
Chapter 3
Secure Primitive for Big Data Utilization

Akinori Kawachi, Atsuko Miyaji, Kazuhisa Nakasho, Yiying Qi,
and Yuuki Takano

Abstract In this chapter, we describe two security primitives for big data utilization.
One is a privacy-preserving data integration among databases distributed in differ-
ent organizations. This primitive integrates the same data among databases kept in
different organizations while keeping any different data in an organization secret
to other organizations. Another is a privacy-preserving classification. This primitive
executes a procedure for server’s classification rule to client’s input database and
outputs only the result to the client while keeping the client’s input database secret to
the server and server’s classification rule to the client. These primitives can be exe-
cuted not only independently but also jointly. That is, after we integrate databases
from distributed organization by executing the privacy-preserving data integration,
we can execute a privacy-preserving classification.

3.1 Privacy-Preserving Data Integration

3.1.1 Introduction

Medical organizations often store the data accumulated through medical analyses.
However, detailed data analysis sometimes requires separate datasets to be integrated
without violating patient or commercial privacy. Consider the scenario in which the

A. Kawachi
Mie University, 1577 Kurimamachiya-cho, Tsu City, Mie 514-8507, Japan
e-mail: kawachi@cs.info.mie-u.ac.jp

A. Miyaji (B) · Y. Qi · Y. Takano
Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
e-mail: miyaji@comm.eng.osaka-u.ac.jp

Y. Takano
e-mail: ytakano@cy2sec.comm.eng.osaka-u.ac.jp

K. Nakasho
Yamaguchi University, 1677-1 Yoshida, Yamaguchi City, Yamaguchi 753-8511, Japan
e-mail: nakasho@yamaguchi-u.ac.jp

© The Author(s) 2020
A. Miyaji and T. Mimoto (eds.), Security Infrastructure Technology
for Integrated Utilization of Big Data,
https://doi.org/10.1007/978-981-15-3654-0_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-3654-0_3&domain=pdf
mailto:kawachi@cs.info.mie-u.ac.jp
mailto:miyaji@comm.eng.osaka-u.ac.jp
mailto:ytakano@cy2sec.comm.eng.osaka-u.ac.jp
mailto:nakasho@yamaguchi-u.ac.jp
https://doi.org/10.1007/978-981-15-3654-0_3

36 A. Kawachi et al.

occurrence of similar accidents can be attributed to a particular defective product.
Such defective products should be identified as quickly as possible. However, the
databases related to accidents are maintained separately by different organizations.
Thus, investigating the causes of accidents is often time-consuming. For example,
assume child A has broken her/his leg at school, but it is not clear whether the
accident was caused by defective equipment. In this case, information relating to A’s
injury, such as the patient’s name and type of injury, is stored in hospital database
S1. Information pertaining to A’s accident, such as their name and the location of the
swing at the school, is stored in database S2, which is held by the fire department.
Finally, information relating to the insurance claim following A’s accident, such as
the name and medical costs, is maintained in the insurance company’s database, S3.
Computing the intersection of these databases, S1 ∩ S2 ∩ S3, without compromising
privacy would enable us to combine the separate sets of information, which may
allow the cause of the accident to be identified. Let us consider another situation.
Several clinics, denoted as Pi , maintain separate databases, represented as Si . The
clinics wish to know the patients they have in common to enable them to share
treatment details; however, Pi should not be able to access any information about
patients not stored in their own dataset. In this case, the intersection of the set must
not reveal private information.

These examples illustrate the need for the Multiparty Private Set Intersection
(MPSI) protocol [1–4]. MPSI is executed by multiple parties who jointly compute
the intersection of their private datasets. Ultimately, only designated parties can
access this intersection. Previous protocols are impractical because the bulk of the
computation depends on the number of players. One previous study required the
size of the datasets maintained by the different players to be equal [1, 2]. Another
study [3] computed only the approximate number of intersections, whereas other
researchers [4] required more than two trusted third-parties.

In this section, we propose a practical MPSI with the following features:
1. The size of the datasets maintained by each party is independent of those main-
tained by the other parties.
2. The computational complexity for each party is independent of the number of
parties. This is accomplished by introducing an outsourcing provider, O. In fact, all
computations related to the number of parties are carried out byO. Thus, the number
of parties is irrelevant.

3.1.2 Preliminaries

In this section, we summarize the DDH assumption, Bloom filter, and ElGamal
encryption. We consider security according to the honest-but-curious model [5]: all
players act according to their prescribed actions in the protocol. A protocol that is
secure in an honest-but-curious model does not allow any player to gain information
about other players’ private input sets, besides that that can be deduced from the result
of the protocol. Note that the term adversary here refers to insiders, i.e., protocol
participants. Outsider adversaries are not considered. In fact, behavior by outsider
adversaries can be mitigated via standard network security techniques.

3 Secure Primitive for Big Data Utilization 37

Our protocol is based on the following security assumption.

Definition 3.1 (DDHAssumption) Let t be a security parameter.AdecisionalDiffie–
Hellman (DDH) parameter generator IG is a probabilistic polynomial time (ppt)
algorithm, a finite field Fp, and a basepoint g ∈ Fp with prime order q. We say
that IG satisfies the DDH assumption if |p1 − p2| is negligible (in κ) for all
ppt algorithms A, where p1 = Pr[(Fp, g) ← IG(1κ); y1 = gx1, y2 = gx2 ← Fp :
A(Fp, g, y1, y2, gx1x2) = 0] and p2 = Pr[(Fp, g) ← IG(1κ); y1 = gx1 , y2 = gx2 ,
z ← Fp : A(Fp, g, y1, y2, z) = 0].

A Bloom filter [6], denoted by BF, consists of m arrays and has a space-efficient
probabilistic data structure. The BF can check whether an element x is included in
a set S by encoding S with at most w elements. The encoded Bloom filter of S is
denoted by BF(S).

TheBF uses a set of k independent uniform hash functionsH = {H0, . . . , Hk−1},
where Hi : {0, 1}∗ −→ {0, 1, . . . ,m − 1} for 0 ≤ ∀i ≤ k − 1. The BF consists of
two functions: Const embeds a given set S into BF(S) and ElementCheck checks
whether an element x is included in S. SetCheck, an extension of ElementCheck,
checks whether an element x in S′ is in S′ ∩ S (see Algorithm 3.3). In Const (see
Algorithm 3.1), BF(S) is constructed for a given set S by first setting all bits in the
array to 0. To embed an element x ∈ S into the filter, the element is hashed using k
hash functions to obtain k index numbers, and the bits at these indexes are set to 1,
i.e., set BF[Hi (x)] = 1 for 0 ≤ i ≤ k − 1. In ElementCheck (see Algorithm 3.2),
we check all locations where x is hashed; x is considered to be not in S if any bit at
these locations is 0; otherwise, x is probably in S.

Some false positive matches may occur, i.e., it is possible that all BF[Hi (y)]
are set to 1, but y is not in S. The false positive rate FPR is given by FPR ={
1 − (

1 − 1
m

)kw}k ≈ {
1 − e−kw/m

}k
[7]. However, false negatives are not possible,

and so Bloom filters have a 100% recall rate.

Algorithm3.1Const(S)

Input: A set S
Output: A Bloom filter

BF(S)

1: for i = 0 to m − 1 do
2: BF(S)[i] ← 0
3: end for
4: for all x ∈ S do
5: for i = 0 to k − 1 do
6: j = Hi (x)
7: if BF(S)[j] = 0

then
8: BF(S)[j] ← 1
9: end if
10: end for
11: end for
12: output BF(S). stop.

Algorithm 3.2
ElementCheck(BF, x)
Input: ABloomfilterBF(S),

an element x
Output: 1 if x ∈ S and 0 if

x /∈ S
1: for i = 0 to k − 1 do
2: j = Hi (x)
3: if BF(S)[j] = 0 then
4: output 0. stop.
5: end if
6: end for
7: output 1. stop.

Algorithm 3.3
SetCheck(BF, S′)
Input: ABloomfilterBF(S),

a set S′
Output: A set S∩(= S ∩ S′)
1: S∩ ← {}
2: for all x ∈ S′ do
3: for i = 0 to k − 1 do
4: j = Hi (x)
5: if BF[j] = 0 then
6: go to next x .
7: end if
8: end for
9: add x to the set S∩
10: end for
11: output S∩. stop.

