, for fixed $\varepsilon \in [0, 1], \|u_{\varepsilon k}\|_{L^\infty(0, 1)}$ is bounded uniformly with respect to k.
PROOF. - A classical argument due to Morrey (see Th. 1.10.1 in [Mo.]) provides solutions $u_{ek} \in C^3[0, 1]$ of the Euler's equation (2.3). The uniform C^1 bound of u_{ek} is obtained following the outline of the proof of Lemma 5.7 in [M.2].

LEMMA 2.2. The sequence $\{u_{ek}\}_{k \in \mathbb{N}}$, for fixed ε, is relatively compact in the weak topology of $W^{1, q}(0, 1)$: up to a subsequence, $\{u_{ek}\}_{k \in \mathbb{N}}$ weakly converges to a solution u_ε of the following minimum problem:

$$
\text{Min} \ \left\{ \int_0^1 g^\varepsilon(x, u(x), u'(x)) \, dx : u \in W^{1, q}(0, 1), u(0) = 0, u(1) = \lambda, u' > 0 \ \text{a.e.} \right\}
$$

where $g^\varepsilon(x, s, \xi) = f^{**}(x, s, \xi) + \varepsilon(1 + |\xi|^2)^{q/2}$.

PROOF. Let us begin by proving that the sequence $\{u_{ek}\}_{k \in \mathbb{N}}$ is bounded in the $W^{1, q}(0, 1)$-norm uniformly with respect to k.

Since u_{ek} solves the problem (2.2), for $v = \varepsilon x$, $v' \in (0, 1)$, we get

$$
G_{ek}(u_{ek}) < - G_{ek}(v) < C_1
$$

where C_1 is a positive constant independent of $\varepsilon \in [0, 1]$ and $k \in \mathbb{N}$.

By the growth condition on f (see i) in A_2) and the definition of f^{**}, we get

$$
\varepsilon \|u_{ek}'\|_{L^q(0, 1)} + k \|u_{ek}'\|_{L^q(0, 1)} - K \leq G_{ek}(u_{ek}) \leq C_1.
$$

This proves the boundedness of the sequence $\{u_{ek}\}_{k \in \mathbb{N}}$ in $W^{1, q}(0, 1)$. Then there exists $u_\varepsilon \in W^{1, q}(0, 1)$ which is the weak limit in $W^{1, q}(0, 1)$ of $\{u_{ek}\}_{k \in \mathbb{N}}$ (up to a subsequence).

By (2.5), since $k \|u_{ek}'\|_{L^q(0, 1)}$ is bounded for each $k \in \mathbb{N}$, then the negative part of u_{ek}' converges strongly to zero in $L^q(0, 1)$ and thus $u_\varepsilon' \geq 0$ a.e. in $[0, 1]$.

We show now that u_ε solves problem (2.4).

Indeed, by Lemma 2.1, u_{ek} is bounded in $L^{\infty}(0, 1)$ uniformly with respect to k and since $\varepsilon k f^{**}$ converges uniformly on bounded sets of $[0, 1] \times \mathbb{R} \times \mathbb{R}$, then we have, for $\varepsilon \in [0, 1/2]$,

$$
\lim_{k \to +\infty} \int \left\{ \varepsilon k f^{**}(x, u_{ek}, u_{ek}') - f^{**}(x, u_{ek}, u_{ek}') \right\} \, dx = 0.
$$

Therefore, using lower semicontinuity arguments, for $v \in W^{1, q}(0, 1)$ such that
v(0) = 0, v(1) = λ, v' ≥ 0 a.e. in [0, 1], we get

\[
\int_0^1 g^\varepsilon(x, u_\varepsilon, u'_\varepsilon) \, dx \leq \liminf_{k \to +\infty} \int_0^1 g^\varepsilon(x, u_{\varepsilon k}, u'_{\varepsilon k}) \, dx =
\]

\[
= \liminf_{k \to +\infty} \left\{ \varepsilon k + f^{**}(x, u_{\varepsilon k}, u'_{\varepsilon k}) + \varepsilon(1 + |u'_{\varepsilon k}|^2)^{\alpha/2} \right\} \, dx \leq
\]

\[
\liminf_{k \to +\infty} G^{\varepsilon k}(u_{\varepsilon k}) \leq \liminf_{k \to +\infty} G^{\varepsilon k}(v) = \int_0^1 g^\varepsilon(x, v, v') \, dx.
\]

By the monotone convergence theorem, as ε → 0 we get the result.

