UDC 549.9:382.80

N. V. Veselovskaya, Yu. E. Sklyar,

D. A. Fesenko, and M. G. Pimenov

From an acetone extract of the roots of Ferula krylovii Korov. by chromatography on alumina followed rechromatography on silica gel L 40/100 in petroleum ether—ethyl acetate we have isolated a new terpenoid coumarin, fekrol (I), $C_{24}H_{32}O_5$, M^+ 400, mp 172-174°C (ethyl acetate—petroleum ether).

The IR spectrum of (I) shows a broad absorption band with its center at 3330 cm⁻¹ which is characteristic for bound hydroxy groups, and also bands at 1725 cm⁻¹ (C=0 of an α -pyrone) and 1620, 1560, and 1510 cm⁻¹ (vibrations of an α -pyrone and of a benzene ring).

The PMR spectrum of fekrol (Varian HA-100D; δ , ppm; CDCl₃, TMS) showed, in addition to the signals of a 7-substituted coumarin, the following structural elements: 3CH_3 — $\overset{1}{\text{C}}$ —(0.7, 0.98, 1.01, all s, 3 H each), CH₃—C=C—<math>(1.73, s, 3 H); CH—OH (3.38, s, 1 H), —CH₂—O-Ar (4.57, d, 2 H), and H—C=C—(5.48, t, 1 H). The molecule of (I) contains the —C=CH— $\overset{1}{\text{CH}_3}$ —CH₂—OAr grouping, as was shown by the double-resonance method.

The closeness of the parameters of the PMR spectra of fekrol and of kopeolin [1] permit us to assume that their structures are similar with the exception of the orientation of the secondary hydroxy group.

When fekrol was acetylated with acetic anhydride in pyridine, a monoacetate $C_{26}H_{34}O_{6}$ was obtained with mp 128-130°C, δ , 4.61 ppm (CH-OCOCH₃), ν 3510 cm⁻¹ (tert-OH). The value of the half-width of the H-C-OH signal ($W_{1/2} \approx 6.0$ Hz) in the spectrum of (I) and the sum of the constants of the H-C-OCOCH₃ signal in the spectrum of the acetate (I) ($\Sigma J \approx 6.0$ Hz) show that the hydroxyl is axial and only one methylene group is adjacent to the H-C-OH grouping.

Thus, fekrol is a stereoisomer of kopeolin with the axial orientation of the secondary hydroxy group.

LITERATURE CITED

1. Kh. M. Kamilov and G. K. Nikonov, Khim. Prir. Soedin., 308 (1973).

All-Union Scientific-Research Institute of Medical Plants, Moscow. M. V. Lomonosov Moscow State University. Botanical Garden, Moscow. Translated from Khimiya Prirodnykh Soedinenii, No. 6, p. 851, November-December, 1979. Original article submitted July 11, 1979.