38 A. Kawachi et al.

Homomorphic encryption under addition is useful for processing encrypted data.
A typical homomorphic encryption under addition was proposed by Paillier [8].
However, because Paillier encryption cannot reduce the order of a composite group,
it is computationally expensive compared with the following ElGamal encryption.
Our protocol requires matching without revealing the original messages, for which
exponential ElGamal encryption (exElGamal) is sufficient [9]. In fact, the decrypted
results of exElGamal encryption can distinguish whether two messages m1 and m2

are equal, although the exElGamal scheme cannot decrypt messages itself. Further-
more, exElGamal can be used in (n, n)-threshold distributed decryption [10], where
the decryption must be performed by all players acting together. An exElGamal
encryption with (n, n)-threshold distributed decryption consists of three functions:
Key generation:
Let Fp be a finite field, g ∈ Fp, with prime order q. Each player Pi chooses xi ∈ Zq

at random and computes yi = gxi (mod p). Then, y = ∏n
i=1 yi (mod p) is a public

key and each xi is a share for each player to decrypt a ciphertext.
Encryption: thrEnc[m] → (u, v)
Let m ∈ Z

∗
q be a message. Choose r ∈ Zq at random, and compute both u = gr

(mod p) and v = gm yr (mod p) for the input message m ∈ Zq and a public key y.
Output (u, v) as a ciphertext of m.
Decryption: thrDec[(u, v)] → gm

Each player Pi computes zi = uxi (mod p). All players then compute z = ∏n
i=1 zi

(mod p) jointly.1 Finally, each player can decrypt the ciphertext as gm = v/z
(mod p).
ExElGamal encryption with (n, n)-threshold decryption has the following features:
(1) homomorphic under addition:Enc(m1)Enc(m2) = Enc(m1 + m2) formessages
m1,m2 ∈ Zp.
(2) homomorphic under scalar operations: Enc(m)k = Enc(km) for a message m
and k ∈ Zq .

3.1.3 Previous Work

This section summarizes prior works on PSI between a server and a client and MPSI
among n players. In PSI, let S = {s1, . . . , sv} and C = {c1, . . . , cw} be server and
client datasets, respectively, where |S| = v and |C | = w. In MPSI [1], we assume
that each player holds the same number of datasets.
PSI protocol based on polynomial representation: The main idea is to represent
the elements in C as the roots of a polynomial. The encrypted polynomial is sent
to the server, where it is evaluated on the elements in S, as originally proposed by

1The computational complexity of z for each player can be made independent of the number of
players in various ways. For example, set z = 1. P1 computes z = z · z1 and sends z to P2, P2
computes z = z · z2 and sends z to P3, and, finally, Pn computes z = z · zn and shares z among all
players. If we place all players in a binary tree, the communication complexity can be reduced, but
each player’s computational complexity is still independent of the number of players.

3 Secure Primitive for Big Data Utilization 39

Freedman [11]. This is secure against honest-but-curious adversaries under secure
public key encryption. The computational complexity is O(vw) exponentiations,
and the communication overhead is O(v + w). The computational complexity can
be reduced to O(v log logw) exponentiations using the balanced allocation technique
[12]. Kissner and Song extended this protocol to MPSI [1], which requires O(nw2)

exponentiations and O(nw) communication overhead. The MPSI version is secure
against honest-but-curious and malicious adversaries (in the random oracle model)
using generic zero-knowledge proofs.
PSI protocol based on DH-key agreement: The main objective here is to apply the
DH-key agreement protocol [13]: after representing the server and client datasets
as hash values {h(si)} and {h(ci)}, respectively, the client encrypts the dataset as
{h(ci)ri } using a random number ri and sends the encrypted set to the server. The
server encrypts the client set {h(ci)ri } and the server set {h(si)} using a random
number r , which gives {h(ci)rri } and {h(si)r }, respectively, and returns these sets
to the client. Finally, the client evaluates S ∩ C by decrypting to {h(ci)r }. This is
secure against honest-but-curious adversaries under the DDH assumption. The total
computational complexity is O(v + w) exponentiations, and the total communica-
tion overhead is O(v + w). The security of this approach can be enhanced against
malicious adversaries in the random oracle model [14] by using a blind signature.
However, no extensions toMPSI based on the DH-key agreement protocol have been
proposed.
PSI protocol based on BF: This protocol was originally proposed in [4]. As the
Bloom filter itself reveals information about the other player’s dataset, the set of
players is separated into two groups: input players who have datasets and privacy
players who perform private computations under shared secret information. In [15],
the privacy of each player’s dataset is protected by encrypting each array of theBloom
filter usingGoldwasser–Micali encryption [16]. In an honest-but-curious version, the
computational complexity isO(kw)hashoperations andO(m)public keyoperations,
and the communication overhead is O(m), where m and k are the number of arrays
and hash functions, respectively, used in the Bloom filter. The Bloom filter is used in
the Oblivious transfer extension [17, 18] and the newly constructed garbled Bloom
filter [19]. The main novelty in the garbled Bloom filter is that each array requires
λ bits rather than the single bit needed for the conventional Bloom filter. To embed
an element x ∈ S to a garbled Bloom filter, x is split into k shares with λ bits using
XOR-based secret sharing (x = x1

⊕ · · ·⊕ xk). The xi are then mapped to an index
of Hi (x). An element y is queried by subjecting all bit strings at Hi (y) to an XOR
operation. If the result is y, then y is in S; otherwise, y is not in S. The client uses
a Bloom filter BF(C), and the server uses a garbled Bloom filter GBF(S). If x is
in C ∩ S, then for every position i it hashes to, BF(C)[i] must be 1 and GBF(S)[i]
must be xi . Thus, the client can compute C ∩ S. The computational complexity of
this method is O(kw) hash operations and O(m) public key operations, and the
communication overhead is O(m). The number of public key operations can be
changed toO(λ)using theOblivious transfer extension. This is secure against honest-
but-curious adversaries if the Oblivious transfer protocol is secure. Finally, some
researchers have computed the approximate number of multiparty set unions [3].

40 A. Kawachi et al.

3.1.4 Practical MPSI

This section presents a practical MPSI that is secure under the honest-but-curious
model.

3.1.4.1 Notation and Privacy Definition

In the remainder of this paper, the following notations are used.

• Pi : i th player, i = 1, . . . , n
• O: outsourcing provider with no knowledge of the inputs or outputs
• Si = {si,1, si,2, . . . , si,wi }: dataset held by Pi , where |Si | = ωi

• ∩Sj : intersection of all n players
• thrEnc and thrDec: (n, n)-threshold exElGamal encryption and decryption,
respectively

• m and k: number of arrays and hashes used in BF
• � = [�, . . . , �] (1 ≤ � ≤ n): an n-dimensional array, where all strings in the array
are set to �

• BF(Si) = [BFi [0], . . . ,BFi [m − 1]]: Bloom filter applied to a set Si
• IBF(∩Si) = [∑n

i=1 BFi [0], . . . ,∑n
i=1 BFi [m − 1]]: integrated Bloom filter of n

sets {Si }, where∑n
i=1 BFi [j] is the sum of all players’ arrays

We introduce an outsourcing provider O to reduce the computational burden on
all players. The dealer has no information regarding the elements of any player’s set.
The privacy issues faced by MPSI with an outsourcing provider can be informally
written as follows.

Definition 3.2 (MPSI privacy) An MPSI scheme with an outsourcing provider O
is player-private if the following two conditions hold:

• Pi does not learn anything about the elements of other players’ datasets except for
the elements that Pi originally possesses.

• the outsourcing provider O does not learn anything about the elements of any
player’s set.

3.1.4.2 Proposed MPSI

Our MPSI comprises four phases: (i) initialization, (ii) Bloom filter construction and
the encryption of Pi data, (iii) the O’s randomization of thrEnc(IBF(∪Si) − n), and
(iv) the computation of ∩Pi . The computation of ∩Pi consists of three steps: (a)
joint decryption of an (n, n)-threshold exElGamal among n players, (b) Bloom filter
check, and (c) output intersection.

Figure 3.1 shows an overview of our protocol after the initialization phase. The
system parameters of a finite field Fp and a basepoint g ∈ Fp with order q for an

3 Secure Primitive for Big Data Utilization 41

Fig. 3.1 Overview of our MPSI

(n, n)-threshold exElGamal encryption (thrEnc, thrDec) are provided to both Pi

and O. For the Bloom filter, Const(S) and SetCheck(BF, S′) are only provided to
Pi , where the array size is m and k independent hash functions are used.

To encrypt, randomize, or subtract a vector such as a Bloom filter BF = [a0, . . . ,
am−1], each location is encrypted, randomized, or subtracted independently:

thrEnc(BF) = [thrEnc(a0), . . . , thrEnc(am−1)],
rBF = [r0a0, . . . , rm−1am−1], or

BF − r = [a0 − r0, . . . , am−1 − rm−1]

for r = [r0, . . . , rm−1] ∈ Z
m
q .

Our protocol proceeds as follows.

Initialization:

1. Pi generates xi ∈ Zq , computes yi = gxi ∈ Zq , and publishes yi to the other play-
ers as a public key, where the corresponding secret key is xi .