A strict monotonicity property of u_ε is stated in the following lemma.

Lemma 2.3. For fixed ε, the functions u_ε are strictly increasing in (0, 1).

Proof. First of all, let us prove that there not exists any interval I ⊆ [0, 1] such that u''_ε(x) = 0 ∀x ∈ I, where u_ε is defined in the previous lemma.

Indeed, if such an interval I exists, set I = (x_1, x_2) ⊆ [0, 1], u_ε solves Euler's equation in weak form and also in the form

\[
g^\varepsilon(x, u_\varepsilon(x), u'_\varepsilon(x)) = \text{const} + \int_{x_1}^{x_2} g^\varepsilon(t, u_\varepsilon(t), u'_\varepsilon(t)) \, dt, \quad \forall x \in (x_1, x_2)
\]

Differentiation with respect to x, taking into account that u'_ε(x) = 0 ∀x ∈ (x_1, x_2), gives

\[
f^{**}_\varepsilon(x, u_\varepsilon(x), 0) = f^{**}_\varepsilon(x, u_\varepsilon(x), 0) \quad \forall x \in (x_1, x_2),
\]

which contradicts the assumption i) in C).

Since, by Lemma 2.2, we know that u'_ε ≥ 0 a.e. in [0, 1], u_ε is an increasing function in [0, 1]. Indeed the first part of the proof implies that it is strictly increasing.

As a consequence, we get

\[
0 = u_\varepsilon(0) \leq u_\varepsilon(x) \leq u_\varepsilon(1) = \lambda \quad \forall x \in [0, 1].
\]

3. Geometrical properties and a priori estimates for approximating solutions.

This section is devoted to the study of concavity-convexity properties of the approximating solutions u_{εk} and to the related a priori estimates. Both of them will hold true for the limit function u_ε.
Let $\varepsilon \in [0, 1/2]$ and $\varepsilon \in [0, 1]$ be fixed. For $k \in N$, define the following subsets of $]2, 1 - \varepsilon[$

(3.1) $Y_k = \{x \in]2, 1 - \varepsilon[: u_{\varepsilon k}(x) \neq 0\}$,

(3.2) $Z_k = \{x \in Y_k : u_{\varepsilon k}(x) = 0\}$.

By Lemma 2.3, $\{k \in N : Y_k \neq \emptyset\}$ is infinite.
In order to prove the stated properties of $u_{\varepsilon k}$, we need the following lemma.

Lemma 3.1. - If the set $\{k \in N : Z_k \neq \emptyset\}$ is infinite, up to a subsequence, the functions $u_{\varepsilon k}$ have a unique global minimum point x_k with $u_{\varepsilon k}(x_k) > 0$.

Proof. - Since $u_{\varepsilon k} \in C^3$, the Euler's equation (2.3) can be differentiated obtaining:

(3.3) $g_{\varepsilon k} u_{\varepsilon k} = \alpha_k f_{\varepsilon x}^* - \{\alpha_k f_{\varepsilon x}^{**} + u_{\varepsilon k} \cdot \alpha_k f_{\varepsilon x}^{**}\}$

and in the set Z_k:

(3.4) $g_{\varepsilon k} u_{\varepsilon k} = \alpha_k (f_{\varepsilon x}^{**} + f_{\varepsilon x}^{**} u_{\varepsilon k}') - \alpha_k f_{\varepsilon x}^{**} -$

$- u_{\varepsilon k}'(\alpha_k f_{\varepsilon x}^{**}) - \alpha_k (f_{\varepsilon x}^{**} u_{\varepsilon k}') - u_{k}(\alpha_k f_{\varepsilon x}^{**} u_{\varepsilon k}')$.

