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Abstract In this chapter, we describe the analysis of security basis. One is the
analysis of elliptic curve discrete logarithm problem (ECDLP). ECDLP is one of the
public-key cryptosystems that can achieve a short key size but it is not a post-quantum
cryptosystem. Another is analysis to learning with error (LWE), which is a post-
quantum cryptosystem and has the functionality of homomorphic encryption. These
two security bases have important roles in each protocol described in Sect. 2.2.4.2

2.1 Analysis on ECDLP

2.1.1 Introduction

In recent years, elliptic curve cryptography is gaining momentum in deployment
because it can achieve the same level of security as RSA using much shorter keys
and ciphertexts. The security of elliptic curve cryptography is closely related to the
computational complexity of the elliptic curve discrete logarithm problem (ECDLP).
Let p be a prime number and E , a nonsingular elliptic curve overFpn , which is a finite
field of pn elements. That is, E is a plane algebraic curve defined by the equation
y2 = x3 + ax + b for a, b ∈ Fpn such that � = −16(4a3 + 27b2) �= 0. Along with
a point O at infinity, the set of rational points E(Fpn ) forms an abelian group with O
as the identity. Given P ∈ E(Fpn ) and Q in the subgroup generated by P , ECDLP
is the problem of finding an integer α such that Q = αP .
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Today, the best practical attacks against ECDLP are exponential-time, generic
discrete logarithm algorithms such as Pollard’s rhomethod [34]. However, recently, a
line of research has been dedicated to the index calculus for ECDLPwhichwas started
bySemaev,Gaudry, andDiem [25, 30, 35].Under certain heuristic assumptions, such
algorithms could lead to subexponential attacks to ECDLP in some cases [27, 31,
33]. The interested reader is referred to a survey paper by Galbraith and Gaudry for
a more comprehensive and in-depth account of the recent development of ECDLP
algorithms along various directions [28].

In this section, we investigate the computational complexity of ECDLP for ellip-
tic curves in various forms—including Hessian [36], Montgomery [32], (twisted)
Edwards [23, 24], and Weierstrass, using index calculus. Recently, elliptic curves of
various forms such as Curve25519 [22] have been drawing considerable attention
in deployment partly because some of them allow fast implementation and secu-
rity against timing-based side-channel attacks. Furthermore, we can construct these
curves not only over prime fields (such as the field of 2255 − 19 elements as used in
Curve25519) but also over extension fields. In this section, we will focus on curves
over optimal extension fields (OEFs) [21]. An OEF is an extension field from a prime
field Fp with p close to 28, 216, 232, 264, etc. Such primes fit nicely into the processor
words of 8-, 16-, 32-, or 64-bit microprocessors and hence are particularly suitable
for software implementation, allowing efficient utilization of fast integer arithmetic
on modern microprocessors [21]. As we will see, our experimental results show
considerably significant differences in the computational complexity of ECDLP for
elliptic curves in various forms over OEFs.

2.1.2 Previous Works

2.1.2.1 Index Calculus for ECDLP

Let E be an elliptic curve defined over a finite field Fpn . For cryptographic applica-
tions,we aremostly interested in a prime-order subgroup generated by a rational point
P ∈ E(Fpn ). Here, we first give a high-level overview of a typical index-calculus
algorithm for finding an integer α such that Q = αP for Q ∈ 〈P〉.
1. Determine a factor base F ⊂ E(Fpn ).
2. Collect a setR of relations by decomposing random points ai P + bi Q into a sum

of points from F , i.e.,

R =
⎧
⎨

⎩
ai P + bi Q =

∑

j

Pi, j : Pi, j ∈ F
⎫
⎬

⎭
.

3. When |R| ≈ |F |, eliminate the right-hand side using linear algebra to obtain an
equation of the form aP + bQ = O and α = −a/b mod ord P .
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The last step of linear algebra is relatively well studied in the literature, so we will
focus on the subproblem in the second step, namely, the point decomposition problem
(PDP) on an elliptic curve in the rest of this section.

Definition 2.1 (Point Decomposition Problem of mth Order) Given a rational point
R ∈ E(Fpn ) on an elliptic curve E and a factor base F ⊂ E(Fpn ), find, if they exist,
P1, . . . , Pm ∈ F such that

R = P1 + · · · + Pm .

2.1.2.2 Semaev’s Summation Polynomials

We can solve PDP by considering when the sum of a set of points becomes zero on
an elliptic curve. It is straightforward that if two points sum to zero on an elliptic
curve E : y2 = x3 + ax + b in Weierstrass form, then their x-coordinates must be
equal. Let us now consider the simplest yet nontrivial case where three points on E
sum to zero. Let

Z =
{

(x1, y1, x2, y2, x3, y3) ∈ F
6
pn : (xi , yi ) ∈ E(Fpn ), i = 1, 2, 3;

(x1, y1) + (x2, y2) + (x3, y3) = O

}

.

Clearly, Z is in the variety of the ideal I ⊂ Fpn [X1,Y1, X2,Y2, X3,Y3] generated by
{
Y 2
i − (X3

i + aXi + b), i = 1, 2, 3;
(X3 − X1)(Y2 − Y1) − (X2 − X1)(Y3 − Y1)

}

.

Now let J = I ∩ Fpn [X1, X2, X3]. Using MAGMA’s EliminationIdeal func-
tion, we find that J is actually a principal ideal generated by the polynomial
(X2 − X3)(X1 − X3)(X1 − X2) f3, where

f3 =X2
1X

2
2 − 2X2

1X2X3 + X2
1X

2
3 − 2X1X

2
2X3 − 2X1X2X

2
3 − 2aX1X2 − 2aX1X3

− 4bX1 + X2
2X

2
3 − 2aX2X3 − 4bX2 − 4bX3 + a2.

Clearly, the linear factors of this generator correspond to the degenerated case where
two or more points are the same or of opposite signs, and f3 is the 3rd summation
polynomial, that is, the summation polynomial for three distinct points summing to
zero.

Starting from the 3rd summation polynomial, we can recursively construct the
subsequent summation polynomials fm for m > 3 by taking resultants. As a result,
the degree of each variable in fm is 2m−2, which grows exponentially as m. This is
the observation Semaev made in his seminal work [35]. In short, his proposal is to
consider factor bases of the following form:

F =
{
(x, y) ∈ E(Fpn ) : x ∈ V ⊂ Fpn

}
,
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where V is a subset of Fpn . Then, we solve PDP of mth order by solving the corre-
sponding (m + 1)th summation polynomial fm+1(X1, . . . , Xm, x̃) = 0, where x̃ is
the x-coordinate of the point to be decomposed.

Note that this factor base is naturally invariant under point negation. That is,
Pi ∈ F implies −Pi ∈ F . In this case, we have about |F |/2 (trivial) relations Pi +
(−Pi ) = O for free, so we only need to find the other |F |/2 nontrivial relations. In
general, we will only discuss factor bases that are invariant under point negation, so
by abuse of language, both F and F modulo point negation may be referred to as a
factor base in the rest of this section.

2.1.2.3 Weil Restriction

Restricting the x-coordinates of the points in a factor base to a subset of Fpn is
important from the viewpoint of polynomial system solving. Take f3 as an example.
When decomposing a random point aP + bQ, we first substitute its x-coordinate
into say X3, projecting the ideal onto Fpn [X1, X2]. The dimension of the variety of
this ideal is nonzero. Therefore, we would like to pose some restrictions on X1 and
X2 to reduce the dimensions to zero so that the solving time can bemoremanageable.

When looking for solutions to a polynomial f = ∑
ai Xi ∈ Fpn [X ] in Fpn ,

we can view Fpn [X ] as a commutative affine algebra A = Fpn [X ]/(X pn − X) ∼=
Fpn [X1, . . . , Xn]/(X p

1 − X1, . . . , X
p
n − Xn). This can be done by identifying the

indeterminate X as X1θ1 + · · · + Xnθn , where (θ1, . . . , θn) is a basis forFpn over Fp.
Hence, f can be identified as a polynomial f1θ1 + · · · + fnθn , where f1, . . . , fn ∈
A′ = Fp[X1, . . . , Xn]/(X p

1 − X1, . . . , X
p
n − Xn), by appropriately sending each

coefficient ai ∈ Fpn to a(1)
i θ1 + · · · + a(n)

i θn for a(1)
i , . . . , a(n)

i ∈ Fp. Therefore, an
equation f = 0 over Fpn will give rise to a system of equations f1 = · · · = fn = 0
over Fp. This technique is known as the Weil restriction and is used in the Gaudry–
Diem attack, where the factor base is chosen to consist of points whose x-coordinates
lie in a subspace V of Fpn over Fp [25, 30].

