
Chapter 10
Artificial Intelligence

Eric Guérin, Orhun Aydin and Ali Mahdavi-Amiri

Abstract In this chapter, we provide an overview of different artificial intelligence
(AI) and machine learning (ML) techniques and discuss how these techniques have
been employed in managing geospatial data sets as they pertain to Digital Earth.
We introduce statistical ML methods that are frequently used in spatial problems
and their applications. We discuss generative models, one of the hottest topics in
ML, to illustrate the possibility of generating new data sets that can be used to
train data analysis methods or to create new possibilities for Digital Earth such as
virtual reality or augmented reality. We finish the chapter with a discussion of deep
learning methods that have high predictive power and have shown great promise in
data analysis of geospatial data sets provided by Digital Earth.

Keywords Artificial intelligence · Machine learning · Generative models ·
Statistical data analysis

10.1 Introduction

Earth and its associated data sets are massive. Various forms of geospatial data sets
are constantly accumulated and captured by different forms of sensors and devices
(Mahdavi-Amiri et al. 2015). Managing such an immense data set is a challenge.
As a result, many automated techniques have been designed to process geospatial
data sets with minimal human interference. Since manual involvement should be
minimal, the machines should be capable of processing data and delivering mean-
ingful information to the users. With advancements in machine learning, processing
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geospatial data sets has significantly improved. In this chapter, we discuss artificial
intelligence and machine learning techniques that have been useful to manage and
process geospatial data sets. Because the processing of geospatial data can also be
a source of knowledge, some methods use existing data to generate and synthesize
new data.

We start by discussing some traditional and statistical approaches in machine
learning and then present more recent learning techniques employed for geospatial
data sets. Traditional methods include predefined models such as linear regression,
PCA, SVD, active contour, and SVM, in which the model is fixed and the learning
is based on an optimization. We also briefly discuss evolutionary and agent-based
methods and autoencoders as traditional methods that can be deep or shallow. We
then discussmore recent deep learning techniques, including reinforcement learning,
deep convolutional networks and generative models such as variational autoencoders
and generative adversarial networks. In this chapter, we describe some applications
of these machine learning techniques to handle geospatial data sets that are the main
content of Digital Earth. In the future, a dynamic Digital Earth that can use such
techniques to work with geospatial datasets is extremely practical. Currently, such
methods are sparsely used on very specific Digital Earth data sets. We imagine that
a more advanced Digital Earth will use state-of-the-art machine learning techniques
much more than they are currently used.

10.2 Traditional and Statistical Machine Learning

Inferring patterns and forming relationships using artificial intelligence require
knowledge of some characteristics of the phenomena/system of interest. One of the
early approaches to enabling artificial intelligence for complex problems was to cre-
ate knowledge bases that contain explicit sets of rules and associations, also known
as ontology (Gruber 1993). For data pertaining to Earth system modeling, different
niche knowledge bases were designed by various authors (McCarthy 1988; Rizzoli
and Young 1997). The knowledge base approach to artificial intelligence required
expert input to define the rules and associations. In addition, the expert knowledge
had to be represented in a “computable form” (Sowa 2000), posing a bottleneck
for these approaches. For spatially varying, complex phenomena, ontology repre-
sentations were defined for Earth’s subsystems such as in environmental modeling
and planning (Cortés et al. 2001), and ecological reasoning (Rykiel 1989). General
spatial and GIS knowledge bases were proposed by various authors (Kuipers 1996;
Egenhofer and Mark 1995; Fonseca et al. 2002).

Despite the plethora of niche knowledge bases, knowledge base artificial intelli-
gence requires assertions and ground truths (Lenat 1995), which can conflict with
observations (Goodfellow et al. 2016). Numerous attempts to address this limitation
have been presented by various authors, such as defining hierarchical (Kuipers 1996),
or location/problem-tailored knowledge bases (Rizzoli and Young 1997).
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Statistical machine learning alleviates the limitations of the knowledge-based
approach to artificial intelligence and discovers rules and patterns from the data
directlywithout explicit supervision (Goodfellow et al. 2016). In the case of statistical
learning, patterns and rules from an unknown underlying process are defined for
descriptive, predictive and prescriptive analytics.

Applications of statistical learning to understand and forecast natural and human
phenomena are evaluated with respect to the components of the general definition of
machine learning (Mitchell 1997). Mitchell’s (1997) definition is as follows:

A computer program is said to learn from experience [D] with respect to some class of
tasks T and performance measure [Q], if its performance at tasks in T, as measured by [Q],
improves with experience [D].

Machine learning methods are broadly grouped into supervised and unsupervised
methods. Supervised machine learning methods experience modeled phenomena
through so-called labeled training data. Labels in the training data correspond to the
target variable to be predicted, either quantitative (regression) or qualitative (clas-
sification). Training data consists of predictors and their corresponding predictand.
Thus, supervised machine learning methods learn relationships in the data through
experiencing input/output pairs.

