CORRECTIONS FOR THE ARTICLE "ON THE GENERAL
THEORY OF QUOTIENT RINGS'" BY V. P, ELIZAROV

G. M. Bergman

In a letter to the author and in an abstract for Mathematical Reviews [1], Professor G. M. Bergman
made a series of remarks about the article indicated above [2]. We give here the corresponding correc—
tions.

1. If Ais a ring not containing 1, let A' denote the ring obtained from A by identifying units. In [1]
it is noted that, if in Theorem 3 of [2] we omit the condition R €&, then the ring Q@ = QR, &, I) will be the
essential completion of the ring ¢ (R) as a right ¢ (R)'-module; it is also noted that the mapping ¢ in Theo-
rem 4 of (2) is an imbedding without assuming that R€®,, In [3] it is pointed out that if R€®, then Q is
exactly the essential completion of ¢ R). We now give the corrected forms of Theorems 3 and 4 and their
corollaries in [2].

THEOREM 3. If & is a right-hand I-system and ¢ is the canonical mapping ¢: R — Q, then Q is
exactly the essential completion of ¢ (R) as a right ¢ (R)'-module.

Proof. We must show that if 0 = q; =0fa and g, = 8fg are elements of Q and A, B€®, then there
exists Ag(r) + € €@ (R)', where o €Z, such that 0 = q(@(r) + @) €@ R) and qy(@(r) + o) Cp(R).

First take g, = 0. TheninD = A l B€® are found elements r' =r; + @ and r" =r, + 3, where «,
B€Z and such that f5 (r') €I and fg(r") €1, since otherwise 0fy =0fg =0. I fg(r) €I or fo(xr™ €¢I, let
d=r' or d=r", respectively. If both fg(r")€l and fp(r") €I, we defined =x' + r". Here fo@' +r")¢1
and fg(r' + r") €l

If d = r' we consider the compositions q;(¢(ry) + @) = é)fA(Ofr1 +a) = GfAGfr1 +affs and qy(¢(ry) + @)
= GfBefrl +affg. If gi{@(r;) + @) =0, then there exists AC€P such that for all vc€C the relations
(fAfr1 +afp) (¢) =fa(ric + ac) = fo(r')c€l are valid. But then f5o(r')C <1 and fa (r') €I, contrary to the
assumption. Therefore q;(@(ry) +a) =0.

It remains to show that q(¢(ry) + @) €@®R) and gy (ry) + a) €@ R), i.e., that there exists HG, E€®
which for all Vg€G, eCE satisfy the relations (fAfr1 + ozfA—oer) (g) €1 and Eply, + afg—-1ir,) 8 G¢I, where
ry, r,€R, The left part of the first of the required relations has the form fa(rig + ag)—rg = farhg~rg.
Therefore, letting ry = fo(r') and G =R we obtain g;(¢(r;) + @)€@(R). To satisfy the second relation it is
sufficient to let r, = fg(r') and E =R (or R"). Now it is clear how it goes for q, = 0.

In the cases whend =r" or d =r' + r", we argue similarly via the replacement of ¢ (r;) + @ by @(ry)
+f orby @(ry + ry) +a +f8, respectively. The theorem is proved.

THEOREM 4. If &, and &, are right-hand I-systems such that &; S &, and g; is the canonical map-
ping ¢j: R —~ Qi = QR, ®;, I), then there exists an imbedding ¥: Q, —~ Q for which ¥ (@,(r)) = ¢4(r) for all
VreR.

The proof proceeds as in [2] with the corrections of Theorem 3 used.

COROLLARY 1. If for any right I-systems &, and &, and for all VA€®,, B€®,, fg€Homp (B, R),
fg@) = I, there exist right I-systems & and &, such that A N B€®; and fA"lB €®,, then the ring R has
an I(R)-maximal quotient ring.
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COROLLARY 2. Every ring R for which there is a quotient ring of the form Q@®, ¢, I} has an I{R)-
maximal quotient ring.