2.1.2.4 Exploiting Symmetry

Naturally, the symmetric group Sm acts on a point decomposition P1 + · · · + Pm
because elliptic curve groups are abelian. As noted by Gaudry in his seminal
work [30], we can therefore rewrite the variables x1, . . . , xm ∈ Fpn by elemen-
tary symmetric polynomials e1, . . . , em , where e1 = ∑

xi , e2 = ∑
i �= j xi x j , e3 =∑

i �= j,i �=k, j �=k xi x j xk , etc. Such rewriting can reduce the degree of summation poly-
nomials and significantly speed up point decomposition [27, 31].

We might be able to exploit additional symmetry brought by actions of other
groups, e.g., when the factor base is invariant under addition of small torsion points.
For example, consider a decomposition of a point R under the action of addition of
a 2-torsion point T2:
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R = P1 + · · · + Pn = (P1 + u1T2) + · · · + (Pn−1 + un−1T2) +
⎛

⎝Pn +
⎛

⎝
n−1∑

i=1

ui

⎞

⎠ T2

⎞

⎠.

Clearly, this holds for any u1, . . . , un−1 ∈ {0, 1}, so a decomposition can give rise to
2n−1 − 1 other decompositions. Similar to rewriting using the elementary symmetric
polynomials for the action of Sm , we can also take advantage of this additional
symmetry by appropriately rewriting [26].

Naturally, such speedup is curve-specific. Furthermore, even if the factor base is
invariant under additional group actions, we may or may not be able to exploit such
symmetry to speed up the point decomposition depending on whether the action is
“easy to handle in the polynomial system solving process” [26].

2.1.2.5 PDP on (Twisted) Edwards Curves

Faugère, Gaudry, Hout, and Renault studied PDP on twisted Edwards, twisted Jacobi
intersections, and Weierstrass curves [26]. For the sake of completeness, we include
some of their results here. An Edwards curve over Fpn for p �= 2 is defined by the
equation x2 + y2 = 1 + dx2y2 for certain d ∈ Fpn [24]. A twisted Edwards curve
t Ea,d overFpn for p �= 2 is defined by the equation ax2 + y2 = 1 + dx2y2 for certain
a, d ∈ Fpn [23]. A twisted Edwards curve is a quadratic twist of an Edwards curve by
a0 = 1/(a − d). For P = (x, y) ∈ t Ea,d , −P = (−x, y). Furthermore, the addition
and doubling formulae for (x3, y3) = (x1, y1) + (x2, y2) are given as follows:

When (x1, y1) �= (x2, y2) :

⎧
⎪⎪⎨

⎪⎪⎩

x3 = x1y2 + y1x2
1 + dx1x2y1y2

,

y3 = y1y2 − ax1x2
1 − dx1x2y1y2

.

When (x1, y1) = (x2, y2) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x3 = 2x1y1
1 + dx21 y

2
1

,

y3 = y21 − ax21
1 − dx21 y

2
1

.

The 3rd summation polynomial for twisted Edwards curves is [26]:

ft E,3(Y1,Y2,Y3) =
(
Y 2
1 Y

2
2 − Y 2

1 − Y 2
2 + a

d

)
Y 2
3

+ 2
d − a

d
Y1Y2Y3 + a

d

(
Y 2
1 + Y 2

2 − 1
) − Y 2

1 Y
2
2 .

Again, the subsequent summation polynomials are obtained by taking resultants.
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2.1.2.6 Symmetry and Decomposition Probability

Symmetry brought by group action on point decompositionwill inevitably be accom-
panied by a decrease in decomposition probability. For example, if a factor base F
is invariant under addition of a 2-torsion point, then the decomposition probability
for PDP of themth order should decrease by a factor of 2m−1. This is due to the same
reason that the decomposition probability decreases by a factor of m! because the
symmetric group Sm acts on F .

However, this simple fact seems to have been largely ignored in the literature. For
example, Faugère, Gaudry, Hout, and Renault explicitly stated in Sect. 5.3 of their
study that “[the] probability to decompose a point [into a sum of n points from the
factor base] is 1

n!” for twisted Edwards or twisted Jacobi intersections curves, despite
the fact that the factor base is invariant under the addition of 2-torsion points [26].
At first glance, this may not seem a problem, as we would expect to obtain 2n−1

solutions if we can successfully solve a PDP instance. (Unfortunately, this is also not
true in general. We will return to it in more detail in Sect. 2.1.5.3.) However, when
estimating the cost of a complete ECDLP attack, they proposed to collapse these
2n−1 relations into one to reduce the size of the factor base and thus the cost of the
linear algebra, cf. Remark 5 of the paper. In this case, the decrease in decomposition
probability does have an adverse effect, and their estimation for the overall ECDLP
cost ended up being overoptimistic by a factor of at least 2n−1.

2.1.3 Montgomery and Hessian Curves

2.1.3.1 Montgomery Curves

A Montgomery curve MA,B over Fpn for p �= 2 is defined by the equation

By2 = x3 + Ax2 + x (2.1)

for A, B ∈ Fpn such that A �= ±2, B �= 0, and B(A2 − 4) �= 0 [32]. For P =
(x, y) ∈ MA,B , −P = (x,−y). Furthermore, the addition and doubling formulae
for (x3, y3) = (x1, y1) + (x2, y2) are given as follows. When (x1, y1) �= (x2, y2):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x3 = B

(
y2 − y1
x2 − x1

)2

− A − x1 − x2 = B(x2y1 − x1y2)2

x1x2(x2 − x1)2
,

y3 = (2x1 + x2 + A)(y2 − y1)

x2 − x1
− B(y2 − y1)3

(x2 − x1)3
− y1.

http://dx.doi.org/10.1007/978-981-15-3654-0_5
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When (x1, y1) = (x2, y2):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x3 = (x21 − 1)2

4x1(x21 + Ax1 + 1)
,

y3 = (2x1 + x1 + A)(3x21 + 2Ax1 + 1)

2By1
− B(3x21 + 2Ax1 + 1)3

(2By1)3
− y1.

It was noted by Montgomery himself in his original paper that such curves can give
rise to efficient scalar multiplication algorithms [32]. That is, consider a random
point P ∈ MA,B(Fpn ) and nP = (Xn : Yn : Zn) in projective coordinates for some
integer n. Then

{
Xm+n = Zm−n[(Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn)]2,
Zm+n = Xm−n[(Xm − Zm)(Xn + Zn) − (Xm + Zm)(Xn − Zn)]2.

In particular, when m = n

⎧
⎪⎨

⎪⎩

X2n = (Xn + Zn)
2(Xn − Zn)

2,

Z2n = (4Xn Zn)
(
(Xn − Zn)

2 + ((A + 2)/4)(4Xn Zn)
)
,

4Xn Zn = (Xn + Zn)
2 − (Xn − Zn)

2.

In this way, scalarmultiplication on theMontgomery curve can be performedwithout
using y-coordinates, leading to fast implementation.

2.1.3.2 Summation Polynomials for Montgomery Curves

Following Semaev’s approach [35], we can construct summation polynomials for
Montgomery curves. Like Weierstrass curves, the 2nd summation polynomial for
Montgomery curves is simply fM,2 = X1 − X2. Now, we consider P, Q ∈ MA,B

for P = (x1, y1) and Q = (x2, y2). Let P + Q = (x3, y3) and P − Q = (x4, y4).
By the addition formula, we have

x3 = B(x2y1 − x1y2)2

x1x2(x2 − x1)2
, x4 = B(x2y1 − x1y2)2

x1x2(x2 + x1)2
.

It follows that

⎧
⎪⎪⎨

⎪⎪⎩

x3 + x4 = 2 ((x1 + x2)(x1x2 + 1) + 2Ax1x2)

(x1 − x2)2
,

x3x4 = (1 − x1x2)2

(x1 − x2)2
.
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Using the relationship between the roots of a quadratic polynomial and its coeffi-
cients, we obtain

(x1 − x2)
2x2 − 2 ((x1 + x2)(x1x2 + 1) + 2Ax1x2) x + (1 − x1x2)

2.

From here, we can obtain for Montgomery curve which is the 3rd summation poly-
nomial:

fM,3(X1, X2, X3) = (X1 − X2)
2X2

3 − 2((X1 + x2)(X1X2 + 1)

+ 2AX1X2)X3 + (1 − X1X2)
2,

as well as the subsequent summation polynomials by taking resultants:

fM,m(X1, . . . , Xm) = ResX
(
fM,m−k(X1, . . . , Xm−k−1, X),

× fM,k+2(Xm−k, . . . , Xm, X)
)
.