2. Pi computes y = ∏
i yi , where y is the n-player public key. Note that no

player knows the corresponding secret key x = ∑
xi before executing the joint

decryption.

Construction and encryption of BF(Si) − 1:

1. Pi executesConst(Si) −→ BF(Si) = [BFi [0], . . . ,BFi [m − 1]] (Algorithm3.1).
2. Pi encrypts BF(Si) − 1 using thrEncy :

thrEncy(BF(Si) − 1) = [thrEncy(BFi [0] − 1), . . . , thrEncy(BFi [m − 1] − 1)],

42 A. Kawachi et al.

where y is an n-player public key.
3. Pi sends thrEncy(BF(Si) − 1) to O.
Randomization of thrEnc(IBF(∩Si) − n):

1. O encrypts IBF(∩Si) − n without knowing IBF(∩Si) using an additive homo-
morphic feature and multiplying by thrEncy(BF(Si) − 1) as follows:

thrEncy(IBF(∩Si) − n) =
n∏

i=1

thrEncy(BF(Si) − 1).

2. O randomizes thrEncy(IBF(∩Si) − n) by r = [r0, . . . , rm−1] ∈ Z
m
q :

thrEncy(r(IBF(∩Si) − n)) = (thrEncy(IBF(∪Si) − n))r.

3. O broadcasts thrEncy(r(IBF(∩Si) − n)) to Pi .

Computation of ∩Si :

1. All players decrypt thrEncy(r(IBF(∩Si) − n)) jointly.
2. Pi computes SetCheck(r(IBF(∩Si) − n), Si) and obtains ∩Si .

The above protocol satisfies the correctness requirement. This is because each array
position of thrEncy(r(IBF(∩Si) − n)) is decrypted to 1, where x ∈ ∩Si is embedded
by each hash function; however, each array position for which x /∈ ∩Si is embedded
by each hash function is decrypted to a random value.

3.1.4.3 Security Proof

The security of our MPSI protocol is as follows.

Theorem 3.1 For any coalition of fewer than n players, the MPSI is player-private
against an honest-but-curious adversary under the DDH assumption.

Proof The views of Pi and O, that is,

thrEncy(BFm,k(Si)) = [thrEncy(BFi [0]), . . . , thrEncy(BFi [m − 1])],

are shown to be indistinguishable from a random vector r = [r0, . . . , rm−1] ∈ Z
m
q .

Assume that a polynomial-time distinguisher D outputs 0 when the views are pre-
sented as a random vector and outputs 1 when they are constructed in MPSI,
thrEnc(BFi [0]), . . . , thrEnc(BFi [m − 1]). We show that a simulator SIM that
solves the DDH assumption can be constructed as follows.

Upon receiving a DDH challenge (g, gα, gβ, gγ), SIM executes the following:

1. Set n-player public key y = gβ and choose random numbers d0, . . . , dm−1 and
r1, . . . , rm−1 from Zq .

3 Secure Primitive for Big Data Utilization 43

2. Send [(gα, gd0 · gγ), ((gα)r1 , gd1 · (gγ)r1), . . . , ((gα)rm−1 , gdm−1 · (gγ)rm−1)] as
thrEncy(BFm,k(Si)) toD.

If (g, gα, gβ, gγ) is a DH-key-agreement-protocol element, i.e., γ = αβ, then
thrEncy(BFm,k(Si)) is distributed in the same way as when constructed by the
MPSI scheme. Thus, D must output 1. If (g, gα, gβ, gγ) is not a DH tuple, then
thrEncy(BFm,k(Si)) is randomly distributed, andD has to output 0. Therefore, SIM
can use the output of D to respond to the DDH challenge correctly. Therefore, D
can answer correctly with negligible advantage over random guessing. Furthermore,
as all inputs of each player are encrypted until the decryption is performed, and
decryption cannot be performed by fewer than n players, nothing can be learned by
any player prior to decryption.

As for the views of thrEncy(r(IBFm,k(∩Si) − n)), the same argument holds.
Therefore, for any coalition of fewer than n players, MPSI is player-private under
the honest-but-curious model.

Next, we present d-and-over MPSI. The procedures of d-and-over MPSI are the
same as those of MPSI until O computes thrEncy(IBF(∩Si)). Thus, we describe the
procedure after O computes thrEncy(IBF(∩Si)).

Encryption of �-subtraction of IBF(∩Si): O executes the following:

1. Encrypt IBF(∩Si) − � randomized by r = [r0, . . . , rm−1] ∈ Z
m
q (d ≤ � ≤ n):

thrEncy(r(IBF(∩Si) − �)) = (thrEncy(IBF(∩Si)) · thrEncy(−�))r.

2. Broadcast {thrEncy(r(IBF(∩Si) − �))}� (d ≤ � ≤ n) to Pi .

d-and-over MPSI computation: Pi executes the following:

1. All Pi jointly decrypt {thrEncy(r(IBF(∩Si) − �))}�.
2. Let CBF� be an m-array for d ≤ � ≤ n, where an array is set to 1 if and only if

the corresponding array of rIBF(∩Si) − � is 1, and others are set to 0.
3. Set CBF = CBF� ∨ · · · ∨ CBFn .
4. Execute SetCheckm,k(CBF, Si) −→ ∩≥d S[i] and output ∩≥d S[i].
The correctness of d-and-overMPSI follows from the fact that if an element x ∈ ∩�S
for d ≤ ∃� ≤ n, the corresponding array locations in IBF(∩Si) − j for � ≤ ∃ j ≤ n,
where x is mapped by k hashes, are an encryption of 0, which are decrypted to 1;
otherwise, it is an encryption of randomized value.

3.1.5 Efficiency

Although many PSI protocols have been proposed, to the best of our knowledge,
relatively few consider the multiparty scenario [1–4]. Our target is multiparty private
set intersection, and the final result must be obtained by all players acting together,
without a trusted third-party (TTP). Among previous MPSI protocols, the approach
in [3] computes only the approximate number of intersections, and that in [4] requires

44 A. Kawachi et al.

Table 3.1 Efficiency of [1] and the proposed protocol

[1] Ours

Computational complexity O(nω2) Pi : O(ωi), O : O(nω)

Communication overhead O(nω) Pi : O(ω + n), O : O(nω)

Restriction on set size |S1| = · · · = |Sn | None

Protected values Si (∀i ∈ [1, n]) Si , |Si |(∀i ∈ [1, n])

more than two TTPs. In contrast, [2] follows almost the same method as [1] and thus
has a similar complexity. The only difference exists in the security model. Hence,
we only compare our scheme with that of [1].

The computational and communication efficiency of the proposed protocol and [1]
are compared in Table3.1. These approaches are secure against honest-but-curious
adversaries without a TTP under exElGamal encryption (DDH security) and Paillier
encryption (DecisionalCompositeResidue (DCR) security), respectively.TheBloom
filter parameters (m, k) used in our protocol are set as follows: k = 80 and m =
80ω/ ln 2, whereω is themaximum |Si | = ωi . Then, the probability of false positives
is given by p = 2−80.

Our MPSI uses the Bloom filter for the computations performed by Pi and the
integrations performed by the O. The use of a Bloom filter eliminates the restriction
on set size. Thus, in our MPSI, the set size of each player is flexible. However, Pi ’s
computations consist of Bloom filter construction, joint decryption, and Bloom filter
check. Neither the computations related to the Bloom filter nor the joint decryption
depends on the number of players, as shown in Sect. 3.1.2. In summary, the computa-
tional complexity of operations performed byPi is O(ωi). All player-dependent data
are sent to O, who integrates

∏n
i=1 thrEncy(IBF(∩Si)) without decryption. There-

fore, the computational complexity of operations performed by O is O(nω).

3.1.6 System and Performance

PSI or MPSI implicitly assumes that every attendee can provide data, any attendee
can retrieve data from the shared data, and all attendees can communicate with
each other. If PSI or MPSI is implemented straightforwardly, such implementation
should become a system like a peer-to-peer (P2P) network system. Although a fully
distributed system like P2P network has attractive features, such as high availability
and scalability, it incurs some unfavorable features.

The network address and port translation (NAPT) is a major obstacle for P2P
network systems. Modern P2P network systems take advantage of NAPT traversal
technologies to overcome NAPT, but it should be costly to make the architecture
complex. The absence of trusted node is also an obstacle for attendee or group
management. Making consensus on a P2P network system is difficult or highly

3 Secure Primitive for Big Data Utilization 45

Fig. 3.2 P2P and client server model

costly. Additionally, unpredictable node joining and leaving are reasons that make
the P2P network systems complex. To avoid the complexities of P2P networks, we
designed a system based on the client server model.