2. 1In [1] it is shown that if one considers only right I(R)~systems {but not arbitrary I-systems, as
shown there), then the maximal quotient ring will be the ring QR, ¢, I). Therefore, in formulating Theo~
rem 19 of [2], the following necessary conditions are inserted for the equality and read:

THEOREM 19. IfIis an S-prime ideal of the ring R, then we have the relations (under the condition
that the ring Q®R, ¢35, I) exists): QR, 2, I) © QR, ¢5.I) = QR, ¢y, ) =QR, &y, 1) =QR, ®5, 1).

3. The beginning of Corollary 3 to Theorem 5 of [2] should read: "Let @; be a right Ej-system i,
i=1,2."

4. In[1}it is shown that the conditions of Theorem 7 of [2] are not satisfied for n > 1 or for every
ring. Therefore, we give a second statement and proof for the cases when QR, ¢, I) =Qu®R, 0), as in[4].

R, denotes the n X n matrix ring over the ring R, and we let &y = {A is a right ideal of R,!there
exists ﬁBEtE B, < A}.

LEMMA. The systems &, are right Iy-systems for the rings R, if R contains 1.

Proof. Conditions a), B), and y) of such I-systems (1, 82, 1) are satisfied in a trivial way. Let
A, Cbe elements of &, and B, D of & with B, = A, Dy = C, fp in Hompp(A, Rp) and fo(Ip) < I, If
ekl is a matrix unit 1n Rp and b€B, then bekl €A, Let fj(bey)) = (ri]-(b, k, 1)). Define a mapping fijkl
B — R by letting fuk (b) = rijb, k, ). Because fp is an R, homomorphism, it easily follows that fljkl
is an R homomorphism. Since {, () <1, fi]-kl(i) < I. But then (fijkz)'iDﬁcﬁ. Welet Ny = n (fi]-kz)"Z
e "

DEd andN = N Ngz€®. Since for all Vk, I, r€&Nyyfa (regy) = (ryy(r, k, 1)) €Dy, therefore f4 (Np) < Dy,
k=1
fa o= N, and fo~ ic €&,. This proves condition 0).

Now let A€d,, Bt®, By < A, ¥ = (rij )€Rp, and TA < I,. Since in A are contained all matrices in
which a single element belongs to B, but the remaxmng elements are zero, then for all Vrj; we have ry;B
< I, 1y EI and T €I, i.e., condition €) is satisfied. The lemma is proven.

THEOREM_’?'. If R contains 1 and & is a right I-system, there is a quotient ring QR ¢, 1)) =Q
° (Rs é’ I)n"

Proof. By the lemma, the ring QRy, ®p, I;) exists. 1If A€&,, fAEHomRn(A Rp)s fafy) < 1. and
r€R, then multiplying rep; by elementary matrices Whlch interchange columns we obtain that f, (reg;)
=fa(regy,,) for all VI, m. Therefore there are only n? different R—-homomorphisms f; Xl which we denote
by f; K. 'The element 6 nfa €Q Ry, ¥, 1) corresponds to the matrix (gy] = Bfl YEQR, <Z>, Dp. Itis easyto
verlfy that the correspondence gives the required isomorphism.

5) In[1] it is noted that the second mappings of Theorems 8, 9, 11, and 13 in [2], associated with
the maximal quotient rings Q®, €5, 1), QR, ¢y, D), QR, 2p.1. D), and QR, &g, ), are not correct. To
make this mapping valid condition 6) for right I-systems must be replaced by the following:

8) if A, BE® andfa € Homa(A/[,R/I), then fa™'B == {z€Alja(z+1)EB/I} 6.

The construction of the ring Q(R, &, I) follows from letting My = {fAEHomR(A/I, R/D)} for all VAED
but the relation§ on M = 3 M, must be defined in the following way: fs0fp if and only if there exists

¥

dD€®, D < AN B suchthat for all VAd€D, fa(d) = fg(d). These changes make all results in {2] correct
(with the noted corrections given in 1-4),

6. In[1] it is shown that the constructions of Gabriel, Maranda, and Chew (in [2] erroneously written
as "Khyu") are equivalent. As shown in [5] p. 413 the constructions of [2] are not equivalent to theirs. In
Section 5 of the survey article [5] one must insert the corrections here indicated in 1-6.
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