Unsupervised machine learning methods discover patterns in the data without
supervision or explicit rules. Clustering is one of the most common unsupervised
machine learning methods for geospatial datasets.

10.2.1 Supervised Learning

Supervised learning aims to define a relationship between r predictor variables,
denoted by X = (X1, X2, . . . , Xr ), and e predictands, Y = (Y1,Y2, . . . ,Ye). Super-
vised learning can be posed as a density estimation problem (Hastie et al. 2001):

P(Y |X) = P(Y , X)/P(X) (10.1)

where P(Y |X) is the conditional probability density of observing the predictand
given the predictors, P(Y, X) is the joint probability distribution of the predictand
and predictors, and P(X) is the marginal probability distribution of the predictors.
UsingMitchell’s (1997) description, the performanceQ can be quantified using a loss
function L where, for a given method and set of parameters �, a location function,
μ(x), is minimized (Hastie et al. 2001) in Eq. 10.2.

μ(x) = argmin�EY |XL(Y ,�) (10.2)

For a given �, a supervised machine learning method predicts the values at X
as ŷ. The loss function, L, quantifies the error between ŷ and the training data y.
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Some examples of supervisedmachine learningmethods as they pertain to geospatial
analysis are given in the following subsection.

10.2.1.1 Random Forest

Random forest is a framework for nonparametric estimation in which both classifi-
cation and regression can be performed (Breiman 2001). It has gained popularity in
numerous geospatial applications due to its flexibility in accommodating different
types of inputs (categorical or continuous) and its ability to model complex relation-
ships in the data.

Random forest addresses the overfitting limitation of classification and regression
trees (CART). Random forest uses bootstrap aggregating, also known as bagging, to
create subsets of the training data by sampling with replacement to build different
CARTs (Breiman 1996). Each of the CARTs that make up the forest predict, or vote,
for a given data point of x and the forest returns the majority vote in a classification
or the average forest prediction for a regression. The voting scheme of random
forest allows for complex relationships to be captured in the data that might not be
possible otherwise. A pictorial summary of a random forest classifier for classifying a
successful retail store (one) or an unsuccessful one (zero) with respect to its distance
to the nearest highway exit and the number of brands it carries is given in Fig. 10.1.

Fig. 10.1 Cartoon representation of a random forest classifier
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Fig. 10.2 a Satellite image over southern California, with training datamarkedwith black polygons
b classified land coverage map using random forest

Note that every tree experiences different subsets of training data and their struc-
tures are different from one another. The voting scheme allows for capturing underly-
ing patterns in the data by defining complex relationships captured in a large ensemble
of trees rather than a single tree.

In geospatial problems, various random forest classifiers are used in a wide range
of problems, including land cover classification (Gislason et al. 2006) and ecological
modeling (Cutler et al. 2007). In land cover classification, random forest speeds up
classification of land use by forming a relationship between the satellite image RGB
value and the type of land it corresponds to. In this case, the training data consists of
tagged locations at which the land cover and RGB values are known. An example of
the random forest classifier output for land use classification is given in Fig. 10.2.

In Fig. 10.2, a small number of farms and areas around themwere used as training
data (marked with black polygons). The training set that consists of 300 farms was
used within the random forest classifier to define land use in southern California.

10.2.1.2 Geographically Weighted Regression

Geographically weighted regression (GWR) provides a statistical framework for
incorporating spatial dependency within a linear regression system (Fotheringham
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Fig. 10.3 Conceptual
depiction of GWR.
Regression is performed for
the orange point with a red
circle defining the
neighborhood

et al. 2003). GWR provides spatial extensions to ordinary least squares and general-
ized linear models (Nelder and Wedderburn 1972) such as geographically weighted
logistic regression. GWR is depicted conceptually in Fig. 10.3.

Figure 10.3 illustrates a regression system solved within the neighborhood (red
circle) for the location indicated in orange. First, GWR defines a weighting scheme
to determine spatial weights for the neighbors, and the predictors X at every location
(blue) are weighted with respect to their distance to the location for which the regres-
sion is performed (orange). The geographically weighted linear system of equations
solved at a point i can be expressed as follows:

β̂(ui , v i ) = (
XTW(ui , v i )X

)−1
XTW(ui , v i )Y (10.3)

where β̂(ui , v i ) is the coefficient matrix for the predictors X at location i .W(ui , vi )
is a diagonal weighting matrix that contains geographic weights on its diagonal
elements for neighbors inside the neighborhood window (red circle in Fig. 10.3),
and Y contains the variable being predicted. Note that the linear system above is
similar to the general linear regression system given in Eq. 10.4.