Then, we discuss the design of PSI or MPSI’s client server model. There are 2
main functionalities of PSI or MPSI: (1) First, the data sharing is a functionality for
sharing data among attendees. (2) Next, the data retrieving from the shared data is
a functionality. Any attendee can retrieve data from the shared data, but the retriev-
ing avoids correcting privacy sensitive data by using privacy preserving techniques
described above.

However, we do not assume that every attendee provides and retrieves data. Imag-
ine that an incident analysis situation in which data are provided by several orga-
nizations which employ labor and operate some machines, and a research institute
collects data from the organizations and analyzes it. In such a situation, data providers
do not need the data retrieving functionality, and data analysts do not need the data
sharing functionality.

Therefore, we define 3 roles for our MPSI application design as follows.

• Parties: entities for data providing
• Clients: entities for data retrieving
• Dealer: an entity for forwarding requests between parties and clients

From the perspective of privilege separation, defining and separating roles are signif-
icant. Figure3.2 shows a P2P network model and our client server model. As show in
this figure, every P2P network node is connected to each other and can provide and
retrieve data, but parties only provide data and clients only retrieve data in the client
server model. The dealer forwards requests from parties and clients and provides
other functionalities that are not specified by PSI or MPSI. For example, attendee or
group management, user authentication, and data logging should be performed by
the dealer.

Figure3.3 shows an example sequence diagram of our MPSI application. In this
figure, there are 2 parties, 1 client, and 1 dealer. First of all, parties 1 and 2 join
the dealer (join p1 and p2). A party must join before providing data, and it must be
performed only once at initialization. After that, the client sends a request of data
retrieval to the dealer (cl req), and parties send a request to confirmwhether the dealer

46 A. Kawachi et al.

Fig. 3.3 Sequence diagram of MSPI application

Fig. 3.4 Performance

received data retrieval requests by clients (new-req p1 and p2). Then, the parties and
the dealer generate keys, share the keys, encrypt data, and decrypt data (gpk p1 and
p2, enc p1 and p2, and dec p1 and p2). Finally, the client gets the result from the
dealer.

We measured performance of our MPSI application written in Python language
on an Amazon’s EC2 server (2.4GHz CPU, 1GB Memory). Figure3.4 shows the
results when there are from2 to 4 parties which provide data including 10,000 entries.
The results show that it takes approximately 280s to accomplish data retrieval and
that the computational amount does not depend on the number of parties.

3 Secure Primitive for Big Data Utilization 47

3.2 Classification

In this section, we present a secure classification protocol, a type of secure computa-
tion protocols. We assume two participants Alice and Bob of the protocol. Alice has
private data x , and Bob has a classification model C . The task is that Alice learns
C(x) at the end of the protocol while preserving the privacy of x and C . That is,
Alice can learn only C(x) and Bob can learn nothing. Our construction is based on
a code-based public-key encryption scheme called HQC [20], which is a candidate
of NIST’s Post-Quantum Cryptography standardization [21].

3.2.1 Error-Correcting Code

We start with several fundamental notions for error-correcting codes.

Definition 3.3 (Linear code) A code C such that c1 + c2 ∈ C always holds for any
codeword c1, c2 ∈ C is called a linear code. The code C of code length n and infor-
mation bit number k is described as “a” code.

Definition 3.4 (Generation matrix) For matrices G ∈ F
k×n ,G that satisfy

C = {m · G|m ∈ F
k} (3.1)

is called a generator matrix. The generator matrix is the basis of linear codes and
generates all codewords.

Definition 3.5 (Parity check matrix) For a matrix H ∈ F
(n−k)×n , H that satisfies

C = {x ∈ F
n|H · x� = 0} (3.2)

is called a parity check matrix.

Definition 3.6 (Cyclic matrix) When x = (x1, . . . , xn) ∈ F
n , the circulant matrix

for x is defined as

rot(x) =

⎛
⎜⎜⎜⎝

x1 xn · · · x2
x2 x1 · · · x3
...

...
. . .

...

xn xn−1 · · · x1

⎞
⎟⎟⎟⎠ ∈ F

n×n (3.3)

In addition, the multiplication of two polynomials x, y has the following
properties:

x · y = x × rot(y)�

= (rot(x) × y�)�

= y × rot(x)�

= y · x.

(3.4)

48 A. Kawachi et al.

Definition 3.7 (Cyclic shift) The operation of shifting (c0, . . . , cn−1) to the right by
one position with respect to n-dimensional vector ci (i = 0, . . . , n − 2) and moving
cn−1 to the beginning of the vector is called cyclic shift. That is, for any n dimensional
vector (c0, . . . , cn−1), it is a mapping σ : (c0, c1, . . . , cn−1) �→ (cn−1, c0, . . . , cn−2).

Definition 3.8 (Quasi-cyclic code) Let c = (c0, . . . , cs−1) ∈ (Fn
2)

s be an arbitrary
codeword of codeC and let σ be a cyclic shift operation. If (σ(c0), . . . ,σ(cs−1) ∈ C,
C is called the s-quasi-cyclic code. In particular, when s = 1, C is called a cyclic
code.

Definition 3.9 (Systematic quasi-cyclic code) An s-quasi-cyclic [sn, n] code is
called a systematic quasi-cyclic code if it has a parity check matrix of the form.

H =

⎡
⎢⎢⎢⎣

In 0 · · · 0 A1

0 In A2

. . .
...

0 · · · In As−1

⎤
⎥⎥⎥⎦ (3.5)

Here, A1, . . . , As−1 is an n × n circulant matrix.

3.2.2 Security Assumptions

As mentioned above, the security of the public-key cryptosystem HQC is based on
the computational difficulty of the quasi cyclic syndrome decoding problem. More
specifically, its security is provedunder the followingquasi cyclic syndromedecoding
decision assumptions.

Definition 3.10 (quasi-cyclic syndrome decoding assumption) The quasi-cyclic
syndrome decoding decision problem of a s-quasi-cyclic code in which n and w are
integers and the number of blocks is s ≥ 2 is (H, y�) when the parity check matrix

H
$←− F

(sn−n)×sn and the matrix y
$←− F

sn−n of random systematic quasi-cyclic
code are given, every efficient algorithm distinguish only with negligible probability
whether it is quasi-cyclic syndrome decoding distribution or the uniform distribution
over F(sn−n)×sn × F

(sn−n).

As will be described later, since the security of the secure computation protocol
proposed in this section is reduced to the security of HQC, the secure computation
protocol of this section is proved to be secure under this assumption as well as under
HQC.

3 Secure Primitive for Big Data Utilization 49

3.2.3 Security Requirements for 2PC

Secure two-party computation is a subproblem of multi-party secure computation.
The studies have been conducted by many researchers since it is closely related to
many cryptographic protocols. The purpose of 2PC is to construct a general-purpose
protocol so that arbitrary functions can be jointly computed without sharing the input
values of the two parties with the other. One of the best-known examples of 2PCs is
the millionaire problem [22] in Yao, where Alice and Bob do not reveal their money
and decide who is richer. Specifically, suppose that Alice has a yen, and Bob has b
yen. The problem is to decide whether a ≥ b or not while keeping each other secret.
Generally speaking, the security requirement of 2PC is that the computation of any
function is performed using a protocol without leaking the two inputs to the other,
and only the computation result is known.

A two-party linear function evaluation is a kind of 2PC that satisfies the 2PC
security requirements. In otherwords, the participants perform the evaluationwithout
notifying the other party of their input. In addition, the function of the protocol is
the evaluation of linear functions. Specifically, linear function secure computation
protocol computes f (m) = a · m + b. The participants in the protocol are called
Alice and Bob. Alice’s input ism, and Bob’s input is linear function parameters a, b.
Alice gets only the result of f (m) = a · m + b through the protocol, and Bob gets
nothing.

Below we define the security requirements for two-party linear function secure
computation.

Definition 3.11 (Security against semi-honest adversaries) Let f = (f A, fB) be
the function that maps the input x of Alice(A) and the input y of Bob(B) to
f A(x, y), fB(x, y). A aims to obtain f A(x, y) and B aims to obtain fB(x, y).
Let f = (f A, fB) be a function of probabilistic polynomial time, and π be a

two-way protocol for computing function f . Let the view of A with (x, y) exe-
cution π(x, y) and the security parameter n be viewπ

A(x, y, n) and the view of
B be viewπ

B(x, y, n). The output of A is outputπA(x, y, n) and the output of B is
outputπB(x, y, n). In addition, the joint output of the two is denoted as outputπ

(x, y, n) = (outputπA(x, y, n), outputπB(x, y, n)).
For semi-honest adversaries, we say that the protocol π(x, y) can securely com-

pute the function f if there are probabilistic polynomial-time algorithms SA and SB
that satisfy the following equations. For any x, y that satisfy |x | = |y| = n, n ∈ N,
the following holds:

{(SA(1n, x, f A(x, y)), f (x, y))}x,y,n
c≡{(viewπ

A(x, y, n), outputπ(x, y, n))}x,y,n,
{(SB(1n, x, fB(x, y)), f (x, y))}x,y,n

c≡{(viewπ
B(x, y, n), outputπ(x, y, n))}x,y,n .