2.1.3.3 Small Torsion Points on Montgomery Curves

A Montgomery curve always contains an affine 2-torsion point T2. Because T2 +
T2 = 2T2 = O, −T2 = T2. If we write T2 = (x, y), then we can see that y = 0 in
order for −T2 = T2 as p �= 2. Substituting y = 0 into Eq. (2.1), we get an equation
x3 + Ax2 + x = 0. The left-hand side factors into x(x2 + Ax + 1) = 0, so we get

x = 0,
−A ± √

A2 − 4

2
.

Therefore, the set of rational points over the definition field Fpn of a Montgomery
curve includes at least two 2-torsion points, namelyO and (0, 0). The other 2-torsion
points may or may not be rational, so we will focus on (0, 0) in this section. Sub-
stituting (x2, y2) = (0, 0) into the addition formula for Montgomery curves, we get
that for any point P = (x, y) ∈ MA,B , P + (0, 0) = (1/x,−y/x2).

To be able to exploit the symmetry of addition of T2 = (0, 0), we need to choose
the factor baseF = {(x, y) ∈ E(Fpn ) : x ∈ V ⊂ Fpn } invariant under addition of T2.
This means that V needs to be closed by undertaking multiplicative inverses. In other
words, V needs to be a subfield of Fpn , i.e., V = Fp� for some integer � that divides
n. In this case, fm is invariant under the action of xi �→ 1/xi . Unfortunately, such an
action is not linear and hence not easy to handle in polynomial system solving. How
to take advantage of such kind of symmetry in PDP is still an open research problem.

2.1.3.4 Hessian Curves

A Hessian curve Hd over Fpn for pn = 2 mod 3 is defined by the equation
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x3 + y3 + 1 = 3dxy (2.2)

for d ∈ Fpn such that 27d3 �= 1 [36]. For P = (x, y) ∈ Hd , −P = (y, x). Further-
more, the addition and doubling formulae for (x3, y3) = (x1, y1) + (x2, y2) are given
as follows.

When (x1, y1) �= (x2, y2) :

⎧
⎪⎪⎨

⎪⎪⎩

x3 = y21 x2 − y22 x1
x2y2 − x1y1

,

y3 = x21 y2 − x22 y1
x2y2 − x1y1

.

When (x1, y1) = (x2, y2) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x3 = y1(1 − x31)

x31 − y31
,

y3 = x1(y31 − 1)

x31 − y31
.

2.1.3.5 Summation Polynomials for Hessian Curves

Following a similar approach outlined by Galbraith and Gebregiyorgis [29], we can
construct summation polynomials for Hessian curves. First, we introduce a new
variable T = X + Y , which is invariant under point negation. The 2nd summation
polynomial for Hessian curves is simply fH,2 = T1 − T2. Now let

Z =
{

(x1, y1, t1,x2, y2, t2, x3, y3, t3) ∈ F
9
pn : (xi , yi ) ∈ Hd(Fpn ), i = 1, 2, 3;

(x1, y1) + (x2, y2) + (x3, y3) = O; xi + yi = ti , i = 1, 2, 3

}

.

Clearly, Z is in the variety of the ideal I ⊂ Fpn [X1,Y1, T1, X2,Y2, T2, X3,Y3, T3]
generated by

⎧
⎪⎨

⎪⎩

X3
i + Y 3

i + 1 − 3dXiYi , i = 1, 2, 3;
(X3 − X1)(Y2 − Y1) − (X2 − X1)(Y3 − Y1);
Xi + Yi − Ti , i = 1, 2, 3

⎫
⎪⎬

⎪⎭
.

Again, we compute the elimination ideal I ∩ Fpn [T1, T2, T3] and obtain a principal
ideal generated by some polynomial. After removing the degenerate factors, we can
obtain for Hessian curve the 3rd summation polynomial:

fH,3(T1, T2, T3) =T 2
1 T

2
2 T3 + dT 2

1 T
2
2 + T 2

1 T2T
2
3 + dT 2

1 T2T3 + dT 2
1 T

2
3 − T 2

1 +
T1T

2
2 T

2
3 + dT1T

2
2 T3 + dT1T2T

2
3 + 3d2T1T2T3 + 2T1T2 + 2T1T3+

2dT1 + dT 2
2 T

2
3 − T 2

2 + 2T2T3 + 2dT2 − T 2
3 + 2dT3 + 3d2,
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as well as the subsequent summation polynomials by taking resultants:

fH,m(T1, . . . , Tm) = ResT
(
fH,m−k(T1, . . . , Tm−k−1, T ), fH,k+2(Tm−k , . . . , Tm , T )

)
.

2.1.3.6 Small Torsion Points on Hessian Curves

As we shall see in Sect. 2.1.4.1, we will compare elliptic curves in various forms
that are isomorphism to one another over the same definition field. As a result, we
will only experiment with those Hessian curves that include 2-torsion points like
Montgomery or (twisted) Edwards curves. Because T2 + T2 = 2T2 = O, it follows
that −T2 = T2. If we write T2 = (x, y), then we can see that x = y in order for
−T2 = T2 as −T2 = (y, x). Substituting x = y into Eq. (2.2), we get an equation
2x3 − 3dx2 + 1 = 0. Therefore, aHessian curve Hd(Fpn ) has a 2-torsion point (ζ, ζ )

if the polynomial 2X3 − 3dX2 + 1 has a root ζ in Fpn . In this case, the addition of
this 2-torsion point to a point (x, y) would give a point (x ′, y′), where

⎧
⎪⎪⎨

⎪⎪⎩

x ′ =ζ y2 − ζ 2x

ζ 2 − xy
,

y′ =ζ x2 − ζ 2y

ζ 2 − xy
.

Obviously, the typical factor bases are not invariant under addition of this 2-torsion
point in general.

A Hessian curve always contains a 3-torsion point T3 such that 3T3 = O [36]. If
we let T3 = (x, y), then we see that 2(x, y) = −(x, y) = (y, x), substituting which
into the doubling formula, we get

⎧
⎪⎪⎨

⎪⎪⎩

y(1 − x3)

x3 − y3
= y,

x(y3 − 1)

x3 − y3
= x .

Because x and y cannot be zero at the same time, we have x3 − y3 = 1 − x3 =
y3 − 1, or x3 = y3 = 1.Nowbecause pn = 2 mod 3,Fpn does not have anyprimitive
cubic roots of unity, x = y = 1 and T3 = (1, 1). By the addition formula, if P =
(x, y), then

P + T3 = (x, y) + (1, 1) =
(
y2 − x

1 − xy
,
x2 − y

1 − xy

)

.

However, for P ∈ F , we only know that t = x + y ∈ V ⊂ Fpn , but we know nothing
about 1 − xy, which can lie outside of V . Therefore, again, typical factor bases are
not invariant under addition of this 3-torsion point in general. Therefore, it is not
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Fig. 2.1 Experimental
results on PDP solving for
the case of n = 5

m p Curve Time Dreg Matcost Rank

3

239

Hessian 0 6 42336.8 1
Weierstrass 0 6 41259.0 1
Montgomery 0 6 61239.0 4
tEdwards 0 6 6308.4 4

251

Hessian 0 6 41420.4 1
Weierstrass 0 6 42132.0 1
Montgomery 0 6 61127.9 4
tEdwards 0 6 6308.4 4

4

239

Hessian 3.990 19 12066100000 1
Weierstrass 3.680 19 12064700000 1
Montgomery 3.489 18 11399100000 5
tEdwards 0.150 18 54093000 5

251

Hessian 3.459 19 12069800000 1
Weierstrass 3.659 19 12066400000 1
Montgomery 3.280 18 11401700000 5
tEdwards 0.119 18 54102900 5

clear how to exploit such symmetry brought by addition of small torsion points for
Hessian curves.

2.1.4 Experiments on PDP Solving

This section shows the results of our experiments conducted to compare the compu-
tational complexity of PDP on four different curves: Hessian(H ), Weierstrass(W ),
Montgomery(M), and twisted Edwards(t E).