β̂ = (
XTX

)−1
XTY (10.4)

where β̂ is defined globally for the entire dataset. The geographic weights are
inversely weighted with respect to the distance. Thus, the weights have large values
for neighbors close to the regression location i . Different weighting schemes and
neighborhood definitions are possible; the reader is encouraged to explore seminal
work on this topic (Fotheringham et al. 2003).
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Spatial representation via a weighting scheme can give GWR high predictive
power for geospatial datasets in which a strong spatial autocorrelation is observed.
The impact of incorporating spatial relationships in the regression model is demon-
strated by comparing GWR with a nonspatial supervised machine learning method.
In this example, GWR is juxtaposed against a random forest predictor for a prob-
lem with strong spatial autocorrelation in the data. Statistical climate downscaling
(Wilby and Wigley 1997) was performed with GWR and a random forest regressor.
Statistical downscaling calibrates the output of a global circulation model (GCM) to
observed climate data such as temperature or precipitation. In this example, climate
downscaling for the lower 48 US states; a regression model can be defined between
19 predictors (from GCM) and the observed average temperature. The regression
model can be used to predict the average temperature for the entire lower 48 states.
A random forest predictor can be trained using the observed average temperature and
simulated GCM variables. The GWR model is formed using only 3 of the indepen-
dent predictors due to the collinearity restriction of GWR. Below are the predicted
average temperature profiles.

Note that the average temperature profile estimated in Fig. 10.4a depicts the pat-
terns of temperature change captured in Fig. 10.4b. Even though fewer predictors
are used in the GWR than in the random forest regressor, large-scale patterns in the
temperature profile changes are captured. The GWR model in Fig. 10.4a was also
compared to a random forest regressor model trained using the same three predictors.
In that case, the GWR returned a mean-squared error that was 60% of that of the
random forest regressor.

10.2.1.3 SVM

Support vector machine (SVM) is a supervised nonparametric statistical learning
method (Corinna and Vapnik 1995). In its original form, the method comprises a set
of labeled data instances and the SVM attempts to find a hyperplane that separates
the dataset into a discrete predefined number of classes as consistently as possible
for the training data (see Fig. 10.5) (Vapnik 1979). It is possible to generalize SVM
to nonlinear kernels such as radial basis functions to learn and classify data sets with
higher complexity (Schölkopf and Smola 2002).

As studied and discussed byMountrakis et al. (2011), SVMshave been extensively
employed in remote sensing and geospatial data analysis due to their ability to use
small training data sets, often resulting a higher classification accuracy than the
traditional methods (Mantero et al. 2005). For instance, SVM has been used in
road extraction from IKONOS imagery by (Huang and Zhang 2009) assessing the
influence of the slope/aspect of the terrain on the forest classification accuracy (Huang
et al. 2008), a crop classification task (Wilson et al. 2004), and many more factors.
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Fig. 10.4 a Downscaled temperature profile using GWR b downscaled temperature profile using
a random forest regressor
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Fig. 10.5 SVM attempts to distinguish two categories of data by a hyperplane. Image fromMoun-
trakis et al. (2011)

10.2.1.4 Active Contours and Active Shapes

Active contours or snakes have been developed with the aim of finding important
features in an image by fitting a curve to the edges and lines of an image (Kass
et al. 1988). Active contours are a set of energy-minimizing splines that are guided
by external forces from the image. Snakes have been used extensively in geospatial
image processing to detect features such as roads and buildings.

Active contours were later extended to active shapes to accommodate specific
patterns in a set of objects and identify only those that are present in the training
data (Cootes et al. 1995). In essence, they are very similar to active contours, but
active shapes can only deform and fit the data that is consistent with the training
set. Both active shapes and active contours have been extensively used in different
applications of remote sensing and geoscience, such as object extraction (Liu et al.
2013), lane detection (Heij et al. 2004), and road extraction (see Fig. 10.6) (Kumar
et al. 2017; Laptev 1997).

10.2.2 Unsupervised Learning

Unsupervised learning aims to infer the distribution of P(X) in Eq. 10.1. Unlike
supervised learning, P(Y |X) or P(X,Y ) is not employed (Hastie et al. 2001). Thus,
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Fig. 10.6 Active contours used to extract roads. Image taken form Laptev (1997)

unsupervised learning does not utilize any training dataset that contains information
on P(X,Y ). One of the most common uses of unsupervised learning in geospatial
analysis is in defining clusters and regions. These two terms differ, as clustering refers
to defining groups based on value similarity in the data whereas regionalization
performs clustering under spatial constraints (Duque et al. 2007). Both of these
unsupervised learning approaches have wide applications (Duque et al. 2007; Hastie
et al. 2001; Mitchell 1997; von Luxburg 2010). Most clustering and regionalization
methods require definition of k, the number of clusters to divide X into. There are
extensive surveys of clustering and regionalization in the literature for readers to
refer to (Duque et al. 2007; Jain et al. 1999).

10.2.2.1 SKATER Algorithm

As discussed in Chap. 8, the K-means algorithm (Macqueen 1967) aims to partition
X into k groups and minimize the intergroup dissimilarity with the assumption that
minimal intergroup dissimilarity corresponds to distinct groups. K-means seeks to
create groups that consist of similar elements, ensuring that dissimilar elements are
assigned to different groups. Mathematically:

μ(x) = argminC

k∑

i=1

∑

x∈ci

∥∥x − C̄ ι

∥∥2
(10.4)

where C = {C1,C2, . . . ,Ck} is the group of clusters, with a cluster cm consisting
of a subset of X and c1 ∪ c2 ∪ · · · ∪ ck = X . K-means has various uses in geospatial
analysis, including detecting patterns in traffic accidents (Anderson 2009), analyz-
ing landslides (Keefer 2000) and creating labels by clustering topo-climatic data
(Burrough et al. 2001).