50 A. Kawachi et al.

3.2.4 HQC Encryption Scheme

The protocols proposed in this section are based on the Hamming Quasi-Cyclic
cryptosystem of Gaborit et al. First, we introduce the cryptosystem proposed by
Gaborit et al. [20], which is a public key cryptosystem based on the quasi-cyclic
syndrome decoding problem. In this cryptosystem, two kinds of codes quasi-cyclic
code and error-correcting codeC are used. The error-correcting codeC is an arbitrary
linear code (such as a BCH code) used for message encoding and decoding and
with sufficient error correction capability. A quasi-cyclic code is used for a security
requirement of this public key cryptosystem to generate noise that an adversary
cannot decrypt.

The participants of the HQC cryptosystem are Alice (A) and Bob (B), and B
aims to send the input message m securely to A. The cryptosystem is performed as
follows:

1. Global parameter settings:
Parameters param = (n, k, δ,wx ,wr ,we) and the sign C generation matrix G ∈
F
k×n .

2. Key generation:

A generates random h
$←− R.

Furthermore, (x, y)
$←− R

2 is generated, and the Hamming weight of x, y is wx .
Secret information sk = (x, y) Public information pk = (h, s = x + h · y). A
sends public information pk to B.

3. Encryption:

B generates a random e
$←− R, (r1, r2)

$←− R
2.

The Hamming weight of e is we, and the Hamming weight of r1 and r2 is wr .
Then,we compute u = r1 + h · r2 and v = m · G + s · r2 + e on inputm. B sends
the ciphertext u, v back to A.

4. Decryption:
A uses the decoding function C.Decode(v − u · y) of the error-correcting code
C to recover the message m of B.

In theHQCcryptosystem, public information s is added to themessagem encoded
by the error-correcting code when it is encrypted. Since s is noise with a large
Hamming weight generated by the quasi-cyclic code, security is guaranteed by the
quasi-cyclic syndrome decoding decision assumption introduced above. In addition,
A can use the secret key for the encrypted error-protected ciphertext in the decryp-
tion stage, and can remove a large amount of noise from s. However, some noise of
x · r2 − r1 · y + e remains. If the weight of this noise is smaller than the maximum
number of correctable errors δ of the error-correcting code, correct decoding is pos-
sible. Hamming weights w,wr ,we = O(

√
n) are assumed and analyzed. Moreover,

the conclusion that the probability of becoming ω(x · r2 + e − y · r1) ≤ δ increases
as the code space n becomes larger is shown in the paper of Gaborit et al. In addi-
tion, the HQC cryptosystem is IND-CPA secure under the quasi-cyclic syndrome
decoding decision assumption.

3 Secure Primitive for Big Data Utilization 51

3.2.5 Proposed Protocol

3.2.5.1 Linear Function Evaluation

We introduce the secure evaluation protocol of the linear functions between two
parties.

We use two codes, quasi-cyclic code and arbitrary error-correcting code C, based
on Gaborit’s HQC cryptosystem. The participants in the protocol are Alice (A) and
Bob (B). A’s input is m ∈ F2, B’s input is a, b ∈ F2, B’s output is nothing, and A’s
output is a · m + b. The protocol is given in Protocol 3.2.5.1.

Protocol Linear function evaluation protocol

input A: m ∈ F2
B: a, b ∈ F2

output A: a · m + b
B: ⊥

1. Global parameter param = (n, k, δ,wx ,wr ,we) and the sign C generation matrix
G ∈ F

k×n are chosen.
2. A generates the random h

$←− R. Furthermore, (x, y
$←− R

2) is generated, and
the Hamming weight of x and y is w. Secret information sk = (x, y), Public
information pk = (h, s = x + h · y).

3. By padding the input m with 0, A makes m = (m, 0, . . . , 0) of dimension k. A

generates a random rA, ru, rv
$←− R. Here, the Hamming weight of rA, ru, rv

is wr . Then, we compute (u = h · rA + ru, v = m · G + s · rA + rv). A sends
public information h, s and ciphertext pair u, v to B.

4. Let B be b = (b, 0, . . . , 0). Generate rB
$←− R and (eu, ev)

$←− R
2. Here, the

Hamming weight of rB is wr , and the Hamming weight of eu and ev is we. B
computes u′ = a · u + h · rB + eu and v′ = a · v + b · G + s · rB + ev. B sends
u′, v′ back to A.

5. A usesC. Decode(v′ − u′ · y) to decode the error-correcting codeC, and recovers
a · m + b by taking the first bit of the result.

First, we set global parameters. n is the code length of the code, k is the number
of information bits, δ is the maximum number of correctable errors in the error-
correcting code, and wx ,wr ,we are Hamming weights set in advance. For example,
it is half the weight of O(

√
n) assumed by Gaborit et al. The public parameterG is a

generator matrix of error-correcting code C, which maps messages and codewords
as Fk

2 → F
n
2.

A generates random h
$←− R and (x, y)

$←− R
2 and computes s = x + h · y.

Here,

52 A. Kawachi et al.

s = x + h· y
= x + y·rot(h)�

= (x y)(In rot(h))�.

(3.6)

It can be converted to and can be reduced to the quasi cyclic syndrome decoding
problem. Then, A sets secret information sk as (x, y) and public information pk as
(h, s).

A pads the input m with 0, making m = (m, 0, . . . , 0) with dimension k. A gen-

erates rA, ru, rv
$←− R, encodes the value of m with an error-correcting code, and

re-randomizes it. A generates a ciphertext pair of (u = h · rA + ru, v = m · G +
s · rA + rv) and send it to B. As for B, v has a noise s that cannot be decoded, and
has no secret information that can be removed, so B cannot learn m.

B sets b = (b, 0, . . . , 0) andgenerates rB
$←− R and (eu, ev)

$←− R
2.Bproduces

u′ = a · u + h · rB + eu, v′ = a · v + b · G + s · rB + ev and re-randomize u and v
after updating. Since the error-correcting code is a linear code, u′ and v′ after update
are

u′ =
{
h · rB + eu (In the case of a = 0)
u + h · rB + eu (In the case of a = 1).

(3.7)

v′ =
{
b · G + s · rB + ev (In the case of a = 0)
v + b · G + s · rB + ev (In the case of a = 1).

(3.8)

Finally, A uses his secret information to decrypt v′ − u′ · y. The result is

v′ − u′ · y
=(am + b)G + x(arA + rB) − y(aru + eu) + (arv + ev)

=
⎧⎨
⎩
bG + xrB − yeu + ev (in the case of a = 0)
(m + b)G + x(rA + rB) − y(ru + eu) + (rv + ev)

(in the case of a = 1).

(3.9)

As shown by the Eq. (3.9), the result of v′ − u′ · y is the result of removing h
and s. Taking the first bit makes a · m + b available to A.

3.2.5.2 Correctness and Security of the Proposed Protocol

The correctness of the two-way linear function evaluation protocol proposed in this
study obviously depends on the decoding ability of the codeC. Specifically, assuming
that C. Decode decodes v − u · y correctly, the following equation is satisfied:

Decrypt(sk,Encrypt(pk, a · m + b)) = a · m + b. (3.10)

3 Secure Primitive for Big Data Utilization 53

Also, let ε be the error of v − u · y. The error is

ε =
⎧⎨
⎩
xrB − yeu + ev (In the case of a = 0)
x(rA + rB) − y(ru + eu) + (rv + ev)

(In the case of a = 1)
(3.11)

for the error correction capability of the code C. In the paper of Gaborit et al.,
C.Decode can work correctly when ω(x · r2 + e − y · r1) ≤ δ is satisfied, and wr

and we have the same value when actually evaluated. If the Hamming weight of
r0, r1, ru, rv, rB of the protocol proposed in this section is set to 1/2 ofwr of Gaborit
et al., then, the Hamming weight of eu, ev is set to 1/2 of we of Gaborit et al. The
Hamming weight of the error Eq. (3.11) is less than or equal to the Hamming weight
of errors inGaborit et al.’s setting. Therefore, the conclusion of the paper ofGaborit et
al. also holds for the proposed protocol. As the code length n increases, the decoding
failure rate of the error-correcting code decreases. If the appropriate code space size
n and noise Hammingweightswr andwe are set, the decoding failure rate approaches
0.

The security requirements of the proposed protocol are described above. In this
section, we prove the security against semi-honest adversaries.

