The numerical difficulties encountered by the possible multiple roots in the cubic (10.9) taken modulo p actually occur in practice and are not without theoretical interest. If η_{0} satisfies (12.1), then (in the homomorphic image), η_{1} becomes a conjugate of η_{0}. Thus if the iteration restarts on η_{1}, no multiple root occurs for ω. The net effect is to miss one stage of iteration.

In summary, as in the earlier work [19], the homomorphism into rational arithmetic in $\mathbb{Z} / p \mathbb{Z}$ produces a much simpler procedure than we might have expected from the modular equations, (which are rarely written out explicitly).

References

19. Cohn, H.: Iterated ring class fields and the icosahedron. Math. Ann. 255, 107-122 (1981)
20. Kaltofen, E., Yui, N.: Explicit construction of the Hilbert class fields of imaginary quadratic fields with class numbers 7 and 11. EUROSAM 84. Lecture Notes in Computer Science, Vol. 174, pp. 310-320. Berlin, Heidelberg, New York: Springer 1984
21. Klein, F.: Über die Transformation siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14, 428-471 (1879)
22. Klein, F.: Über die Transformation elfter Ordnung der elliptischen Funktionen. Math. Ann. 15, 533-555 (1879)
23. Magnus, W.: Noneuclidean tesselations and their groups. New York: Academic Press 1974

Received April 18, 1984

Errata in [19]
p. 109 line 8 for "and only these" read "among others"
p. 110 Table 1 for $\eta^{2}-10 \eta-5$ read $\eta^{2}-10 \eta+5$
for $\zeta^{\prime}-\varepsilon \quad \operatorname{read} \zeta^{\prime}+\varepsilon$
for $\zeta-\varepsilon \quad \operatorname{read} \zeta+\varepsilon$
p. 114 Table 4 (titles) for k_{l} read k_{1} for $18(9-14 \sqrt{5})$ read $18(9-4 \sqrt{5})$
p. 114 line -2 for $m+m+\ldots+m b^{r}$ read $m+m b+\ldots+m b^{r}$
p. 116 (4.7d) denominator reads $(1-\eta) \xi^{1 / 3}$.