The SKATER algorithm is a regionalization algorithm that imposes graph-based
spatial constraints on the k-means algorithm (Assunção et al. 2006). Unlike Lloyd’s
algorithm (Lloyd 1982), SKATER only assigns spatially contiguous and similar
objects to the same cluster. Regionalization has vast uses in geospatial analysis,
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including analysis of gerrymandering, healthcare services (Church and Barker 1998)
and resource allocation (Or and Pierskalla 1979).

Clustering and regionalization were applied to the same dataset to juxtapose the
types of patterns they expose in the data and the resulting understanding gained using
these two methods. The average temperature in the United States in June 2012 was
used. The resulting clusters and regions are displayed below.

The regionalization and clustering results in Fig. 10.7 show similarities in the
overall temperature patterns, which change N-S in the eastern portion of the US
and W-E in the western portion. Notably, the k-means result in Fig. 10.7b displays
isolated patches whereas the regionalization result has spatially contiguous regions.
Due to the constrained optimization scheme to satisfy the spatial constraints, the
regions defined by regionalization have a higher variance than those in the k-means
result. However, both maps display similarities in the temperature and the extent to
which these similarities can be aggregated into homogeneous zones.

10.2.2.2 Autoencoders

Another very useful and common machine learning technique is autoencoders
(Rumelhart et al. 1985). In an autoencoder, the data passes through a bottleneck,
where the bottleneck is a lower representation of the same data. Autoencoders are
made of two neural networks called the encoder and decoder (Fig. 10.8). The encoder
receives data D, maps it to a lower space and obtains L; a decoder receives L, maps
it back to the same dimension of D and obtains D’. The distance between D and D’,
which is called the reconstruction loss, should be minimized. A direct application
of autoencoders is in compression, in which one can reduce the dimension of D to
L and work with L and the decoder instead of the data D in its native resolution.
Autoencoders have also been used in geospatial applications to find water bodies
(Zhiyin et al. 2015) or denoise satellite images (Liang et al. 2017).

Machine learning techniques are not limited to the list of applications andmethods
provided here. Several variations of these methods as well as many other standalone
techniques have been successfully employed in the Digital Earth, geoscience and
remote sensing fields. For a more in-depth and comprehensive study, refer to the
work of Lary et al. (2016).

10.2.3 Dimension Reduction

There have been extensive efforts to learn the patterns and forms that data sets
contain. It is possible to predict the behavior of a data set and/or compress the data
set into a more compact form for transmission, storage, and retrieval. In addition
to autoencoders that can be used for dimensionality reduction, one of the easiest
methods for compression and dimensionality reduction for a given data set and
subsequent prediction of its behavior for unknown data points is linear regression.
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Fig. 10.7 a Temperature regions defined by SKATER b temperature regions defined by k-means



10 Artificial Intelligence 369

Fig. 10.8 The autoencoder
passes the data (yellow
neurons) through an encoder
to learn a lower dimension
(hidden/latent space; gray
neurons) representation of
the data. The decoder
attempts to reconstruct the
data (red neurons) as closely
as possible to the given data

In the 2D case of this method, the data points attain two coordinates, and the line
that best represents these data sets is considered as the model representative of the
data. The best representation can have different meanings, including the line that
has the smallest least square distance with all the data points. Regression, linear or
nonlinear, has been a great tool to analyze spatial data. Belae et al. (2010) provided
a survey of regression techniques used to represent and analyze spatial datasets. For
Digital Earth platforms, Mahdavi-Amiri et al. (2018) combined regression with a
wavelet to transmit quantitative datasets on a discrete global grid system (DGGS).

10.2.3.1 PCA

Another form of linear representation of a data set is principal component analysis
(PCA). In this representation, the covariance matrix of the data is initially formed by
applying the inner product of a data matrix A in its transpose

(
Cov = AT A

)
. The

eigenvectors of the covariance matrix, λi , represent the main trends of the data. If we
have a data set forming an ellipsoid in 2D, the eigenvectors are the two main axes of
the ellipsoid. Figure 10.9 represents PCA in 2D. PCA has been extensively used in
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Fig. 10.9 PCA finds the
main trends of the data. The
data points illustrated in
yellow have two main trends
x′ and y′ that are the
eigenvectors associated with
the largest eigenvalues of the
covariance of the data

many applications including computer graphics, computer vision, and data science.
PCA has been used in different applications related to geospatial data representa-
tion and geospatial data analysis (Demšar et al. 2013). For instance, PCA has been
successfully used to study drought areas (Gocic and Trajkovic 2014), evaluate water
quality (Parinet et al. 2004), and distinguish vegetation (Panda et al. 2009).