Theorem 3.2 Under the quasi-cyclic syndrome decoding assumption, the 2PC pro-
tocol securely computes linear functions for semi-honest adversaries.

Proof First, consider the semi-honest adversary A. With the global parameter omit-
ted, the view of A is viewA = (m; h, x, y, r0, r1, ru, rv; u′, v′). We construct a
simulator SA(m, x, y) as follows:

1. Generate ˜h, r̃0, r̃A, r̃u, r̃v, ˜u′, ˜v′ $←− R randomly.
Here, the Hamming weight of r̃A, r̃u, r̃v is wr .

2. Output (m, x, y; ˜h, r̃A, r̃u, r̃v; ˜u′, ˜v′).

Since, h, rA, ru, rv and ˜h, r̃A, r̃u, r̃v follow the same distribution, the following
equation holds:

(m, x, y; ˜h, r̃A, r̃u, r̃v; ˜u′, ˜v′)

≡s (m, x, y; h, rA, ru, rv; ˜u′, ˜v′).
(3.12)

At viewA, u′ = a · u + h · rB + eu, v′ = a · v + b · G + s · rB + ev, and it holds

[
h · rB + eu
s · rB + ev

]
=
[
In 0 rot(h)

0 In rot(s)

]⎡
⎣
eu
ev
rB

⎤
⎦ . (3.13)

Therefore, the adversary of probabilistic polynomial time cannot distinguish
between (h · rB + eu, s · rB + ev) and uniform random numbers under the assump-
tion of 3-quasi-cyclic syndrome decoding of quasi-cyclic code. Since u and v are
also under the 3-quasicyclic syndrome decoding decision assumption, they cannot
distinguish between u and v and uniform random numbers. Thus, the distribution

54 A. Kawachi et al.

of u′ and v′ also approaches uniform random numbers and satisfies the following
equation:

(m, x, y; h, rA, ru, rv, ˜u′, ˜v′)
≡c (m, x, y; h, rA, ru, rv, u′, v′).

(3.14)

Thus, the distributions of the view viewA of A and the simulator SA are indistin-
guishable against polynomial-time adversaries:

SA(m, x, y)

≡c viewA(m, x, y; h, rA, ru, rv; u′, v′).
(3.15)

Next, consider the semi-honest adversary B. With the global parameter omit-
ted, the view of B is viewB = (a, b; h, s, u, v, rB, eu, ev). Configure the simulator
SB(a, b) as follows:

1. Randomly generate ˜h, s̃, ũ, ṽ, r̃B, ẽu, ẽv
$←− R. Here, the Hamming weight of

r̃B is wr , and the Hamming weight of ẽu and ẽv is we

2. Output (a, b; ˜h, s̃, ũ, ṽ, r̃B, ẽu, ẽv).

Since, h, rB, ru, rv and ˜h, r̃B, r̃u, r̃v follow the same distribution, the following
equation holds:

(a, b; ˜h, s̃, ũ, ṽ, r̃B, ẽu, ẽv)

≡s (a, b; h, s̃, ũ, ṽ, rB, eu, ev).
(3.16)

Note that s can be reduced to 2-cyclic syndrome decoding decision, and the
distribution cannot be distinguished from uniform random numbers for the adversary
in polynomial time. Therefore, the following equation is satisfied.

(a, b; h, s̃, ũ, ṽ, rB, eu, ev)

≡c (a, b; h, s, ũ, ṽ, rB, eu, ev).
(3.17)

Moreover, since u and v are indistinguishable between (h · rB + eu, s · rB + ev)
and uniform random numbers based on the assumption of quasi-cyclic syndrome
decoding and the adversary of probabilistic polynomial time cannot be distinguished,
the following holds:

(a, b; h, s, ũ, ṽ, rB, eu, ev)

≡c (a, b; h, s, u, v, rB, eu, ev).
(3.18)

Therefore, the distributions of the view viewB of B and the simulator SB cannot
be distinguished against the adversary of polynomial time:

SB(a, b)

≡c viewB(a, b; h, s, u, v, rB, eu, ev).
(3.19)

�

3 Secure Primitive for Big Data Utilization 55

The above protocol works over F2, but one can see that this can be easily extended
to a larger field Fq by using appropriate error-correcting linear codes over Fq .

3.2.5.3 Secure Comparison

Two-party secure comparison protocol proposed in this section is based on the size
comparison method used in the secure decision tree classification protocol of Wu et
al. [23]. In this section, we used the following criteria given in Proposition 3.1 for
comparison.

Proposition 3.1 For a t-bit x, y, if there is an i ∈ [t] such that the following expres-
sion holds, then x < y.

xi − yi + 1 + 3
∑
j<i

(x j ⊕ y j) = 0.

In this section, we introduce the proposed protocol for two-party secret com-
parison protocol. The proposed protocol for two-party secret comparison protocol
uses a quasi-cyclic code and an arbitrary error-correcting code (For example, Reed-
Solomon code) on Fq . The participants in the protocol are Alice (A) and Bob (B).
The input of A is c ∈ N, and the input of B is d ∈ N. The output of A is the result of
the comparison between c and d, and the output of B is none.

The flow of two-party secret comparison is shown as follows:

Protocol Two-party secret comparison protocol

Input A : c ∈ N

B : d ∈ N

Output A : Comparison result of c and d
B : ⊥

1. A and B perform binary expansion of c and d for each input so that c =
c1c2 . . . cl , d = d1d2 . . . dl . Then, each bit ci , di is padded to make ci, di , i ∈ [l]
of k bits. In addition, they set the global parameter param = (n, k, δ,wx ,wr) and
the generator matrix G ∈ F

k×n
q of code C.

2. Agenerates random h
$←− R. Furthermore, (x, y

$←− R
2)withHammingweight

wx is generated. Private key sk = (x, y), and public key pk = (h, s = x + h · y).
3. Agenerates a random rAi , rui , rvi

$←− R, i ∈ [l]withHammingweightwr . Then,
A computes ui = h · rAi + rui and vi = ci · G + s · rAi + rvi for l pairs and
sends l pairs of ciphertext ui, vi to B.

4. B generates (rBi , eui , evi)
$←− R

3 with Hamming weight w∗
r and computes

the expression ci − di + 1 + 3
∑

w<i (cw ⊕ dw) for ci . Specifically, B substitutes
plaintext di for i ∈ [l] in the above formula and sets appropriate a1i , a2i , . . . , ali ,
bi . B computes ui

′ = a1i · u1 + · · · + h · rBi + eui and vi ′ = a1i · v1 + · · · + bi ·
G + s · rBi + evi for l pairs. Then, the order of (ui

′, vi ′) of l pairs is randomly
replaced and sent to A in a random order.

56 A. Kawachi et al.

5. A computes vi ′ − ui
′ · y for each i ∈ [l] and decrypts the result. If there is 0 in

the first bit of the decoded results, c < d is output. Conversely, if there is no 0,
c ≥ d is output.

Protocol Description

1. In step 1, A and B expand c and d of each input to l-bit binary input, so that
c = c1c2 . . . cl and d = d1d2 . . . dl . Where ci , di , i ∈ [l] is the i th digit of c, d,
and l is the bit length. To encode, pad each input to ci, di , i ∈ [l] with bit length
k.
In addition, set global parameters. n is the code length, k is the number of infor-
mation bits, δ is the maximum number of errors that can be corrected by the
error-correcting code, and wx and wr are the Hamming weights set in advance.
The public parameter G is the generator matrix(For example, the Reed-Solomon
code generator matrix) of the error-correcting code C, which maps the message
and code length as Fk

q → F
n
q .

2. In step 2, A generates a private key and public key for HQC encryption scheme.
3. In step3,Auses the public key and encrypts eachof the ci pieces. Send (ui , vi), i ∈

[l] of the encrypted result to B.
4. Step 4 uses Proposition 3.1 for the evaluation of ci − di + 1 + 3

∑
w<i (cw ⊕ dw).

In other words, c < d if i ∈ [l] exists such that

ci − di + 1 + 3
∑
w<i

(cw ⊕ dw) = 0. (3.20)

In particular, since B has plaintext di and encrypted ci , Eq. (3.20) can be regarded
as an equation with ci as an unknown and can be computed. In addition, for XOR
operations, B can transform xi ⊕ yi into

xi ⊕ yi =
{
xi (yi = 0)
1 − xi (yi = 1).

(3.21)

Therefore, the XOR operation requires only the additive homomorphism of HQC
encryption scheme.
That is, B substitutes plaintext di , i ∈ [l] into the above equation, sets the appro-
priate a1i , a2i , . . . , ali , bi , and computes as follows:

ui
′ = a1i ·u1+· · ·+ali ·ul+h·rBi +eui . (3.22)

vi ′ = a1i ·v1+· · ·+ali ·vl+bi ·G+s·rBi +evi . (3.23)

Here, the Hamming weight of rBi , eui , evi , i ∈ [l] is w∗
r .