If we set

(3.5) $L_1(r) = \sup \{ |f_{\varepsilon x}^{**}(x, s, \xi)| : x \in [0, 1], |s| \leq r, |\xi| \leq r \}$,

(3.6) $L_2(r) = \sup \{ |f_{\varepsilon x}^{**}(x, s, \xi)| : x \in [0, 1], |s| \leq r, |\xi| \leq r \}$,

then for such values x, s, ξ, we have

(3.7) $|\xi f_{\varepsilon x}^{**} - \alpha_k f_{\varepsilon x}^{**}| =$

$= \left| \xi \int_R \alpha_k(t) f_{\varepsilon x}^{**}(x, s, \xi - t) dt - \int_R \alpha_k(t)(\xi - t) f_{\varepsilon x}^{**}(x, s, \xi - t) dt \right| \leq$

$\leq L_1(r + 1) \int_R |\alpha_k(t)| dt \leq \frac{L_1(r + 1)}{k} \int_R x(t) |t| dt \leq$

$\leq \frac{L_1(r + 1)}{k} \int_R x(t) dt = \frac{L_1(r + 1)}{k}$,

(3.8) $|\xi f_{\varepsilon x}^{**}(\xi) - \alpha_k f_{\varepsilon x}^{**} \xi^2| =$

$= \left| \xi \int_R \alpha_k(t) f_{\varepsilon x}^{**}(x, s, \xi - t)(\xi - t) dt - \int_R \alpha_k(t) f_{\varepsilon x}^{**}(x, s, \xi - t)(\xi - t)^2 dt \right| \leq$
\(L_2(r + 1) \int \left[|\xi_k(t)(\xi - t) - \alpha_k(t)(\xi - t)^2| \right] dt = \)

\(= L_2(r + 1) \int |\alpha_k(t)\xi - \alpha_k(t)t^2| dt \leq L_2(r + 1) \int |\alpha_k(t)| \xi - |t| |t| dt \leq \)

\(\leq (r + 1)L_2(r + 1) \int |t| \alpha_k(t) dt \leq \frac{L_2(r + 1)}{k} (r + 1). \)

By (3.4)-(3.8), for \(r \geq \sup_{k \to 0} \|u_{\bar{k}}\|_{L^\infty([0, 1])} \), taking into account the definition (1.6), we have, for \(x \in Z_k \),

\(|g_{k,2}^\xi u_{\bar{k}}'' - \alpha_k^* \varphi| \leq \frac{L_1(r + 1)}{k} + \frac{L_2(r + 1)}{k} (r + 1). \)

In a similar way, we can prove (see also (5.18) in [M.2])

\(|g_{k,2}^\xi u_{\bar{k}}'' - \alpha_k^* \varphi| \leq \frac{L(r + 1)}{k}, \)

where \(\varphi \) is defined in (1.5) and \(L(r) \) is defined by

\(L(r) = \sup \{ |f_{k,2}^\xi(x, s, \xi)| : x \in [0, 1], |s| \leq r, |\xi| \leq r \}. \)

Consider now the infinite set \(\{ k \in N : Z_k \neq \phi \} \). We can assume, possibly extracting a subsequence, that for each \(k, Z_k \neq \phi \). Let be \(x_k \in Z_k \), then \(u_{\bar{k}}(x_k) \neq 0, u_{\bar{k}}'(x_k) = 0 \) and \(\{ (x_k, u_{\bar{k}}(x_k), u_{\bar{k}}'(x_k)) \}_{k \in N} \) converges to some point \((x, s, \xi) \in [0, 1] \times [-r, r] \times \times [-r, r] \).

On the other hand, by the continuity of \(\varphi \) and (3.10) used for \(x = x_k \), \(\lim_{k \to \infty} \varphi(x_k, u_{\bar{k}}(x_k), u_{\bar{k}}'(x_k)) = \varphi(x, s, \xi) = 0 \)

therefore, by assumption i) in C), \(\xi \) must be different from zero, and by ii) in C), \(\xi \varphi(x, s, \xi) > 0 \) which implies definitively that \(u_{\bar{k}}'(x_k) \cdot \varphi(x_k, u_{\bar{k}}(x_k), u_{\bar{k}}'(x_k)) > 0 \). Now we use (3.9) and, taking into account that \(g_{k,2}^\xi \) and \(\alpha_k \) are positive, we conclude that definitively \(u_{\bar{k}}'(x_k) \) and \(u_{\bar{k}}''(x_k) \) have the same sign.