10.2.3.2 SVD

Singular value decomposition (SVD) is a decomposition that reveals important infor-
mation about a matrix. In SVD, a matrix A is decomposed into the form USV T , in
which U and V are two rotation matrices and S is a diagonal scale matrix with values
called the singular values, σi , of matrix A. There is a direct connection between
PCA and SVD because the singular values of the singular value decomposition of
data matrix A are the square root of the eigenvalues of the covariance matrix that is
found in PCA

(
σi = √

λi
)
. To compress or denoise data, it is possible to zero out

small eigenvalues obtained by SVD and keep important portions of the data. SVD
has been extensively employed in image processing applications (Sadek 2012). It
has also been used in geospatial applications. For instance, Wieland and Dalchow
(2009) used SVD to detect landscape forms, and Dvorsky et al. (2009) used SVD to
determine the similarity between maps.
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10.2.3.3 Evolutionary and Agent-Based Techniques

Evolutionary andAgent-based techniques have also been extensively used to perform
analyses of geospatial data sets. Two important algorithms are genetic algorithms
(GAs) and ant colony optimization (ACO).

In GAs, a set of random solutions is initially produced and these solutions are
considered parents to make a new generation of solutions based on three rules:
Selection rules that select parents basedon their fitness,Crossover rules that combine
two parents to generate children for the next generation, and Mutation rules that
apply random changes to parents to form children (Mitchel 1998). GAs have been
used in many applications in geospatial data analysis such as road detection (Jeon
et al. 2002) and satellite image segmentation (Mohanta and Binapani 2011).

ACO is an optimization technique that works based in an agent-based environ-
ment. In this stochastic environment, the ants are agents that walk over a certain
solution path and leave a track called a pheromone. Paths with more pheromone are
usually more optimal (shortest) than others, and they attract more agents. A classic
problem that can be solved by ACO is the travelling salesman problem. ACO has
been successfully employed to solve other types of hard problems including those
involving geospatial data analysis. For instance, ACO has been used for path plan-
ning considering traffic (Hsiao et al. 2004) and road extraction from raster data sets
(Maboudi et al. 2017).

10.3 Deep Learning

When a large amount of data is involved and/or a complex model for representing the
data is used, it is common to employ deep learningmethods (Goodfellow et al. 2016).
Digital earth data represents a massive amount of data, for example, high-precision
digital elevation models or aerial photography. Because the rules that produce this
kind of data are very complex and involvemany natural or human processes, it can be
difficult to apply standard learning models or algorithms and retain this complexity.
Thus, the deep models described in this section are relevant.

10.3.1 Convolutional Networks

Deep learning has been popularized by image processing applications. In this con-
text, the processed data is arranged into a regular grid and is adapted to so-called
convolutional layers. Data extracted from Digital Earth can be of this nature by
construction. For example, raster data such as digital elevation models or aerial pho-
tography images are already arranged into regular grids and can be processed out
of the box with convolutional layers. Convolutional neural networks rely on the fact
that the same processing can be applied to different parts of the image. Traditional
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Input

Output

Fully connected layer Convolutional layer

Fig. 10.10 Convolutional layers use fewer coefficients and are spatialized

fully connected schemes for neural network layers use many coefficients that can be
spared with convolutional layers and used in other features. Figure 10.10 compares
the principle of a convolutional layer to that of a traditionally fully connected layer.
Both examples show an input of size 9. While a fully connected layer uses 27 coeffi-
cients to produce an output of size 3, the convolutional layer can produce 9 outputs
from only 3 different coefficients. This means that the same feature extraction is per-
formed but at different locations, which is relatively close to traditional convolution
in the discrete domain.

Recently, a convolutional network was used to infer the super-resolution of a dig-
ital elevation model by using aerial photography (Argudo et al. 2018). Figure 10.11
shows the architecture of this network. This work comes from the observation that
publicly available high-resolution DEMs (resolution less than 2 m) do not cover
the full Earth whereas it is possible to find high-resolution imagery (orthophotos)
with good coverage of the Earth. Many applications require a fine resolution for
the DEM, and Argudo et al. proposed inserting details into a coarse DEM using
inferred information drawn from the high-resolution orthophoto of the same foot-
print (Fig. 10.12). Basically, the method produces a DEM with 2 m precision from
a DEM with 15 m precision and an orthophoto with 1 m precision. To produce this
result, a fully convolutional network was used.

