Skip to main content

Significance of Quorum Sensing and Biofilm Formation in Medicine and Veterinary Sciences

  • Chapter
  • First Online:
Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry

Abstract

Quorum sensing (QS) is a coordination of a group of organisms to exhibit a specific action. It is an acquired social behavior presented to perform either symbiotic or pathogenic activity; however, most of the cases in the absence of QS, the decision to execute certain actions has not been performed. Therefore, QS is also termed as “collective decisions”; it is induced and executed by signaling molecules when the signaling molecule crosses a certain threshold. QS phenomenon is shown by many bacteria and fungi and yeast; recently, viruses also have shown to communicate via QS. In modern research era, study of QS is of most interest for the majority of human healthcare as well as animal health reasons. In general, a key approach perceived is inhibition of QS in case of infections or biofilm formation. Inhibition of QS can reduce the initiation of disease and its severity. Hence, inhibition of QS is of significant interest in human and animal healthcare for developing diagnostic and therapeutic tool. Inhibition of QS is an emerging tool to perform the antimicrobial activity by using targeting agents at either three different levels: production, spread, or acceptance of the signal. The current review primarily emphasizes diverse mechanisms of QS, its inhibition, recent challenges and advances in the field, and its clinical implications in human and animal healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albuquerque P, Casadevall A (2012) Quorum sensing in fungi–a review. Med Mycol 50(4):337–345

    Article  CAS  PubMed  Google Scholar 

  • Amer LS, Bishop BM, van Hoek ML (2010) Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 396:246

    Article  CAS  PubMed  Google Scholar 

  • Anderson GG, O’toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. In: Bacterial biofilms. Springer, Berlin, Heidelberg, pp 85–105

    Google Scholar 

  • Barber CE et al (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24(3):555–566

    Article  CAS  PubMed  Google Scholar 

  • Bijtenhoorn P et al (2011) A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 6(10):e26278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyen F et al (2009) Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 135(3–4):187–195

    Article  CAS  PubMed  Google Scholar 

  • Buzzola FR et al (2007) Differential abilities of capsulated and noncapsulated Staphylococcus aureus isolates from diverse agr groups to invade mammary epithelial cells. Infect Immun 75(2):886–891

    Article  CAS  PubMed  Google Scholar 

  • Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci 98(20):11633–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceri H, Olson ME, Turner RJ (2010) Needed, new paradigms in antibiotic development. Expert Opin Pharmacother 11:1233–1237

    Article  CAS  PubMed  Google Scholar 

  • Chen R et al (2010) High yield expression of an AHL-lactonase from Bacillus sp. B546 in Pichia pastoris and its application to reduce Aeromonas hydrophila mortality in aquaculture. Microb Cell Factories 9(1):39

    Article  CAS  Google Scholar 

  • Chowdhary PK et al (2007) Bacillus megaterium CYP102A1 oxidation of acyl homoserine lactones and acyl homoserines. Biochemistry 46(50):14429–14437

    Article  CAS  PubMed  Google Scholar 

  • Chung J et al (2011) Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci 108(29):12089–12094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clutterbuck AL, Woods EJ, Knottenbelt DC, Clegg PD, Cochrane CA, Percival SL (2007) Biofilms and their relevance to veterinary medicine. Vet Microbiol 121:1–17

    Article  CAS  PubMed  Google Scholar 

  • Davies DG, Marques CNH (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Dellit TH et al (2007) Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44(2):159–177

    Article  PubMed  Google Scholar 

  • Dobretsov S et al (2010) Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2(6):739–744

    Article  CAS  PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Reis Ponce A et al (2012) AiiA quorum-sensing quenching controls proteolytic activity and biofilm formation by Enterobacter cloacae. Curr Microbiol 65(6):758–763

    Article  CAS  PubMed  Google Scholar 

  • Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci 75(7):3479–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworkin M, Kaiser D (1985) Cell interactions in myxobacterial growth and development. Science 230(4721):18–24

    Article  CAS  PubMed  Google Scholar 

  • Erez Z et al (2017) Communication between viruses guides lysis–lysogeny decisions. Nature 541(7638):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes P (2006) Antibacterial discovery and development—the failure of success? Nat Biotechnol 24(12):1497

    Article  CAS  PubMed  Google Scholar 

  • Fong KP et al (2001) Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun 69(12):7625–7634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Peter Greenberg E (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard G, Bloemberg GV (2008) Central role of quorum sensing in regulating the production of pathogenicity factors in Pseudomonas aeruginosa. Future Microbiol 3:97–106

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11:1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Haussler S, Parsek MR (2010) Biofilms 2009: new perspectives at the heart of surface-associated microbial communities. J Bacteriol 192:2941–2949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hentzer M et al (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148(1):87–102