It follows that definitively \(x_k \) is a local minimum for \(u_{\bar{k}}(x) \) with \(u_{\bar{k}}'(x_k) > 0 \) if \(\xi > 0 \) or, definitively, \(x_k \) is a local maximum with \(u_{\bar{k}}'(x_k) < 0 \) if \(\xi < 0 \).

Indeed \(x_k \) is a strict global minimum for the function \(|u_{\bar{k}}| \), because if it was strict local but not global, it would imply the existence elsewhere of a local positive maximum, which is excluded by the previous argument. For the same reason it is unique. The lemma follows now from the strong \(L^\infty \)-convergence of \(u_{\bar{k}} \) to \(u \) and Lemma 2.3.

Remark 4. From the above proof it follows also that \(u_{\bar{k}} \) cannot have a positive local maximum.

Now we can state the lemma which exhibits the mentioned geometrical properties of the approximating solutions \(u_{\bar{k}} \).
Lemma 3.2. Let be \(\varepsilon \in]0, 1/2[\). There exists a subsequence of \(\{u_{nk}\}_{k \in N} \), still denoted by \(\{u_{nk}\}_{k \in N} \) and two sequences \(\{x^1_k\} \) and \(\{x^2_k\} \), \(\varepsilon \leq x^1_k \leq x^2_k \leq 1 - \varepsilon \) such that

i) \(u'_{nk}(x) = 0 \ \forall x \in]x^1_k, x^2_k[\);

ii) if \(u'_{nk}(x) > 0 \) (resp. \(u'_{nk}(x) < 0 \)) in \(]\varepsilon, x^1_k[\), then \(u_{nk} \) is concave (resp. convex) in \(]\varepsilon, x^1_k[\);

\(\) if \(u'_{nk}(x) > 0 \) (resp. \(u'_{nk}(x) < 0 \)) in \(]x^2_k, 1 - \varepsilon[\), then \(u_{nk} \) is convex (resp. concave) in \(]x^2_k, 1 - \varepsilon[\).

Proof. Assume first that the set \(\{k \in N: Y_k =]\varepsilon, 1 - \varepsilon[\} \) is infinite (the set \(Y_k \) is defined by (3.1)); up to a subsequence, we can assume that \(Y_k =]\varepsilon, 1 - \varepsilon[\ \forall k \in N \).

If the set \(\{k \in N: Z_k \neq 0\} \) is finite then definitively \(Z_k = 0 \) and \(u_{nk} \) are convex in \(]\varepsilon, 1 - \varepsilon[\) or concave in \(]\varepsilon, 1 - \varepsilon[\) and the lemma is proved by choosing \(x^1_k = x^2_k = \varepsilon \) or \(x^1_k = x^2_k = 1 - \varepsilon \).

If the set \(\{k \in N: Z_k \neq 0\} \) is infinite, by Lemma 3.1, up to subsequence, \(u'_{nk}(x) \) is decreasing for \(x < x_k \) and increasing for \(x > x_k \). We can conclude also in this case that the lemma is true, by choosing \(x^1_k = x^2_k = x_k \).

Assume now that the set \(\{k \in N: Y_k =]\varepsilon, 1 - \varepsilon[\} \) is finite. Therefore, definitively \(Y_k =]\varepsilon, 1 - \varepsilon[\), i.e. there exists \(\tilde{k} \in N \) such that, for \(k > \tilde{k} \), there exists at least one point \(x_k \in]\varepsilon, 1 - \varepsilon[\) satisfying \(u'_{nk}(x_k) = 0 \). Moreover for large values of \(k \), \(Z_k = 0 \) because if not, the set \(\{k \in N: Z_k \neq 0\} \) would be infinite and, by Lemma 3.1, it would exists a positive local minimum for \(u'_{nk} \) in \(x_k \in Y_k \). On the other hand we have that \(u'_{nk}(x_k) = 0 \), which implies the presence of a local maximum point for \(u_{nk} \) in the interval with end points \(x_k \) and \(\overline{x}_k \) and this contradicts Remark 4.