In the literature, a full system to automatically infer street addresses from satellite
imagery was proposed (Demir et al. 2018a). One step that must be performed is
the extraction of roads from the satellite images. This was done using a modified
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Fig. 10.11 A fully convolutional network was used to infer the high-resolution DEM from its
coarse version and the high-resolution orthophoto (courtesy of O. Argudo et al.)
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Fig. 10.12 Super-resolution of a 15 m precision DEM (top right) using an orthophoto (top left).
Result (bottom left) and the ground truth reference (bottom right) (courtesy of O. Argudo et al.)

version of SegNet, a convolutional network primarily used for image segmentation.
In this architecture, the input and output resolutions are identical, and the network
consists of several encoder layers that decrease the resolution followed by decoders
that increase the resolution. The network is trained using manually labeled 192 ×
192 pixel images, in which a binary road mask is associated with each pixel of the
image to indicate if the pixel belongs to a road or not. Figure 10.13 shows an example
of the results obtained in automatic extraction of the road information compared with
the ground truth.

More generally, automatic processing of satellite images with a deep learning
approach appears to be very efficient in segmentation and feature extraction. The
DeepGlobe project (http://deepglobe.org) aims to challenge authors to use deep
learning for three applications: road extraction, building detection and land cover
classification (Demir et al. 2018b).

Fig. 10.13 Automatic extraction of the road mask (right) from the satellite image (left), compared
with the ground truth road network (center) (courtesy of I. Demir et al.)

http://deepglobe.org
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Fig. 10.14 The schematic of
a recurrent neural network

10.3.2 Recurrent Neural Networks

While convolutional neural networks and dense neural networks work well for static
data in which there is no sense of time, a recurrent neural network (RNN) (Jain and
Medsker 1999) processes data by iterating through the input elements and maintain-
ing a state that contains information relative to what it has seen until then. An RNN
is a neural network with an internal loop (see Fig. 10.14). The state of the RNN is
updated between processing independent sequences; therefore, we still consider one
data sequence as a single data point in the network. The difference is that this data
point is not processed in a single step as opposed to those in dense or convolutional
neural networks. In an RNN, the network internally loops over sequence elements
until it learns the flow of the data. An RNN is helpful when dealing with a temporal
data set. In geospatial data analysis, an RNN has been recently applied in interest-
ing applications such as correction of satellite image classification (Maggiori et al.
2017) and land cover classification (Ienco et al. 2017). Since many types of geospa-
tial data sets such as weather, satellite images, or seasonal animal behavior have
timing attached to them, we expect that RNNs will be widely used in the analysis of
geospatial data sets in the near future and that Digital Earth will benefit from such
networks.

10.3.3 Variational Autoencoder

Deep neural networks are useful to analyze data sets and are also helpful in generating
new data sets. It is possible to consider two deep neural networks as the encoder and
decoder of an autoencoder and produce a latent space that represents the data. Using
only L and an encoder, we can reproduce a lossy representation of D. However, it
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is not possible to pick a vector in L and expect to reproduce a meaningful result by
feeding it to the encoder because the distribution of L is unknown if autoencoders are
used. In variational autoencoders (VAEs) (Kingma and Welling 2014), in addition
to the compression loss, another loss is minimized that forces the L to be a Gaussian
distribution. Thus, VAEs can be used as a generative neural network in which one
can sample the Gaussian distribution and feed it to the encoder to generate a new
shape that does not necessarily belong to the training data set. Although VAEs have
potential to generate data and learn low-dimensional data for geospatial data sets,
VAEs have not been extensively tested for geospatial data analysis and generation.

10.3.4 Generative Adversarial Networks (GANs)

Similar to VAEs, generative adversarial networks (GANs) (Goodfellow et al. 2014)
are also generative models. GANs consist of a pair of networks that have two differ-
ent and adversarial roles. These networks have a convolutional architecture and are
often complex to retain the complexity of the underlying models. The first network is
a generator that we denote as G, which attempts to generate the best result, for exam-
ple, an image. Then, the second network takes the image as input and tries to infer if
it is a generated image or not. This second network is called a discriminator and we
denote it as D. Both G and D are trained alternatively. The objective of G is to fool D
whereas D aims to avoid being fooled by G. The strength of this kind of adversarial
formalism is that it is equivalent to use of a very complex function to train the gener-
ator G (encoded into the discriminator), far more complex than traditional distance
would be.

Conditional GANs (cGANs) are GANs with a particular setup in which the dis-
criminator is trained to recognize the matching between an input image A and an
output B whereas a traditional GAN only tests the plausibility of the output with-
out any knowledge of the input. The training principle of a cGAN is explained in
Fig. 10.15.

Fig. 10.15 cGAN principle: a training pair (A, B) is used to learn positive examples. For negative
examples, only A is used together with the generator to form the pair (A, G(A))
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Conditional GANs have recently been used to automatically generate digital ele-
vation models from user sketches (Guérin et al. 2017). The user sketches the river
network, the crests and some altitude cues and obtains a plausible terrain thatmatches
the given constraints, based on a training dataset made of sketch/terrain pairs. The
method consists of building such a dataset by extracting the sketch from a real-world
terrain. The difficulty of this kind of setup is to automatically build a sketch that is
compatible with user sketches, i.e., similar to what a user would draw. Building a
sketch that is too close to the terrain featureswill force the user to draw very precisely,
which is not relevant in a sketching context but would be useful in a reconstruction
process. The digital elevation model must be simplified to produce simpler features.
In their work, Guérin et al. propose initially downsampling the digital elevation
model and then smoothing it. This coarse digital elevation model is then processed
by a flow simulation, from which the skeleton is extracted. The same process is
applied to extract ridges. This feature extraction is illustrated in Fig. 10.16.

