The numerical difficulties encountered by the possible multiple roots in the cubic (10.9) taken modulo p actually occur in practice and are not without theoretical interest. If η_0 satisfies (12.1), then (in the homomorphic image), η_1 becomes a conjugate of η_0 . Thus if the iteration restarts on η_1 , no multiple root occurs for ω . The net effect is to miss one stage of iteration.

In summary, as in the earlier work [19], the homomorphism into rational arithmetic in $\mathbb{Z}/p\mathbb{Z}$ produces a much simpler procedure than we might have expected from the modular equations, (which are rarely written out explicitly).

References

- 19. Cohn, H.: Iterated ring class fields and the icosahedron. Math. Ann. 255, 107-122 (1981)
- Kaltofen, E., Yui, N.: Explicit construction of the Hilbert class fields of imaginary quadratic fields with class numbers 7 and 11. EUROSAM 84. Lecture Notes in Computer Science, Vol. 174, pp. 310–320. Berlin, Heidelberg, New York: Springer 1984
- Klein, F.: Über die Transformation siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14, 428–471 (1879)
- Klein, F.: Über die Transformation elfter Ordnung der elliptischen Funktionen. Math. Ann. 15, 533–555 (1879)
- 23. Magnus, W.: Noneuclidean tesselations and their groups. New York: Academic Press 1974

Received April 18, 1984

Errata in [19]

p. 109 line 8 for "and only these" read "among others"

p. 110 Table 1 for $\eta^2 - 10\eta - 5$ read $\eta^2 - 10\eta + 5$ for $\zeta' - \varepsilon$ read $\zeta' + \varepsilon$ for $\zeta - \varepsilon$ read $\zeta + \varepsilon$

p. 114 Table 4 (titles) for k_l read k_1

for
$$18(9-14)/5$$
 read $18(9-4)/5$

- p. 114 line -2 for $m+m+\ldots+mb^r$ read $m+mb+\ldots+mb^r$
- p. 116 (4.7d) denominator reads $(1 \eta)\xi^{1/3}$.