Now we prove that, for \(k \) large enough, the set \(\{x \in]\varepsilon, 1 - \varepsilon[: u'_{nk}(x) = 0\} \) is an interval. In fact, let be \(x, y \) such that \(u'_{nk}(x) = u'_{nk}(y) = 0 \); if \(u'_{nk}(x) \) is different from zero in some point \(\overline{x} \) between \(x \) and \(y \), the function \(u_{nk} \) must have an extremum between \(x \) and \(y \) in contradiction with the fact that \(Z_k = 0 \) definitively.

Setting

\[x^1_k = \inf \{x \in]\varepsilon, 1 - \varepsilon[: u'_{nk}(x) = 0\} , \]

\[x^2_k = \sup \{x \in]\varepsilon, 1 - \varepsilon[: u'_{nk}(x) = 0\} , \]

then assertion i) in the statement of the lemma is proved.

Since \(Z_k = 0 \) for \(k \) large enough, \(|u'_{nk}| \) is decreasing in \(]\varepsilon, x^1_k[\) and increasing in \(]x^2_k, 1 - \varepsilon[\) which proves assertion ii).

Finally we are able to prove the a priori local estimate on \(u_{nk} \).
LEMMA 3.3. - Let \(\{u_{nk}\}_{k \in \mathbb{N}} \) be the subsequence satisfying the statement in the Lemma 3.2, then the following estimate holds:

\[
\forall \delta \in \left[0, \frac{1}{2}\right] \quad \left\| u_{nk} \right\|_{L^\infty((\delta, 1 - \delta))} \leq \frac{4}{\delta} \left\| u_{nk} \right\|_{L^\infty((0, 1))}.
\]

PROOF. - Let us apply Lemma 3.2 with \(\delta \) replaced by \(\delta/2 \). Different situations are possible, but in any case we get the following estimate:

\[
|u_{nk}(x)| \leq \frac{|u_{nk}(x) - u_{nk}(\delta/2)|}{|x - \delta/2|} \quad \forall x \in [\delta, x_k^1[.
\]

Then, \(\forall x \in [\delta, x_k^1[\)

\[
|u_{nk}(x)| \leq \frac{4}{\delta} \left\| u_{nk} \right\|_{L^\infty((0, 1))}.
\]

In a similar way we proceed to prove estimate (3.12) for \(x \in]x_k^2, 1 - \delta[\). By (3.12) and i) in Lemma 3.2 we get the estimate (3.11).

Let us observe that estimate (3.11) holds true passing to the limit for \(k \to \infty \). In fact the boundedness in \(L^\infty((\delta, 1 - \delta)) \) of \(\{u_{nk}\} \) implies that this sequence converges in the weak* topology to \(u' \) and by lower semicontinuity of the norm, we get

\[
\|u'\|_{L^\infty((\delta, 1 - \delta))} \leq \liminf_{k \to \infty} \|u_{nk}\|_{L^\infty((\delta, 1 - \delta))} \leq \frac{4\lambda}{\delta}.
\]

4. - Proof of the main theorem.

Here we follow the outline of the proof of Theorem 5.4 of [M.2]. Let us consider for each \(\varepsilon \) the function \(u_\varepsilon(x) \) obtained as limit, for \(k \to \infty \), of \(u_{nk} \). By inequality (3.13), \(\{u_\varepsilon\} \) is relatively compact in the weak* topology of \(W^{1, \infty}_{loc}(0, 1) \) and there exists a function \(u_0 \in W^{1, \infty}_{loc}(0, 1) \) such that, up to a subsequence,

\[
u_\varepsilon \rightharpoonup u_0 \quad \text{in} \quad W^{1, \infty}_{loc}(0, 1) \quad \text{for} \quad \varepsilon \to 0.
\]

By the definition of \(\overline{G} \) (see 1.3), recalling that \(u_\varepsilon \) is a solution of problem (2.4) (see Lemma 2.2), \(\forall \varphi \in \mathcal{W}_0^1 = \mathcal{W}_0^1 \cap W^{1, q}(0, 1) \), we get

\[
\overline{G}(u_0) \leq \liminf_{\varepsilon \to 0} \int_0^1 f^{**}(x, u_\varepsilon, u'_\varepsilon) \, dx \leq \liminf_{\varepsilon \to 0} \int_0^1 g^*(x, u_\varepsilon, u'_\varepsilon) \, dx \leq
\]

\[
\leq \liminf_{\varepsilon \to 0} \int_0^1 g^*(x, v, v') \, dx = \int_0^1 f^{**}(x, v, v') \, dx = G(v)
\]
then
\begin{equation}
\overline{G}(u_0) \leq G(v) \quad \forall v \in \mathcal{W}_q.
\end{equation}