    Article  CAS  PubMed  Google Scholar 

  • Huigens RW III, Ma L, Gambino C, Moeller PDR, Basso A, Cavanagh J, Wozniak DJ, Melander C (2008) Control of bacterial biofilms with marine alkaloid derivatives. Mol BioSyst 4:614–621

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31(2):224–245

    Article  CAS  PubMed  Google Scholar 

  • Kravchenko VV et al (2008) Modulation of gene expression via disruption of NF-κB signaling by a bacterial small molecule. Science 321(5886):259–263

    Article  CAS  PubMed  Google Scholar 

  • LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R (2008) Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol 322:1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22(4):582–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClean KH et al (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711

    Article  CAS  PubMed  Google Scholar 

  • Miller MB et al (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110(3):303–314

    Article  CAS  PubMed  Google Scholar 

  • Miyairi S et al (2006) Immunization with 3-oxododecanoyl-L-homoserine lactone–protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J Med Microbiol 55(10):1381–1387

    Article  CAS  PubMed  Google Scholar 

  • Mukherji R, Prabhune A (2014) Novel glycolipids synthesized using plant essential oils and their application in quorum sensing inhibition and as antibiofilm agents. Sci World J 2014:890709

    Article  Google Scholar 

  • Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43(4):496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48(6):1429–1449

    Article  CAS  PubMed  Google Scholar 

  • Palliyil S et al (2014) High-sensitivity monoclonal antibodies specific for homoserine lactones protect mice from lethal Pseudomonas aeruginosa infections. Appl Environ Microbiol 80(2):462–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papaioannou E et al (2009) Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother 53(11):4891–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto UM et al (2007) Detection of acylated homoserine lactones in gram-negative proteolytic psychrotrophic bacteria isolated from cooled raw milk. Food Control 18(10):1322–1327

    Article  CAS  Google Scholar 

  • Rasch M et al (2004) An inhibitor of bacterial quorum sensing reduces mortalities caused by vibriosis in rainbow trout (Oncorhynchus mykiss, Walbaum). Syst Appl Microbiol 27(3):350–359

    Article  CAS  PubMed  Google Scholar 

  • Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9(2):117

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen TB et al (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187(5):1799–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D et al (2004) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88(5):630–642

    Article  CAS  PubMed  Google Scholar 

  • Russo TA et al (2011) Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than “classical” K. pneumoniae thereby enhancing its virulence. PLoS One 6(10):e26734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scutera S, Zucca M, Savoia D (2014) Novel approaches for the design and discovery of quorum-sensing inhibitors. Expert Opin Drug Discovery 9(4):353–366

    Article  CAS  Google Scholar 

  • Shankar M et al (2013) Inactivation of the transcriptional regulator-encoding gene sdiA enhances rice root colonization and biofilm formation in Enterobacter cloacae GS1. J Bacteriol 195(1):39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skindersoe ME et al (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol 10(1):56–63

    Article  CAS  Google Scholar 

  • Sprague GF, Winans SC (2006) Eukaryotes learn how to count: quorum sensing by yeast. Genes Dev 20(9):1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Tay S, Yew W (2013) Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 14(8):16570–16599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teasdale ME et al (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75(3):567–572

    Article  CAS  PubMed  Google Scholar 

  • Truchado P, Gil-Izquierdo A, Tomas-Barberan F, Allende A (2009) Inhibition by chestnut honey of N-acyl-L-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J Agric Food Chem 57:11186–11193

    Article  CAS  PubMed  Google Scholar 

  • Uroz S et al (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151(10):3313–3322

    Article  CAS  PubMed  Google Scholar 

  • Vancraeynest D et al (2006) International dissemination of a high virulence rabbit Staphylococcus aureus clone. J Veterinary Med Ser B 53(9):418–422

    Article  CAS  Google Scholar 

  • Walters M, Sperandio V (2006) Quorum sensing in Escherichia coli and Salmonella. Int J Med Microbiol 296(2–3):125–131

    Article  CAS  PubMed  Google Scholar 

  • Wu H et al (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53(6):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Yang F et al (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579(17):3713–3717

    Article  CAS  PubMed  Google Scholar 

  • Zhou L et al (2013) Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35(4):631–637

    Article  CAS  PubMed  Google Scholar 

  • Zhu H et al (2011) A luxS-dependent transcript profile of cell-to-cell communication in Klebsiella pneumoniae. Mol BioSyst 7(11):3164–3168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Krishna University, Machilipatnam, NIV Pune and NCCS Pune for the support extended.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganugula Mohana Sheela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhukya, P.L., Nawadkar, R., Bramhachari, P.V., Sheela, G.M. (2019). Significance of Quorum Sensing and Biofilm Formation in Medicine and Veterinary Sciences. In: Bramhachari, P. (eds) Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry . Springer, Singapore. https://doi.org/10.1007/978-981-32-9409-7_7

Download citation

Publish with us

Policies and ethics