The training dataset is formed of pairs that describe the matching between the
sketch and the terrain. Figure 10.17 gives examples of such pairs. To create a more
pliable terrain synthesizer, the sketches randomly include one, two or the three fea-
tures among the river lines, crest lines and altitude cues.

Figure 10.18 shows examples of outputs produced by the DEM generator from
sketches. The results were obtained by using training from a DEM extracted from
the NASA SRTM dataset at 1 arc-second from different locations in the United

Initial DEM Downsampled DEM Flow simulation Skeleton

Fig. 10.16 Training database examples

Fig. 10.17 Training database examples. Training pairs are formed by a sketch (a) and an associated
DEM (b). Sketches can feature river lines (blue), crests (red) and altitude cues (green)
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SketchSynthesized DEM Synthesized DEMSketch

Fig. 10.18 Examples of generated digital elevation models from simple sketches. A canyon gen-
erated using river and crest lines (left). A volcanic island generated using only crest lines (right)

States. In the same article, the authors proposed the use of the same principle to
automatically generate digital elevation models from a single level set sketch. They
also described examples of automatic void filling in digital elevation models. Finally,
because cGANs can embed very complex models, they used it to mimic an erosion
process.

10.3.5 Dictionary-Based Approaches

Approaches based on base function decompositions have intrinsic limitations. Base
functions are usually used because they have orthogonality properties that lead to an
efficient decomposition. Selecting the base can be difficult because it heavily depends
on the nature of the signal. Thus, it can be a viable option to use dictionary-based
descriptions. A signal is represented as a linear combination of atoms from a dictio-
nary. Atoms do not need to have special properties such as orthogonality. They are
typically chosen directly from the data by picking the most representative signals or
by using an optimization.A survey of dictionary-basedmethods for 3Dmodelingwas
conducted by Lescoat et al. (2018). One of the applications of dictionary-based mod-
eling is called sparse modeling, which adds an additional constraint on the number
of atoms used to represent the final signal, called sparsity.

10.3.5.1 Dictionary Decomposition

Given a dictionary, the decomposition of a signal consists of finding the best atom,
i.e., the atom that maximizes the projection. Then, the same process is applied itera-
tively to the residual until reaching the target sparsity. This process is calledmatching
pursuit and was introduced by Mallat and Zhang (1993). This decomposition algo-
rithm was further improved by Cai and Wang (2011) by introducing the Orthogonal
Matching Pursuit (OMP) algorithm. The main difference is that the best decompo-
sition of the already-found atoms is recomputed after each new atom is found.
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1 2 3

Exemplar

Sketch ε= 1 km ε= 125 m ε= 4 m

Fig. 10.19 An example of terrain amplification that adds plausible details from a given exemplar
using a dictionary-based approach. The original terrain had a precision of 1 km, and successive
amplifications by a factor of 4 increase the precision to 4 m

10.3.5.2 Dictionary Optimization

One aim of dictionary based approaches is to find a dictionary that is adapted to a
given context or set of signals. This can be done by an optimization process. One
goal of this optimization is to minimize the reconstruction error, for example, by
computing an L2 distance between the reconstructed signal and the original. It is
common to add a constraint on the type of decomposition, for example, by setting
a maximum sparsity. Unfortunately, the optimization problem under this type of
constraint is too difficult to solve in an optimal way. Heuristics have been proposed
that lead to good results with a relatively low cost. K-SVD is one of these algorithms
(Aharon et al. 2006), which consists of iterating between two steps. The first step
consists of optimizing the decomposition, which can be done using a standard OMP
algorithm. The second step optimizes the dictionary with respect to the previously
computed decomposition. The two steps are repeated until a number of iterations is
reached or a given error is obtained.

Several applications of sparse modeling with terrains have been proposed by
Guérin et al. (2016) and Argudo et al. (2018). The terrain is decomposed into patches
that compose input signals. A so-called amplification process is used to introduce
plausible details into the terrain bymapping between low-resolution andhi-resolution
atoms. The dictionary is drawn from an exemplar terrain at high resolution and
automatically transformed into low resolution by a trivial downsampling process.
The amplification algorithm simply decomposes the patches from a given terrain in
the low-resolution dictionary and uses the corresponding high-resolution atoms to
reconstruct it. Because the dictionary has been extracted from real terrain, the added
details are plausible and realistic, as shown in Fig. 10.19.