Furthermore, to not leak the information about which bits are different to A, B
needs to replace the order of each (ui

′, vi ′) computed at random.

3 Secure Primitive for Big Data Utilization 57

5. In step 5, A computes vi ′ − ui
′ · y, i ∈ [l]. The result is

vi ′ − ui
′ · y

= (a1i · m1 + · · · + ali · ml) · G
+ x · (a1i · rA1 + · · · + ali · rAl + rBi)

− y · (a1i · ru1 + · · · + ali · rul + eui)

+ (a1i · rv1 + · · · + ali · rvl + evi).

(3.24)

Then, the evaluation result is decoded by the error-correcting code. A takes out
the first 1 bit of each of l decoding results, and outputs c < d if there is 0 in it. If
there is no 0, c ≥ d is output.

3.2.5.4 Correctness and Security of the Proposed Protocol

Correctness
First, we explain step 4 w∗

r . The Hamming weight of the polynomial coefficient
vector x, y is wx , and the Hamming weight of rAi, rui, rvi , i ∈ [l] is wr . Since each
is selected uniformly and independently, the probability of each bit value of the vector
is expressed as follows:

xi = yi =
{
0 w.p. 1 − p
1 w.p. p = wx

n .
(3.25)

Similarly,

rAi, j = rui, j = rvi, j =
{
0 w.p. 1 − pr
1 w.p. pr = wr

n .
(3.26)

Let L be the set of a1i , a2i , . . . , ali �= 0 in each a1i · rA1 + a2i · rA2 + · · · + ali ·
rAl for the expression i ∈ [l].

L = {aki |aki �= 0}

Let |L| be the number of elements in set L . Set the Hamming weights w∗
r for

rBi, eui, evi be as follows:

w∗
r = (n − |L| + 1)wr .

Thus, the value of each w∗
r can be determined based on the nonzero numbers in

ai and i ∈ [l].
Next, we analyze the validity of the proposed protocol.

58 A. Kawachi et al.

The legitimacy of the proposed bilateral linear function secure computation pro-
tocol clearly depends on the decoding ability of C. Set the v′ − u′ · y error to ε. For
the error correction capability of code C, the error is

ε = x · (a1i · rA1 + · · · + ali · rAl + rBi)

− y · (a1i · ru1 + · · · + ali · rul + eui)

+ (a1i · rv1 + · · · + ali · rvl + evi).

(3.27)

In other words, if ε < δ, decoding is successful. Here, δ is the maximum number
of errors that can be corrected by error-correcting code C. In addition, in order to
analyze the validity of the proposed protocol, we generalize the validity of the HQC
encryption scheme proved by Gaborit et al. [20].

The following proposition holds for the Hamming weight of the error.

Proposition 3.2 There are polynomial coefficient vectors x = (X1, . . . , Xn) and
r = (R1, . . . , Rn), and y = x · r = (Y1, . . . ,Yn). The probability that the sum of
the random variables Yi , i ∈ [n] on Fq is 0 is

Pr[Y1 + · · · + Yn = 0] = 1

q
{1 + (1 − q

q − 1
p)n · (q − 1)}. (3.28)

Where the probability distribution of the random variable Yi is

Yi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 w.p. p0 = 1 − p
1 w.p. p1 = p

q−1

2 w.p. p1 = p
q−1

...

q − 1 w.p. p1 = p
q−1 .

(3.29)

Proof For Yi , the following equation holds:

Pr[Y1 + · · · + Yn = 0]
=

∑
i0+i1+···+iq−1=n

i0·0+i1·1+···+iq−1·(q−1)=0

(
n!

i0! · · · iq−1!
)
pi00 · · · piq−1

q−1, (3.30)

where i0, . . . , iq−1 is the number of times the corresponding 0, . . . , q − 1 appears.
From the polynomial theorem, the following equation holds:

3 Secure Primitive for Big Data Utilization 59

{p0+ p1+. . .+ pq−1}n + {p0+(ωq)p1+· · ·+(ωq−1
q)pq−1}n

+ · · · + {p0+(ωq)
q−1 p1+· · ·+(ωq−1

q)q−1 pq−1}n

=
∑

i0+···+iq−1=n

(
n!

i0! · · · iq−1!
)
pi00 · · · piq−1

q−1

{1 + (ωq)
i1(ω2

q)
i2 · · · (ωq−1

q)iq−1 + · · ·
+ (ωq)

(q−1)i1(ω2
q)

(q−1)i2 · · · (ωq−1
q)(q−1)iq−1}

=
∑

i0+···+iq−1=n

(
n!

i0! · · · iq−1!
)
pi00 · · · piq−1

q−1

{1 + ω
i1+2i2+···+(q−1)iq−1
q + · · ·

+ ω
(q−1){i1+2i2+···+(q−1)iq−1}
q }.

(3.31)

Where ωq is the q root of 1 and has the following properties:

1 + ωq + ω2
q + · · · + ωq−1

q = 0 (3.32)

Substituting i0 · 0 + i1 · 1 + · · · + iq−1 · (q − 1) = 0 into Eq.3.31 can be trans-
formed as follows:

{p0 + p1 + · · · + pq−1}n
+ {p0 + (ωq)p1 + · · · + (ωq−1

q)pq−1}n + · · ·
+ {p0 + (ωq)

q−1 p1 + · · · + (ωq−1
q)q−1 pq−1}n

=
∑

i0+···+iq−1=n
i0·0+···+iq−1·(q−1)=0

(
n!

i0! · · · iq−1!
)
pi00 · · · piq−1

q−1 · q.

(3.33)

Substituting Eq. (3.33) into Eq. (3.30), the proposition holds:

Pr[Y1 + · · · + Yn = 0]
= 1

q
{(p0 + p1 + · · · + pq−1)

n + · · ·
+ (p0 + (ωq)

q−1 p1 + · · · + (ωq−1
q)q−1 pq−1)

n}
= 1

q
{1n + (1 − p + p

q − 1
(ωq + ω2

q + · · · + ωq−1
q))n · (q − 1)}

= 1

q

{
1 +

(
1 − q

q − 1
p

)n

· (q − 1)

}
.

(3.34)

�

60 A. Kawachi et al.

In addition, the following analysis is the same as the validity analysis in Gaborit
et al. [20]. According to the analysis result of [20], in the case of F2, the decoding
failure rate can be controlled by setting an appropriate code space size n and noise
Hamming weights wx and wr . Therefore, in the case of Fq , it can be expected that
the decoding failure rate can be controlled by setting the appropriate parameters.

Security
This section describes the security of the proposed secret comparison protocol.

First, consider semi-honest adversariesA and outputA = (c < d). Omitting global
parameters, A’s view is viewA = (c, x, y; h, {rAi }li=1, {rui }li=1, {rvi }li=1, {ui

′}li=1,{vi ′}li=1). However, the first bit is 0 only for ui∗′ − vi∗′ · y with index i∗. The simu-
lator SA(c, x, y) is configured as follows:

1. Generates ˜h, {r̃Ai }li=1, {r̃ui }li=1, {r̃vi }li=1, {ũi
′}li=1, {ṽi ′}li=1

$←− R at random.
Here, the Hamming weight of {r̃Ai }li=1, {r̃ui }li=1, {r̃vi }li=1 is wr . It also selects
random i∗ ∈ [l], the first bit of ũi∗′ − ṽi∗′ · y is 0, and the first bit of other
{ũi

′ − ṽi ′ · y}li=1,i �=i∗ is non-zero.
2. This replaces {ũi

′}li=1, {ṽi ′}li=1 at random to make {ũ j
′}lj=1, {ṽ j

′}lj=1 in random
order.

3. This outputs (c, x, y; ˜h, {r̃Ai }li=1, {r̃ui }li=1, {r̃vi }li=1, {ũ j
′}lj=1, {ṽ j

′}lj=1).

Since h, {rAi }li=1, {rui }li=1, {rvi }li=1 and ˜h, {r̃Ai }li=1, {r̃ui }li=1, {r̃vi }li=1 follow the
same distribution, the following equation holds:

(˜h, {r̃Ai }li=1, {r̃ui }li=1, {r̃vi }li=1)

≡s(h, {rAi }li=1, {rui }li=1, {rvi }li=1).
(3.35)

From the assumption of quasi-cyclic syndromedecoding of quasi-cyclic codes, the
probabilistic polynomial time adversary cannot distinguish between u j

′, v j
′, j ∈ [l]

and uniformly random ones. Furthermore, since {ũi
′}li=1 and {ṽi ′}li=1 are replaced

randomly, the first bit is 0, and the index of ũi∗ − ṽi∗ · y where the index i∗ is a
uniformly random one satisfying the following expression:

({ũ j
′}lj=1, {ṽ j

′}lj=1

) ≡c
({ui

′}li=1 {vi ′}li=1

)
. (3.36)

Therefore, the distribution of the view viewA and simulator SA when A is
outputA = (c < d) is indistinguishable against polynomial time opponents.