2.1.4.1 Experimental Setup

As explained in Sect. 2.1.2.1, we focus on PDP in these experiments as the linear
algebra step is already well understood. Furthermore, we focus on the bottleneck
computation in PDP, namely, the cost of the F4 algorithm for computing Gröb-
ner bases of the polynomial systems obtained after rewriting using the elementary
symmetric polynomials and applying the Weil restriction technique to summation
polynomials. This way we will be taking advantage of the symmetry of Sm acting
on point decompositions. However, we did not exploit symmetry of any other group
actions. This is because we want to compare the intrinsic computational complexity
of PDP and hence only consider the symmetry that is present in all curves. Exploiting
further curve-specific symmetry whenever possible will result in a further speedup,
but it would be independent of our findings here.
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2.1.4.2 Experimental Results

Figure2.1 presents our experimental results for the case of n = 5. Here, we choose
our factor base by taking V as the base field Fp of Fpn . All our experiments were
performed using the MAGMA computation algebra system (version 2.23-1) on a
single core of an Intel Xeon CPU E7-4830 v4 running at 2 GHz. Comparisons to
solve each PDP were performed by running time (in second), Dreg, Matcost, and
Rank. The “Dreg” is the maximum step degree reached during the execution of the
F4 algorithm, which is referred to as the “degree of regularity” in the literature [29]
and provides an upper bound for the sizes of the Macaulay submatrices involved in
the computation, the “Matcost” is a number output by the MAGMA implementation
of the F4 algorithm and provides an estimate of the linear algebra cost during the
execution of the F4 algorithm, and finally, the “Rank” is the number of linearly
independent relations we obtain once successfully solving a PDP instance. It is an
important factor to consider, as it determines how many PDP instances we need
to successfully solve to have enough relations for a complete ECDLP attack using
index calculus. We can clearly see that the PDP solving time andMatcost for twisted
Edwards curves are much smaller than those for the other curves. In contrast, the
degrees of regularity for Montgomery and twisted Edwards curves are smaller than
those of the other curves in the case of m = 4. In addition, we can see that the rank
for Hessian and Weierstrass curves is 1 in all cases, whereas for Montgomery and
twisted Edwards curves, it is 4 and 5 in the case of m = 3 and m = 4, respectively.
Last but not least, although we only present the results for small p (around 8-bit
long), here, we have some preliminary results for larger p (around 16-bit and 32-bit
long). Apart from the slight difference in the absolute running time, all other results
such as Dreg, Matcost, and Rank are similar, so we do not repeat them here.

2.1.5 Analysis

2.1.5.1 Revisit Summation Polynomial in Each Form

As we have seen in Sect. 2.1.4.2, PDP on (twisted) Edwards curves seems easier to
solve than on other curves. The explanation offered by Faugère, Gaudry, Hout, and
Renault is “due to the smaller degree appearing in the computation of Gröbner basis
of SDn in comparison with the Weierstrass case,” cf. Sect. 4.1.1 of their paper [26].
Unfortunately, this cannot explain the difference between (twisted) Edwards and
Montgomery curves as the highest degrees appearing in the computation of Gröbner
bases are the same for these two curves. Therefore, there must be other reasons. We
have found that the total number of terms for twisted Edwards curves is significantly
lower than that for the other curves in all cases. Naturally, this could lead to faster
solving time with the F4 algorithm.We also note that, except for the twisted Edwards
curves, the summation polynomials before Weil restriction for the other curves are
all 100% dense without any missing terms.

http://dx.doi.org/10.1007/978-981-15-3654-0_4
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2.1.5.2 Missing Terms of Summation Polynomials in (Twisted)
Edwards Curves

In this section, we will show that the summation polynomials for (twisted) Edwards
curves mainly have terms of even degrees. The set of terms of even degrees is closed
under multiplication, so intuitively, such polynomials are easier to solve, which can
be the main reason for the efficiency gain observed in the case of (twisted) Edwards
curves.

We shall make this intuition precise in Theorem 2.1, but before we state the main
result, we need to clarify our terminology for ease of exposition.When amultivariate
polynomial is regarded as a univariate polynomial in one of its variables T , we say
that the coefficient ai of a term ai T i is an even or odd-degree coefficient depending
on whether i is even or odd, respectively. Note that these coefficients are themselves
multivariate polynomials in one fewer variable.

We say that a monomial m = ∏n
i=1 x

ei
i , ei ≥ 0 in a multivariate polynomial in

n variables is of even degree or simply an even-degree monomial if
∑

i ei is even;
that it is of odd degree or simply an odd-degree monomial otherwise. In contrast, a
monomial is of (homogeneous) even parity if all ei are even; it is of (homogeneous)
odd parity if all ei are odd. A monomial is of homogeneous parity if it is either of
homogeneous even or odd parity. Note that the definition of monomials of odd parity
depends on the total number of variables in the polynomial, which is not the case for
monomials of even parity because we regard 0 as even. For example, the monomial
x1x2 is a monomial of odd parity in a polynomial in x1 and x2 but not so in another
polynomial in x1, . . . , xn for n > 2.

By abuse of language, we say that a polynomial is of even or odd parity if it
is a linear combination of monomials of even or odd parity, respectively; that a
polynomial is of homogeneous parity if it is a linear combination of monomials of
homogeneous parity. The set of polynomials of evenparity is closedunder polynomial
addition andmultiplication and hence forms a subring. In contrast, a polynomial f in

x1, . . . , xn of oddparitymust have the form
∑

i ci
(∏

j=1 x
ei j
j

)
, for ei j odd.Therefore,

if f is a polynomial of odd parity and g, a polynomial of even parity, then f g must
be of odd parity.

Theorem 2.1 Let E be a family of elliptic curves such that its 3rd summation poly-
nomial fE,3(X1, X2, X3) is of degree 2 in each variable Xi and of homogeneous
parity. Let gE,m be the polynomial corresponding to the PDP of mth order for E
as described in Sect.2.1.2.2. That is, gE,m(X1, . . . , Xm) = fE,m+1(X1, . . . , Xm, x),
where x is a constant depending on the point to be decomposed.

1. If m is even, then gE,m has no monomials of odd degrees.
2. If m is odd, then gE,m has some but not all monomials of odd degrees.

Among the four forms of elliptic curves that we investigated in this section, only the
(twisted) Edwards form satisfies the premises of Theorem 2.1. As we have seen in
Sect. 2.1.4, the PDP solving time for the (twisted) Edwards form is thus significantly
faster than that for the other forms.
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We will prove Theorem 2.1 in the rest of this section, for which we will need the
following lemmas.

Lemma 2.1 Let f1(T1, . . . , Tr , T ) = a0 + a1T + · · · + amTm and f2(T1, . . . ,
Tr , T ) = b0 + b1T + · · · + bnT n be two polynomials in r + 1 variables, where ai
and bi are polynomials in T1, . . . , Tr . Let f (T1, . . . , Tr ) = ResT ( f1, f2) be the resul-
tant of f1 and f2 regarded as two univariate polynomials in T . If both m and n are
even, then every monomial of f is a product of an even number or none of the odd-
degree coefficients of f1 and f2 and some or none of the even-degree coefficients
of f1 and f2. Specifically, the odd-degree coefficients a2k+1 and b2k+1 of f1 and f2,
respectively, appear in total an even number of times in each monomial of f .

Proof The resultant ResT ( f1, f2) of f1 and f2 is the determinant of the following
(m + n) × (m + n) matrix S:

S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

am am−1 . . . a0
am am−1 . . . a0

. . .
. . .

am am−1 . . . a0
bn bn−1 . . . b0

bn bn−1 . . . b0
. . .

. . .

bn bn−1 . . . b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎫
⎪⎪⎬

⎪⎪⎭

n

⎫
⎪⎪⎬

⎪⎪⎭

m

(2.3)

We denote si j as the entry at the i th row and j th column of S for 1 ≤ i, j ≤ m + n.
Because both m and n are even, an even-degree coefficient a2k or b2k will appear in
si j for which the sum of indices i + j is even. Similarly, an odd-degree coefficient
a2k+1 or b2k+1 will appear in si j for which the sum of indices i + j is odd. Now recall
that the determinant of S is defined as

∑

σ∈Sn+m

sgn(σ )s1,σ (1) · s2,σ (2) · · · sm+n,σ (m+n).

We note that the sum of the indices of any summand is

m+n∑

i

i + σ(i) = (m + n)(m + n + 1),

which is always even. Therefore, the odd-degree coefficients must appear an even
number of times, thus completing the proof.

Lemma 2.2 Let E be a family of elliptic curves such that its 3rd summation poly-
nomial fE,3(X1, X2, X3) is of degree 2 in each variable Xi and of homogeneous
parity. Then, any subsequent summation polynomial fE,m(X1, . . . , Xm) for m > 3
is of homogeneous parity.
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Proof As the summation polynomial fE,m+1 for m ≥ 3 is defined recursively from
fE,m and fE,3 by taking resultants

fE,m+1(X1, . . . , Xm+1) = ResX
(
fE,m(X1, . . . , Xm−1, X), fE,3(Xm, Xm+1, X)

)
,

we shall prove this lemma by induction on m. Let fE,m(X1, . . . , Xm−1, X) =
a2m−2X2m−2 + · · · + a1X + a0 and fE,3(Xm, Xm+1, X) = b2X2 + b1X + b0. By the
premise that fE,3 is of homogeneous parity, b0 and b2 must consist only ofmonomials
(in Xm and Xm+1) of even parity. Furthermore, b1 = cXm Xm+1 for some constant c.
This is because fE,3 is of degree 2 in each variable, for which the only monomial of
odd parity is XmXm+1X .