10.3.6 Reinforcement Learning

Reinforcement learning (RL) is a powerful learningmethod indynamic environments
(Sutton and Barto 1998). In RL, there is usually an agent in an environment and the
agent receives rewards based on its actions. The final goal is to learn how to take
actions tomaximize the rewards. At any time t , an environment is defined by states St
in which an agent can take action At and change the environment state to St+1. When
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Fig. 10.20 An agent receives state s_t, performs an action and receives reward r_t from the envi-
ronment. The state of the environment changes to s_(t+1). This process continues until a terminal
state is achieved

the agent takes action At , the environment receives a reward rt . These iterations
continue until the environment reaches a terminal state (Fig. 10.20). Examples of
applications that RL can be extremely useful for are games or robot locomotion in
whichmore points andmore stable states are the rewards of the game and locomotion
environments, respectively.

RL has also been used in applications in GIS and geospatial data analysis. For
instance, RL has been used tomodel land cover changes (Bone andDragicevic 2009).
With recent advances in RL and the growth of computational power, we expect that
RL will receive more attention from the GIS and Digital Earth communities. For
instance, one application of RL can be to simulate the behavior of endangered species
in different simulated environments.

10.4 Discussion

In the past, machine learning has seen hypes and winter seasons. It started with sym-
bolic AI in the 1960s, which claimed the ability to make machines with intelligence
comparable to an average human being in less than a decade. However, people soon
realized that they were far from reaching that point. In the 1980s, with the rise of
expert systems, similar hype was seen in the area of machine learning, followed by a
winter season due to the lack of generality of expert systems and their high mainte-
nance costs (Chollet 2017). Recently, deep learning methods became popular again
and showed great success in different areas of computer science including geospatial
analysis, which is an important portion of Digital Earth platforms. Deep learning
will likely continue to grow and be applied more in this field, especially because
of the availability of computational power and big data sets that help create more
powerful models. However, deep learning cannot solve all problems. For instance,
current deep learning models are unable to solve problems that require reasoning or
long-term planning (Chollet 2017). Deep learning models work extremely well in
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mapping an input to a desired output with very little human-level knowledge about
the input or output and their effect on industry and science will probably remain for
a very long time. There is plenty of discussion about the future of deep learning and
AI, notably by its great pioneers such as Lecun et al. (2015) and in the European
perspective on AI (Craglia et al. 2018).

Artificial intelligence and particularly machine learning and deep learning have
great potential to contribute to the generation, analysis, andmanagement of geospatial
data sets. Digital Earth should benefit from such opportunities, as a place holder
to represent such data sets and a platform to analyze them. Since Digital Earth
is constantly receiving geospatial data sets, a successful Digital Earth should use
reliable, fast, and comprehensive techniques to manage and make use of such data.
Deep Learning techniques show promise in these directions. However, there are still
issues in their use in Digital Earth platforms that must be addressed. In the following
sections, we discuss some of these issues.

10.4.1 Reproducibility

If a technique such as a deep neural network produces particular results, such results
should be reproduceable by others. Placing the code on GitHub and providing free
access to data sets have been helpful for this issue. However, there are still some
issues, especiallywhen the data are owned by a company or the networkwas designed
by an industrial team. In particular neural network architectures, randomness can be
included, usually to improve the training. When this randomness is also present in
the operational network, it can disrupt the reproducibility of results.

10.4.2 Ownership and Fairness

Ownership of artifacts provided bymachine learning techniques is also heavily under
question. If a person with almost no knowledge about a network takes information
fromavailable sources,modifies a fewparameters, takes data froman available source
and produces something unique or obtains a certain analysis, who is the owner of
such results? The data owner, developer of the network, or the person who combined
these ingredients? Inmore serious scenarios, who is at fault when a system that works
based on machine learning techniques makes a catastrophic mistake or performs a
discriminatory action thatmay involve racismor sexism?Another question iswhether
data sets and computation power are available to everyone, i.e., do we have “data
democratization”? Fortunately, the wealth of free access data sets and code bases
along with cheap computational power such as Amazon Web Services (AWS) have
resolved some of these issues but we are still far from perfect.
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10.4.3 Accountability

Due to the nature of some algorithms involved in machine learning, it usually cannot
be used in contexts where accountability is a strong constraint. This is especially the
case with deep neural networks where a lot of information is hidden in the layers,
which can lead to unexpected and unwanted results. Conversely, traditional machine
learning methods such as linear regressions or PCA are very reliable even if they are
limited in terms of applications. Reasonably, one could consider using deep learning
methods only when traditional methods fail or are lacking.

10.5 Conclusion

In conclusion, we provided a sampling of artificial intelligence techniques and their
applications in geospatial data generation, analysis, and management. We discussed
how AI can be beneficial for generating new terrain data sets, identifying roads and
analyzing various geospatial data sets such as satellite imagery. AI techniques and
deep learning methods appear very promising. Extensive research on these topics
will likely make them even more suitable for use in different domains including
geospatial analysis and Digital Earth. However, these techniques are unfortunately
standalone and have not been integrated into a Digital Earth platform that makes use
of such techniques. Appropriate artificial intelligence techniques should be meticu-
lously included in Digital Earth, considering their pros and cons including fairness
and bias to provide interactive, comprehensive and meaningful analysis to users.
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