Let now be \(w \in \mathcal{W}_p \), because of the density of \(W^{1,q} \) in \(W^{1,p} \), there exists a sequence \(\{v_k\} \subset \mathcal{W}_q \) such that \(v_k \rightharpoonup w \) in \(W^{1,p}(0,1) \). Moreover since, by \(A_2 \), \(G \) is strongly continuous in \(W^{1,p} \), inequality (4.2) applied to \(v = v_k \), to the limit, gives
\begin{equation}
\overline{G}(u_0) \leq G(w) \quad \forall w \in \mathcal{W}_p.
\end{equation}

Finally let \(v \in \mathcal{W}_p \), by the definition of \(\overline{G} \), for a sequence \(\{v_k\} \subset \mathcal{W}_q \) such that \(v_k \rightharpoonup v \) in the weak topology of \(W^{1,p}_{bc}(0,1) \), \(\lim G(v_k) = \overline{G}(v) \). By replacing \(w \) with \(v_k \) in the previous inequality (4.3) and passing to the limit, we see that
\begin{equation}
\overline{G}(u_0) \leq \overline{G}(v) \quad \forall v \in \mathcal{W}_p
\end{equation}
and \(u_0 \) solves the minimum problem related to the functional (1.3) in \(\mathcal{W}_p \).

To conclude our proof we must only prove that
\begin{equation}
f(x, u_0(x), u'_0(x)) = f^{**}(x, u_0(x), u'_0(x)) \quad \text{a.e. in } (0,1)
\end{equation}

since from (3.13) immediately follows the analogous estimate for \(u'_0 \), by semicontinuity arguments.

Let us point out that \(u'_0 \) is a piecewise monotone function because of the geometrical properties of \(u_0 \) stated in the Lemma 3.2. Then \(u'_0 \) is almost everywhere continuous. Let be \(A = \{ x \in (0,1) : u'_0 \text{ is continuous in } x \} \) and choose \(x \in A \) such that \(f(x, u_0(x), u'_0(x)) \neq f^{**}(x, u_0(x), u'_0(x)) \). We recall that \(f^{**} \) is a linear function with respect to \(\xi = u'_0(x) \) and therefore, taking the derivative at \(x \) of the Euler's equation in the weak form,
\[f^{**}_x(x, u_0(x), u'_0(x)) = c + \int_0^x f^{**}_t(t, u_0(t), u'_0(t)) \, dt, \]
we get
\[\varphi(x, u_0(x), u'_0(x)) = f^{**} - f^{**}_x - f^{**}_y u'_0(x) = 0. \]

By i) in the assumption C), it follows that \(u'_0(x) \neq 0 \).

On the other hand \(\bar{\varphi}(x) = \varphi(x, u_0(x), u'_0(x)) \) is strictly increasing in this point \(x \) because of assumption ii) in C). Then there exists a neighbourhood \(I(x) \) such that, for each \(y \in I(x) \) \(\bar{\varphi}(y) = 0 \). It follows then that, for each \(y \in I(x) \) \(\bar{\varphi}(y) = 0 \), either \(y \in A \) or \(f(y, u_0(y), u'_0(y)) = f^{**}(y, u_0(y), u'_0(y)) \) otherwise, by the previous arguments, \(\bar{\varphi}(y) \) would be equal to zero.

Since \(u'_0 \) is almost everywhere continuous, then \((f - f^{**})(y, u_0(y), u'_0(y)) = 0 \) a.e. in \(I(x) - \{x\} \). This contradicts the fact that \((f - f^{**})(x, u_0(x), u'_0(x)) \) is different from zero in \(x \) which is a continuity point for \(u'_0 \). We conclude that (4.4) holds true.
Acknowledgment. We would like to thank Prof. P. Marcellini for the useful discussions on the subject.

REFERENCES