Now consider a term ck Xk
m+1 of

fE,m+1(X1, . . . , Xm, Xm+1) = c2m−1X2m−1

m+1 + · · · + c1Xm+1 + c0

as a univariate polynomial in Xm+1. Again as fE,3 is of degree 2 in X , we have the
case of n = 2 in Eq.2.3. Now Xm+1 must come from b1, so we can conclude that

ck X
k
m+1 =

∑

i

αi aβi aγi b
δi
0 b

εi
2 X

k
m X

k
m+1,

where αi a constant, βi , γi ∈ {0, . . . , 2m−2}, and δi , εi nonnegative integers such
that δi + εi + k = 2m−2. We will complete the proof by showing that ck Xk

m+1 is a
polynomial in X1, . . . , Xm+1 of homogeneous parity for all k as follows.

1. If k is even, then by Lemma 2.1, βi and γi are both even or both odd in each
summand. In either case, the product aβi aγi is a polynomial in X1, . . . , Xm−1 of
even parity. It follows that each summand is a polynomial of even parity because
it is a product of polynomials of even parity. Hence, ck Xk

m+1 is a polynomial of
even parity.

2. If k is odd, the situation is similar but slightly more complicated. By Lemma 2.1,
exactly one of βi and γi is odd in each summand, say βi . By induction hypothesis,
aβi is a polynomial in X1, . . . , Xm−1 of odd parity because it comes from aβi X

βi

in fE,m . It follows that each summand is a polynomial of odd parity because it is
a product of a polynomial of even parity aγi b

δi
0 b

εi
2 and a polynomial of odd parity

aβi X
k
m X

k
m+1. Hence, ck X

k
m+1 is a polynomial of odd parity.

By Lemma 2.2, gE,m(X1, . . . , Xm) = fE,m+1(X1, . . . , Xm, x) is of homogeneous
parity. Obviously, the monomials of even parity will remain of even degree after x is
substituted. If m is even, then the monomials of odd parity in fE,m+1 will become of
even degree after x is substituted because an even number of odd numbers sum to an
even number. Similarly, if m is odd, then the monomials of odd parity in fE,m+1 will
become of odd degree after x is substituted. However, those odd-degree monomials
that are not of homogeneous parity, e.g., X2

1X2, cannot appear in gE,m by Lemma 2.2.
This completes the proof of Theorem 2.1.
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2.1.5.3 What Price for a Highly Symmetric Factor Base?

Last but not least, we discuss the price needed to pay to have a highly symmetric
factor base F that is invariant under more group actions in addition to that of the
symmetric group Sm . As previewed in Sect. 2.1.2.6, we would expect that the effect
of the decrease in decomposition probability due to additional symmetry in F could
be offset by that of the increase in number of solutions. For example, let us reconsider
the group action of addition of T2 in Sect. 2.1.2.4. If we could get 2m−1 solutions, then
the loss of the factor of 2m−1 in decomposition probability would be compensated.
This way everything would be the same as if there were no such symmetry, and we
could exploit the additional symmetry at no cost.

Unfortunately, this proposition is false in general. Consider an example ofm = 4.
Let Qi = Pi + T2 for i = 1, 2, 3, 4. We can write down all 2m−1 = 8 possible ways
of a point decomposition under this group action:

P1 + P2 + P3 + P4 =Q1 + Q2 + P3 + P4
= Q1 + P2 + Q3 + P4 =Q1 + P2 + P3 + Q4

= P1 + Q2 + Q3 + P4 =P1 + Q2 + P3 + Q4

= P1 + P2 + Q3 + Q4 =Q1 + Q2 + Q3 + Q4.

It is easy to find that we have only five linearly independent relations from these
eight relations, as there are nontrivial linear combinations summing to zero, e.g.:

(P1 + P2 + P3 + P4) − (Q1 + Q2 + P3 + P4) − (P1 + P2 + Q3 + Q4)

+ (Q1 + Q2 + Q3 + Q4) = O.

As explained in Sect. 2.1.4.1, the factor bases for Montgomery and twisted Edwards
curves are invariant under addition of 2-torsion points. For m = 3, we achieve max-
imum rank of 2m−1 = 4. For m = 4, as we have explained above, we can only have
rank 5, which is strictly less than the maximum possible rank 2m−1 = 8.

Finally, we note thatwe have not exploited any symmetry forHessian curves in our
experiments. However, the rank for Hessian curves is always 1 in all our experiments.
This shows that the factor base we have chosen for Hessian curves is not invariant
under addition of small torsion points, as the rank would be > 1 otherwise.

2.1.6 Concluding Remarks

In this section, we experimentally explored index-calculus attack on ECDLP over
different forms such as twisted Edwards, Montgomery, Hessian, and Weierstrass
curves under the totally fair conditions as they are isomorphic to each other over
the same definition field Fpn and showed that twisted Edwards curves are clearly
faster than others. We investigated the summation polynomials of all forms in detail,
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found that big differences exist in the number of terms, and proved that monomials
of odd degrees in summation polynomials on twisted Edwards curves do not exist.
We showed that this difference causes less solving time of index-calculus attack on
ECDLP over twisted Edwards than others.

2.2 Analysis on Ring-LWE over Decomposition Fields

2.2.1 Introduction

The ring variant of learning with errors (Ring-LWE) based cryptography [15, 16] is
one of the most attractive research areas in cryptography. Ring-LWE has provided
efficient and provably secure post-quantum cryptographic protocols, which include
homomorphic encryption (HE) schemes [4, 5, 9]. The development of the efficiency
and security of both post-quantum cryptography and HE is strongly desirable. In
fact, the standardization of post-quantum cryptography is under development by the
National Institute of Standards and Technology. Moreover, HE schemes that enable
us to execute the computation on encrypted data without decryption have many
applications in cloud computing.

Ring-LWE is characterized by two probabilistic distributions, modulus param-
eters (integers) and number fields, as detailed in Sect. 2.2.2.4. Usually, cyclotomic
fields are used as the underlying number fields to increase efficiency and security
[17]. However, especially in the case of HE schemes, improving the efficiency of
the encryption/decryption procedures and homomorphic arithmetic operations on
encrypted data while ensuring security remain important tasks.

To construct an HE scheme that can simultaneously encrypt many plaintexts
efficiently, Arita and Handa proposed the use of a decomposition field, which is
contained in a cyclotomic field with prime conductors, as an underlying number
field for Ring-LWE [1]. (Sect. 2.2.3 presents the details of decomposition fields and
ofArita andHanda’s idea.) Arita andHanda’s HE scheme, which is called the subring
HE scheme, is indistinguishably secure under a chosen-plaintext attack if the decision
variant of Ring-LWE over the decomposition fields is computationally infeasible.
Arita andHanda’s experiments [1, Sect. 5] showed that the performance of the subring
HE scheme is much better than that of the FV scheme based on Ring-LWE over �th
cyclotomic fields with prime numbers �, as implemented in HElib [11].

As for the security of the subring HE scheme, Arita and Handa remarked that in
the case of decomposition fields, some of the security properties of Ring-LWE in the
case of cyclotomic fields are also satisfied. More concretely, there exists a quantum
polynomial-time reduction from the approximate shortest vector problem on certain
ideal lattices to Ring-LWE over decomposition fields, and the equivalence between
the decision and search variants of Ring-LWE over decomposition fields is satisfied.

However, solving Ring-LWE is reduced to solving certain problems on lattices,
such as the closest vector problem (CVP) and the shortest vector problem, and the
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difficulty of problems on lattices depends heavily on the structure and given bases
of the underlying lattices. For example, if the shortest vector is much shorter than
the second shortest vector in a certain lattice L, then the shortest vector problem
for lattice L would be easy. This means that the underlying number fields affect the
difficulty of lattice problems arising in Ring-LWE. Hence, to ensure the security
of the subring HE scheme, experimental or theoretical analyses of (lattice) attacks
should be performed. However, [1] does not provide any such analysis.

