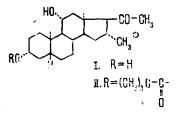
STEROIDS

XLVII. THE QUESTION OF THE STERIC HINDRANCE OF THE HYDROXY GROUPS OF 3α , 11α -DIHYDROXY- 16α -METHYL- 5β -PREGNAN-20-ONE


L. C. Garcia-Rodrigues, V. F. Shner, and N. N. Suvorov

UDC 547.689.6

A difference in the steric hindrance of the hydroxy groups (3α and 11α) in the molecule of 3α , 11α dihydroxy- 16α -methyl- 5β -pregnan-20-one (I) was shown on the basis of the hydrolysis of its diacetate. However, this difference does not appear in the acetylation of the diol (I) [1].

We assume that the greater accessibility of the 3α -hydroxy group could be observed in the reaction of the diol (I) with a reagent more voluminous than an acetyl derivative – pivaloyl chloride. In this reaction, the 3α -monopivalate (II) is formed unambiguously even with a considerable excess of the acid chloride.

To a solution of 0.1 g of 3α , 11α -dihydroxy- 16α -methyl- 5β -pregnan-20-one (I) in 3 ml of pyridine at ~20°C was added 0.085 g (8-fold excess) of pivaloyl chloride [2], and after a day the reaction mixture was poured into a mixture of 4 ml of concentrated HCl and ice. Then it was extracted with methylene chloride and the extract was washed with water, with saturated NaHCO₃ solution, and again with water, and was dried and the solvent was evaporated in vacuum. The residue was recrystallized from benzene with hexane, giving 11α -hydroxy-3-pivaloyloxy- 16α -methyl- 5β -pregnan-20-one (II) with mp 169-172°C; ν_{max} 1700 (CO) and 3480 cm⁻¹ (OH).

The C and H values found corresponded to the calculated figures.

The PMR spectrum of the 3α -monoester (II), as compared with the spectrum of the diacetate [1], shows an upfield shift of the less multiplet signal from the C₁₁ proton (δ 3.88 ppm), since the hydroxyl at C₁₁ is not esterified; at the same time, the signal from the proton at C₃ does not change its position (δ 4.74 ppm). The features of the PMR spectrum show that the less blocked hydroxyl in position 3 underwent esterification.

Thus, by using the different steric hindrances of the hydroxy groups of 3α , 11α -dihydroxy- 16α methyl- 5β -pregnan-20-one it is possible selectively to obtain its esters in position 3 or position 11.

LITERATURE CITED

- 1. L. C. Garcia-Rodrigues, V. F. Shner, L. M. Alekseeva, and N. N. Suvorov, Khim. Prirodn. Soedin., 610 (1971).
- 2. H. C. Brown, J. Amer. Chem. Soc., <u>60</u>, 1325 (1938).

S. Ordzhonikidze All-Union Chemical and Pharmaceutical Institute. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 287-288, March-April, 1973. Original article submitted June 22, 1971.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.