Semi-honest adversary A and outputA = (c ≥ d) are the same as the security
proof in the case of outputA = (c < d), so details are omitted.

Next, we consider semi-honest adversary B. Omitting the global parameters,
B’s view is viewB = (d; h, s, {ui }li=1, {vi }li=1, {rBi }li=1, {eui }li=1, {evi }li=1). Config-
ure simulator SB(d) as follows:

1. Generates ˜h, s̃, {ũi }li=1, {ṽi }li=1, {r̃Bi }li=1, {ẽui }li=1, {ẽvi }li=1
$←− R at random.

Here, the Hamming weight of {r̃Bi }li=1, {ẽui }li=1, {ẽvi }li=1 is w
∗
r .

3 Secure Primitive for Big Data Utilization 61

2. This outputs (d; ˜h, s̃, {ũi }li=1,{ṽi }li=1,{r̃Bi }li=1,{ẽui }li=1,{ẽvi }li=1).

Since h, {rBi }li=1, {eui }li=1, {evi }li=1 and ˜h, {r̃Bi }li=1, {ẽui }li=1, {ẽvi }li=1 follow the
same distribution, the following equation holds:

(h, {rBi }li=1, {eui }li=1, {evi }li=1)

≡s(˜h, {r̃Bi }li=1, {ẽui }li=1, {ẽvi }li=1).
(3.37)

s can be reduced to a 2-quasi-cyclic syndrome decoding decision assumption, and
the distribution is indistinguishable from uniform random numbers for probabilistic
polynomial-time adversaries. Thus, s̃ ≡c s holds.

In addition, since ui , vi , i ∈ [l] are based on the assumption of quasi-cyclic syn-
drome decoding, an adversary in probabilistic polynomial time cannot distinguish
between ui , vi , i ∈ [l] and uniform random numbers.

({ũi }li=1, {ṽi }li=1) ≡c ({ui }li=1, {vi }li=1). (3.38)

Therefore, the distribution ofB’s viewviewB and simulator SB is indistinguishable
against polynomial time adversaries.

3.2.6 Support Vector Machine from Secure Linear Function
Evaluation and Secure Comparison

We can construct a code-based protocol for a support vector machine from the proto-
cols for evaluation of linear functions and comparison described above. Note that the
result of secure evaluation of linear function is inFq while that of secure composition
is a bit string. Therefore, we need to provide secure bit-decomposition protocol. The
bit-decomposition protocols have been already studied well in the research area of
secure computation, and indeed, we can use the bit-decomposition protocol given
in [24] with secure computation protocol from a threshold homomorphic encryption
[25]. (It is straightforward to construct a threshold version of HQC scheme by setting
skA = (x1, y1) and skB = (x2, y2) as distributed decryption keys for A and B. Then,
the encryption key is (h, (x1 + x2) + h · (y1 + y2)).

We describe the overview of the protocol below. For simplification, we denote
[m] as the ciphertext for m under HQC encryption scheme over Fq .

Protocol

Input A : m ∈ Fq
B : a, b, t ∈ Fq

Output A : a · m + b > t or not
B : ⊥

62 A. Kawachi et al.

1. A and B perform the secure linear evaluation protocol over Fq . Then, B sends A
[a · m + b] at step 4 in the original protocol.

2. A and B start the secure bit-decomposition protocol on [a · m + b].
3. From the result of the bit-decomposition protocol, B obtains the binary represen-

tation [(a · m + b)1], . . . , [(a · m + b)�].
4. A and B perform the secure comparison protocol from step 4.

References

1. L. Kissner, D. Song, Privacy-preserving set operations, in CRYPTO 2005. LNCS, vol. 3621
(Springer, Berlin, 2005), pp. 241–257

2. Y. Sang, H. Shen, Efficient and secure protocols for privacy-preserving set operations. ACM
Trans. Inf. Syst. Secur. 13(1), 9:1–9:35 (2009)

3. R. Egert,M. Fischlin,D.Gens, S. Jacob,M. Senker, J. Tillmanns, Privately computing set-union
and set-intersection cardinality via bloom filters, in ACISP 2015. LNCS, vol. 9144 (Springer,
Berlin, 2015), pp. 413–430

4. D. Many, M. Burkhart, X. Dimitropoulos, Fast private set operations with sepia. Technical
Report, 345 (2012)

5. O. Goldreich, Secure multi-party computation. Manuscript, Preliminary version (1998)
6. B.H. Bloom, Space/time trade-offs in hash codingwith allowable errors. Commun.ACM 13(7),

422–426 (1970)
7. A. Broder, M. Mitzenmacher, Network applications of bloom filters: a survey. Internet Math.

1(4), 485–509 (2004)
8. P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in EURO-

CRYPT 1999. LNCS, vol. 1592 (Springer, Berlin, 1999), pp. 223–238
9. R. Cramer, R. Gennaro, B. Schoenmakers, A secure and optimally efficient multi-authority

election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)
10. Y. Desmedt, Y. Frankel, Threshold cryptosystems, in CRYPTO 1989. LNCS, vol. 1462

(Springer, Berlin, 1989), pp. 307–315
11. M.J. Freedman, K. Nissim, B. Pinkas, Efficient private matching and set intersection, in EURO-

CRYPT 2004. LNCS, vol. 3027 (Springer, Berlin, 2004), pp. 1–19
12. Y. Azar, A.Z. Broder, A.R. Karlin, E. Upfal, Balanced allocations. SIAM J. Comput. 29(1),

180–200 (1999)
13. E. De Cristofaro, G. Tsudik, Practical private set intersection protocols with linear complexity,

in FC 2010. LNCS, vol. 6052 (Springer, Berlin, 2010), pp. 143–159
14. E. De Cristofaro, J. Kim, G. Tsudik, Linear-complexity private set intersection protocols secure

in malicious model, in ASIACRYPT 2010. LNCS, vol. 6477 (Springer, Berlin, 2010), pp. 213–
231

15. F. Kerschbaum, Outsourced private set intersection using homomorphic encryption, in ACM-
CCS 2012 (ACM, 2012), pp. 85–86

16. S. Goldwasser, S.Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
17. Y. Ishai, J. Kilian, K. Nissim, E. Petrank, Extending oblivious transfers efficiently, in CRYPTO

2003. LNCS, vol. 2729 (Springer, Berlin, 2003), pp. 145–161
18. M.O. Rabin, How to exchange secrets with oblivious transfer. Technical Memo, TR-81 (1981)
19. C. Dong, L. Chen, Z. Wen, When private set intersection meets big data: an efficient and

scalable protocol, in ACMCCS 2013 (ACM, 2013), pp. 789–800
20. C. Aguilar, O. Blazy, J.-C. Deneuville, P. Gaborit, G. Zémor, Efficient encryption from random

quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–3943 (2018)

3 Secure Primitive for Big Data Utilization 63

21. National Institute of Standards and Technology. Post-quantum cryptography, round 2 submis-
sions (2019), https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

22. A.C.-C. Yao, How to generate and exchange secrets, in Proceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science (1986), pp. 162–167

23. D.J.Wu, T. Feng,M.Naehrig, K. Lauter, Privately evaluating decision trees and random forests,
in Proceeding on Privacy Enhancing Technologies, vol. 4 (2016), pp. 1–21

24. I. Dangaard, M. Fitzi, E. Kiltz, J.B. Nielsen, T. Toft, Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits and exponentiation, inTCC2006:Theory
of Cryptography (2006), pp. 285–304

25. R. Cramer, I. Damgaard, J.B. Nielsen, Multiparty computation from threshold encryption, in
Eurocrypt (2001), pp. 280–299

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
http://creativecommons.org/licenses/by/4.0/

	3 Secure Primitive for Big Data Utilization
	3.1 Privacy-Preserving Data Integration
	3.1.1 Introduction
	3.1.2 Preliminaries
	3.1.3 Previous Work
	3.1.4 Practical MPSI
	3.1.5 Efficiency
	3.1.6 System and Performance

	3.2 Classification
	3.2.1 Error-Correcting Code
	3.2.2 Security Assumptions
	3.2.3 Security Requirements for 2PC
	3.2.4 HQC Encryption Scheme
	3.2.5 Proposed Protocol
	3.2.6 Support Vector Machine from Secure Linear Function Evaluation and Secure Comparison

	References