In this study, we provide an experimental analysis of the security of Ring-LWE
over decomposition fields. More precisely, we compare the security of Ring-LWE
over decomposition fields and of Ring-LWE over the �th cyclotomic fields with
some prime numbers �. In our experiments, we reduce the search Ring-LWE to the
(approximate) CVP on certain lattices in the same way as Bonnoron et al.’s analysis
[3] because the target of Bonnoron et al.’s analysis is Ring-LWE optimized for HE.
We use Babai’s nearest plane algorithm [2] and Kannan’s embedding technique [12]
to solve the CVP. We then compare the running times, success rates, and Hermite
root factors. (The root Hermite factor [10] is usually used to evaluate the quality of
lattice attacks.) We also compare the experimental results of lattice attacks against
Ring-LWE over various decomposition fields to find those fields that provide weak
Ring-LWE.

Our experimental results indicate that the success rates and Hermite root factors
for the decomposition fields are almost the same as those for the cyclotomic fields.
However, the running time for decomposition fields is longer than that for cyclotomic
fields. Moreover, the difference in running time increases as the rank of the lattices
increases.

Therefore, we believe that Ring-LWE over decomposition fields is more secure
against the above lattice attacks than that over cyclotomic fields because the ranks
of the lattices occurring in our experiments are much lower than the ranks of the
lattices used in practice. This means that to construct HE schemes (or schemes of
other types), fewer parameters are needed for Ring-LWE over decomposition fields
than for Ring-LWE over cyclotomic fields. Therefore, as a result of our analysis,
we believe that Ring-LWE over decomposition fields can be used to construct more
efficient HE schemes.

2.2.2 Preliminaries

In this section, we briefly review the notation of lattices, Galois theory, number fields,
and Ring-LWE. Throughout this study, Z, Q, R, and C denote the ring of (rational)
integers, field of rational numbers, field of real numbers, and field of complex num-
bers, respectively. For a positive integer m ∈ Z, we suppose that any element of
Z/mZ is represented by an integer contained in the interval (−m/2,m/2] ∩ Z.
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2.2.2.1 Lattices

An m-dimensional lattice is defined as a discrete additive subgroup of R
m . It is

well known that for any lattice L ⊂ R
m , there exist R-linearly independent vec-

tors b1, . . . , and bn ∈ R
m such that L = ∑

1≤i≤n Zbi := {∑1≤i≤n aibi | ai ∈ Z }.
In other words, for a matrix B = (b1, . . . ,bn) whose i th column vector is b j , we
have L = {Bx | x ∈ Z

n}. Then, we say that {b1, . . . ,bn} is a lattice basis of L, and
B is the basis matrix of L with respect to {b1, . . . ,bn}. The value n is called the
rank of L, and it is denoted by rank(L). There are infinite bases for a lattice. In fact,
for any unimodular matrix U, all column vectors of UB also form a basis of L. An
important invariant of L is the determinant defined as det(L) := √

det (BBt ). This
determinant is independent of basis.

There are various computationally hard problems on lattices. Here, we explain
the CVP, which is a well-known problem on lattices. Given a lattice L and target
vector t ∈ R

m
� L, the CVP on (L, t) is the problem of finding a vector x ∈ L such

that for all vectors y ∈ L, we have ‖t − x‖ ≤ ‖t − y‖. For a real number γ > 1, the
approximate CVP on (L, t, γ ) is the problem of finding a vector x ∈ L such that
for all vectors y ∈ L, we have ‖t − x‖ ≤ γ ‖t − y‖. Babai’s nearest plane algorithm
and Kannan’s embedding technique are basic algorithms for solving the approxi-
mate CVP. Almost all known problems on lattices that are useful for constructing
cryptographic protocols become more difficult as the ranks of the underlying lattices
increase, and the quality of the two algorithms mentioned earlier depends on ranks
of input lattices.

Breaking some cryptographic protocols can be reduced to solving certain com-
putational problems on lattices, including the (approximate) CVP [3, 8]. To solve
such problems on lattices, we usually use lattice basis reduction algorithms, which
transform a given basis of a lattice into a basis of the same lattice that consists of
nearly orthogonal and relatively short vectors. In fact, an input of Babai’s nearest
plane algorithm is an (LLL) reduced basis, and Kannan’s embedding technique out-
puts an appropriate vector from the reduced basis. In our experiments, to solve CVP
using Babai’s nearest plane algorithm and Kannan’s embedding technique, we use
the LLL algorithm [13] andBKZalgorithm [7, 19], which arewell-known algorithms
for computing such bases.

The quality of basis reduction algorithms is usually estimated by the root Hermite
factor, which is defined as follows: Let b be the shortest vector of a basis of a lattice
L with rank n, which has been reduced by a basis reduction algorithmA. Then, the
root Hermite factor δA,L is defined as a constant satisfying δnA,L := ‖b‖/ det(L)1/n.

Better basis reduction algorithms provide smaller Hermite root factors.

2.2.2.2 Galois Theory

To describe decomposition fields, we need to describe Galois theory.
Let K be a field and L an extension field of K ; we denote this situation by L/K .

The field L is a K -vector space, and the degree of extension of L/K , denoted by
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[L : K ], is defined as the dimension of L as K -vector space. If M is a subfield of L
containing K as a subfield, i.e., K ⊂ M ⊂ L , then we call M an intermediate field
of L/K . If L/K satisfies [L : K ] < ∞, then L/K is called a finite extension of K .
If M is an intermediate field of L/K with [L : K ] < ∞, then we have [L : K ] =
[L : M][M : K ]. If for any α ∈ L , there exists a nonzero polynomial f (x) ∈ K [x]
such that f (α) = 0, then L/K is called an algebraic extension of K . It is known that
all finite extensions are algebraic extensions.

From now on, we suppose that L/K is a finite algebraic extension. For any
α ∈ L , the minimal polynomial over K of α is defined as the monic polynomial
f (x) ∈ K [x] with the lowest degree of all polynomials in K [x] that vanish at α. We
denote Irr(α, K )(x) as the minimal polynomial over K of α. Note that the minimal
polynomial over K of α coincides with the monic irreducible polynomial over K
that vanishes at α. For a subset S ⊂ L , we denote K (S) as the smallest subfield of L
among subfields containing K and S. We call K (S) the field generated by S over K .
If L is generated by one element θ ∈ L over K , i.e., L = K (θ), then we have an iso-
morphism L ∼= K [x]/ (Irr(θ, K )(x)) by θ �→ x (mod. (Irr(θ, K )(x)). This implies
that [K (θ) : K ] = deg Irr(α, K ).

Next, we describe separable, normal, and Galois extensions of fields. If
Irr(α, K )(x) for any α that has no multiple roots, then L/K is called a separable
extension of K . If L contains all roots of Irr(α, K )(x) for any α ∈ L , then L/K is
called a normal extension of K . If all algebraic extensions of K , including infinite
algebraic extensions, are separable, then K is called a perfect (field). It is known
that fields with characteristic zero and any finite field are perfect, and that any finite
separable extension field can be generated by one element. If L/K is a separable
and normal extension of K , then L/K is called a Galois extension of K . Let � be
a sufficiently large field containing K such that any ring-homomorphism φ fixing
K , i.e., φ(a) = a for any a ∈ K , to L satisfies φ(L) ⊂ �. We define the set of all
ring-homomorphisms by fixing K to the range L to � as follows:

HomK (L ,�) := {σ : L ↪→ � | σ(a) = a,∀a ∈ K } .

(Note that any nonzero ring-homomorphism between fields is injective.) Let L/K
be separable with [L : K ] = n and L = K (θ). Let θ = θ1, . . . , θn be all roots
of Irr(θ, K )(x). For any σ ∈ HomK (L ,�), we have σ (Irr(θ, K )(θ)) = Irr(θ, K )

(σ (θ)) = 0. This means that σ(θ) = θi for some i = 1, . . . , n. This then implies
#HomK (L) = n. (Any τ ∈ HomK (L ,�) is completely determined by the image of
θ under τ because τ fixes K .)

Moreover, if L/K is normal, then σ induces an isomorphism L ∼= L . Note
that L = K (θ) ∼= K (θi ) for any i = 1, . . . , n because these fields are isomorphic
to K [X ]/ (Irr(θ, K )). Therefore, we may take L as � and can write AutK (L) =
HomK (L ,�).

Now, we can describe the fundamental theorem of Galois theory (for finite
field extensions). Let L/K be a finite Galois extension of K . Then, we can write
Gal(L/K ) = AutK (L). For any subgroup H ⊂ Gal(L/K ) and an intermediate field
M of L/K , we define
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LH := {a ∈ L | σ(a) = a,∀σ ∈ H},
GM := {σ ∈ Gal(L/K ) | σ(a) = a,∀a ∈ M}.

We note that L/M is a Galois extension with Gal(L/M) = GM . It is not difficult
to see that LH is an intermediate field of L/K and that GM is a subgroup
of Gal(L/K ). We can define two maps with respect to L/K . One is a map �

from A := {M ⊂ L |M is an intermediate field of L/K } to B := {H ⊂ Gal(L/K ) |
H is a subgroup of Gal(L/K )} by M �→ GM . The other is a map � from B to A by
H �→ LH . The fundamental theorem of Galois theory is as follows:

Theorem 2.2 Let L/K, A, B,�, and� be as above. Then, the following statements
are true:

(1) There is a one-to-one correspondence between A and B. More precisely, � and
� are inverse maps of each other.

(2) If M1 and M2 are intermediate fields of L/K with M1 ⊂ M2, then we have
�(M2) ⊂ �(M1). Similarly, if H1 and H2 are subgroups of Gal(L/K ) with
H1 ⊂ H2, then we have �(H2) ⊂ �(H1).

(3) Let M1, M2, H1 and H2 be as in (2). Then, we have (H2 : H1) = #H2/H1 =
[�(H1) : �(H2)] and [M2 : M1] = (�(M1) : �(M2)).

(4) A subfield M of L/K is a Galois extension of K if and only if GM = �(M) is
a normal subgroup of Gal(L/K ). Moreover, if GM = Gal(L/M) is a normal
subgroup of Gal(L/K ), then we have

Gal(L/K )/Gal(L/M) ∼= Gal(M/K ).

In particular, if Gal(L/K ) is an abelian group, then all subfields of L/K are
Galois extensions of K .

For a proof of Theorem 2.2, see [18] for example. (It is easy to prove (2) of
Theorem 2.2 from the definitions of � and �.)

2.2.2.3 Number Fields

To describe Ring-LWE and decomposition fields, which play central roles in this
paper, we need some notations from algebraic number theory.

An (algebraic) number field is a finite extension field ofQ. Let K be a number field
with extension degree [K : Q] = n. An element a ∈ K is called an algebraic integer
if there exists a monic polynomial f ∈ Z[x] such that f (a) = 0. The ring of integers
OK of K is defined as a subring of K consisting of all algebraic integers of K . The ring
OK has an integral basis (Z-basis) {u1, . . . , un}, i.e., for any element u ∈ OK , there
exist integers a1, . . . , an such that u is uniquely written as u = ∑

1≤i≤n aiui . It is well
known that any (integral) ideal I of OK is uniquely factored into products of some
prime ideals, i.e., there exist prime ideals P1, . . . ,Pm satisfying I = Pe1

1 · · ·Pem
m for

ei ≥ 1. If I = pOK for a prime number p and K is a Galois extension of Q, then we
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have OK /Pi = Fpd for some d ∈ N and all ei ’s are mutually equal. Moreover, we
have med = n, where e := ei , and if all ei ’s are equal to 1 (resp. all ei ’s and d are
equal to 1), thenwe say that p is unramified (resp. splits completely) in K . Any prime
ideal of OK is amaximal ideal in OK , and thus we have Pi + Pj = OK for any i �= j .
This induces an isomorphism of rings OK /P1 · · ·Pm

∼= OK /P1 × · · · × OK /Pm .

2.2.2.4 Ring-LWE Problem

Let K and OK be as above. Let χsecret and χerror be probabilistic distributions on OK

and let p be an integer. We denote by OK ,p the residue ring OK /pOK . For a proba-
bilistic distribution χ on a set X , we write a ← χ when a ∈ X is chosen according
to χ . We denoteU (X) as the uniform distribution on X . The Ring-LWE distribution
on OK ,p, denoted by RLWEK ,p,χerror,χsec , is defined as a probabilistic distribution that
takes elements of the form (a, as + e) with a ← U (OK ,p), s ← χsecret, and with
e ← χerror. The Ring-LWE problem has two variants. One is the problem of dis-
tinguishing RLWEK ,p,χerror,χsec from U (OK ,p × OK ,p), which is called the decision
Ring-LWE problem. The other is a problem of finding s ∈ OK ,p, given arbitrarily
many samples (ai , ai s + ei ) ∈ OK ,p × OK ,p chosen according to RLWEK ,p,χerror,χsec ,
which is called the search Ring-LWE problem.

The Ring-LWE problem is expected to be computationally difficult even with
quantum computers. It is proved that the decision Ring-LWE problem is equivalent
to the search problem if K is a cyclotomic field and if p is a prime number and
(almost) splits completely in K [16]. In addition, this equivalence is generalized to
the cases where K/Q is a Galois extension and where p is unramified in K [6].
Moreover, there is a quantum polynomial-time reduction from the search Ring-LWE
to the shortest vector problem on certain ideal lattices.

2.2.3 Ring-LWE over Cyclotomic and Decomposition Fields

In this section, we describe why Arita and Handa proposed the use of decomposi-
tion fields as the underlying number fields of Ring-LWE to construct efficient HE
schemes.

2.2.3.1 Cyclotomic Fields and Decomposition Fields

First, we briefly review cyclotomic fields. For a positive integer m, let ζm ∈ C be
a primitive mth root of unity and n = ϕ(m), where ϕ(·) denotes Euler’s totient
function. Then, K := Q (ζm) is called the mth cyclotomic field. The ring of integers
of K coincides with R := Z[ζm]. Any prime number p that does not divide m is
unramified in K , and if p ≡ 1 (mod. m), then p splits completely in K . Here, K/Q
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is a Galois extension of degree [K : Q] = n, and its Galois group Gal(K/Q) is
isomorphic to (Z/mZ)∗.

Next, we describe the decomposition fields of number fields. Let L be a number
field, and suppose that L/Q is a Galois extension and that its Galois group G :=
Gal(L/Q) is a cyclic group. Let p be a prime number that is unramified in L and
satisfies pOL = P1 · · ·Pg , where the Pi ’s are the prime ideals of OL . Let GZ be
a subgroup of G that consists of all elements ρ fixing all Pi , i.e., ρ(Pi ) = Pi for
1 ≤ i ≤ g, and Z is the fixed field of GZ . Then, we call Z the decomposition field
with respect to p. The field Z is a number field and the ring of integers of Z is OZ =
OL ∩ Z . Suppose pi := OZ ∩ Pi . Then, we have pOZ = p1 · · · pg . A generator σ

of GZ acts on OL/Pi
∼= Fpd as the pth Frobenius map, i.e., σ(x) ≡ x p (mod. Pi )

for all x ∈ OL and for 1 ≤ i ≤ g. Therefore, we have OZ/pi ∼= Fp and [Z : Q] = g,
i.e., p splits completely in Z .

2.2.3.2 Cyclotomic Fields Versus Decomposition Fields

Let K , L , and Z be as above and p be a prime number that is unramified in K
and splits completely in Z . Assume that L is the �th cyclotomic field with a prime
number �. As we mentioned in Sect. 2.2.1, cyclotomic fields are usually used as the
underlying number fields of Ring-LWE. From the viewpoint of the efficiency of
Ring-LWE based schemes, there are good Z-bases of the rings of integers of K and
Z [1, 17]. As for the security of the Ring-LWE, in the cases of K and Z , both the
equivalence and the reduction mentioned in Sect. 2.2.2.4 are satisfied because both
K/Q and Z/Q are Galois extensions.

The main difference between K and Z is the algebraic structures of their rings of
integers modulo p. Because p is unramified in K , we have OK ,p

∼= OK /P1 × · · · ×
OK /Pk and OK /Pi

∼= Fpd for 1 ≤ i ≤ k and for d > 1, where the Pi ’s are prime
ideals in OK lying over p, i.e., pOK = P1 · · ·Pk . The FV scheme [9], which is an
HE scheme based on Ring-LWE, uses OK ,p as its plaintext space, and thus, the FV
scheme (or any HE scheme with the same plaintext space) can encrypt and execute
several additions of dk = n = [K : Q] plaintexts in Fp simultaneously. However,
the FV scheme cannot execute the multiplication of the same number of plaintexts
in Fp simultaneously. To execute the multiplication of plaintexts in Fp, we can only
use Fp × · · · × Fp (the direct product of k finite fields) as the plaintext space.

In contrast, because p splits completely in Z , we have OZ ,p
∼= OZ/p1 × · · · ×

OZ/pg and OZ/pi ∼= Fp for any 1 ≤ i ≤ g, where the pi ’s are prime ideals in OZ

lying over p. This means that one can encrypt g = [Z : Q] plaintexts simultaneously.
Moreover, one can execute additions and multiplications of the same number of
plaintexts in Fp simultaneously. Because the extension degrees g and n are directly
related to the ranks of the lattices occurring in known lattice attacks, we should set
g ≈ n to compare the security of Ring-LWE over these fields. Therefore, the HE
scheme over Z can encrypt and operate d times as many plaintexts as the FV scheme
over K simultaneously.
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Remark 2.1 1. If p ≡ 1 (mod. m), then p splits completely in K (recall that K is
the mth cyclotomic field), and then there is no advantage to using decomposition
fields. However, for some cryptographic applications, we want to use a small p,
e.g., p = 2 [1]. Moreover, to avoid lattice attacks, the extension degree [K : Q]
must be large, as we discussed above. Thus, we cannot expect p ≡ 1 (mod. m)
for practical parameters in some applications.

2. By the Hensel lifting technique, for r > 1 and q := pr , we have OZ ,q
∼= Z/qZ ×

· · · × Z/qZ.

2.2.4 Our Experimental Analysis

In this section, we present our experimental results on lattice attacks against Ring-
LWEover decomposition fields and cyclotomic fields. First, we explain lattice attacks
in our experiments.

2.2.4.1 Lattice Attack in Our Experiments

In our experiments, we reduce the search Ring-LWE to a CVP (or approximate CVP)
in the same way as Bonnoron et al.’s analysis [3] because the target of Bonnoron
et al.’s analysis is Ring-LWE optimized for HE. We describe this approach briefly
in the case of decomposition fields. Let OZ and p be as in Sect. 2.2.3.1. Set q := pr

for r > 1. Let {μ1, . . . , μg} be a Z-basis of OZ , which is a good basis, as shown
in [1, Lemma 3]. We sample vectors a = (a1, . . . , ag), s = (s1, . . . , sg) and e =
(e1, . . . , eg) from U (Zg), DZg,σs , and DZg,σe , respectively, where DZg,σ denotes the
discrete Gaussian distribution with mean 0 and variance σ 2.

We put a := ∑
1≤i≤g aiμi , s := ∑

1≤i≤g siμi , e := ∑
1≤i≤g eiμi , and b := as +

e = ∑
1≤i≤g biμi (mod. q). Then, (a, b) is a Ring-LWE instance over Z . Note that

to use Ring-LWE to construct HE schemes, the value σs and σe should be suffi-
ciently small because the �∞-norm ‖s‖∞ directly affects the growth of noise after
multiplication. In our experiments, we set σs = 1 and σ 2

e = 8 according to [14]. By
comparing all coefficients of both sides, we get As + e = (b1, . . . , bg)t = b, where
A is a matrix. (For any vector v, vt means its transpose.) If we set A′ as (A I), then
we have A′(s e)t = b (mod. q), where I denotes the g × g identity matrix. From
the choice of si ’s and ei ’s, our target vector (s e)t is a very short vector from among
all solutions to A′y = b, and thus, we can expect that our target vector can be found
by solving the (approximate) CVP on the lattice L = {x ∈ Z

2g | A′x = 0 (mod. q)}
and on w := (0 b)t , which is a solution to A′y = b.

We take

B =
(

I 0g,g
−A qI

)
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as a basis matrix ofL, where 0g,g denotes the g × g zero matrix. We reduce the basis
matrix B using the LLL and BKZ algorithms with block size β = 10. (In practice,
β should be 10 or 20.) Let Bred be a reduced basis of B. We input Bred and w to
Babai’s nearest plane algorithm. The quality of the results of Babai’s nearest plane
algorithm depends on the quality of the basis reduction algorithms used to compute
the reduced input bases, and thus, we compute the root Hermite factor for Bred.

In contrast, Kannan’s embedding technique takes a basis matrix

C =
(

B −w
01×2g M

)

as input, and we set M = 1 according to the result of an experimental study on Kan-
nan’s embedding technique for LWE [20]. We also use the LLL and BKZ algorithms
with β = 10 to reduce the above basis matrix.

Remark 2.2 In the case of �-cyclotomic fields with prime numbers �, we use
{1, ζ�, . . . , ζ

�−2
� } as a Z-basis, which is also a good basis [17].

Remark 2.3 For 1 ≤ r ′ < r and q ′ := pr
′
, we can obtain samples of

RLWEK ,q ′,χerror,χsec from samples ofRLWEK ,q,χerror,χsec by a natural projectionOZ ,q →
OZ ,q ′ by a �→ a (mod. q ′). In our experiments, we use a small r ′ to reduce running
times. In our experimental results, we only show r ′.

2.2.4.2 Experimental Results

We used a computer with 2.00GHz CPUs (Intel(R) Xeon(R) CPU E7-4830 v4
(2.00GHz)x111) and 3TB memory to conduct the experiments. The OS was Ubuntu
16.04.4. We implemented the code for sampling Ring-LWE instances in SageMath
version 7.5.1. We also used Magma V2.23-1 to execute lattice attacks. We took 100
samples and performed lattice attacks on them.

We show our experimental results in Tables2.1 and 2.2 for p = 2. Table2.1 shows
that there is not a considerable difference between the experimental results of cyclo-
tomic fields and those for decomposition fields. In contrast, Table2.2 shows that
Kannan’s embedding technique is much faster than Babai’s nearest plane algorithm.

This implies that the behaviors of the basis reduction algorithms heavily depend
on the structure of the input lattices. This is a reason why experimental analyses
are necessary for ensuring the security of lattice-based schemes (or other problems).
Table2.2 also shows that the running times for the decomposition fields become
longer than those for cyclotomic fields as g (or � − 1) increases. Therefore, we can
expect that decomposition fields provide Ring-LWE that is more secure against the
lattice attacks described in Sect. 2.2.4.1 than �th cyclotomic fields because the ranks
of the lattices occurring in our experiments are very low compared to the ranks of
lattices used in practice. This means that we can use decomposition fields with lower
extension degrees than would be needed for �th cyclotomic fields, and the use of
such number fields makes Ring-LWE-based schemes more efficient. Therefore, as a
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Table 2.1 Experimental results on Babai’s nearest plane algorithm for p = 2
� 59 16183 73 2089 83 4051 131 5419 173 14449 227 9719

g − 58 − 72 − 81 − 129 − 172 − 226

Lattice
rank

118 116 146 144 166 162 262 258 346 344 454 452

r ′ 20 20 20 20 20 20 30 30 30 30 30 30

Number
of sam-
ples

93 100 100 100 100 100 100 100 40 37 15 14

Success
rate (%)

100 100 100 100 100 100 100 100 100 89 0 0

Average
root
Hermite
factor

1.014 1.014 1.014 1.014 1.014 1.014 1.020 1.020 1.020 1.020 1.089 1.021

Average
running
time (s)

72.22 88.97 218.4 238.2 443.3 456.1 12790.5 11744.6 54763.0 57862.3 231816.1 237846.9

Ratio of
running
times
(%)

− 123.2 − 109.0 − 102.9 − 91.8 − 105.7 − 102.6

The columns for which the values g are indicated show the results for decomposition fields; the
other columns show the results for cyclotomic fields
The “ratio of running times” is the ratio of the average of running time for a decomposition field to
that of a cyclotomic field for each g

Table 2.2 Experimental results on Kannan’s embedding technique for p = 2
� 59 161831 73 2089 83 4051 131 5419 173 14449 227 9719

g − 58 − 72 − 81 − 129 − 172 − 226

Lattice
rank

119 117 147 145 167 163 263 259 347 345 455 453

r ′ 20 20 20 20 20 20 30 30 30 30 40 40

Number
of sam-
ples

100 100 100 100 100 100 100 100 100 100 23 21

Success
rate (%)

100 100 100 100 100 100 100 100 100 100 100 100

Average
running
time (s)

10.4 10.7 36.7 41.4 92.3 97.6 4714.6 5556.7 19387.5 25138.7 136978.2 159772.6

Ratio of
running
times
(%)

− 103.5 − 112.7 − 105.7 − 117.9 − 129.7 − 116.6

We computed the root Hermite factor for the reduced bases, but we do not show them because the
success rates in these results are 100%
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Fig. 2.2 Average running times of Kannan’s embedding technique for cyclotomic and decomposi-
tion fields with respect to p = 2, 3, 5, 7, 11. The label “p = 2_cyclotomic” indicates the results of
the cyclotomic fields shown in Table2.2, and the other labels indicate the results for decomposition
fields with respect to the corresponding prime numbers p. We set modulus parameter q = pr

′
so

that these moduli have the almost same bit sizes. We only show the average results on at least 10
samples

result of our analysis, we believe that Ring-LWE over decomposition fields can be
used to construct more efficient HE schemes.

We also conducted experiments for decomposition fields with respect to p =
3, 5, 7, 11 to find decomposition fields that provide weak Ring-LWE instances
(Fig. 2.2). In these experiments, we could not find decomposition fields that pro-
vide weak Ring-LWE.
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