Skip to main content

Nonvolatile Ferroelectric Memory Transistors Using PVDF, P(VDF-TrFE) and Blended PVDF/P(VDF-TrFE) Thin Films

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

In this work, metal–ferroelectric–semiconductor field-effect transistors (MFSFETs) have been fabricated for the first time using poly(vinylidene fluoride) (PVDF) and polyvinylidene fluoride trifluoroethylene [P(VDF-TrFE)] thin films as ferroelectric layer. PVDF and P(VDF-TrFE) thin films were fabricated by sol–gel method on Si(100) wafers. The drain current–gate voltage (IDVG) characteristics of the fabricated MFSFETs with PVDF and P(VDF-TrFE) thin films exhibited very good ferroelectric hysteretic curves with counterclockwise loop same to those of other ferroelectric materials. It also demonstrates a realizable possibility of one-transistor type (1T-type) ferroelectric memory without a buffer layer using thin organic material. The absence of a buffer layer presents many advantages such as the elimination of the depolarization field, leakage current influence of the thin buffer layer, reduction of the process steps, low-operational voltage, and low-power consumption. The MFSFETs using PVDF and P(VDF-TrFE) thin films as ferroelectric layer have promising potential for use in low-voltage operable and flexible 1T-type ferroelectric random access memory (FeRAM) using organic material. On the other hand, it also has been attempted to make ferroelectric field-effect transistors (FeFETs) with blended PVDF/P(VDF-TrFE) films in order to compare the P(VDF-TrFE) films. The ferroelectric films for metal–ferroelectric-metal (MFM) capacitors have been fabricated using the blended PVDF/P(VDF-TrFE) solutions with different concentrations by sol–gel method. Ferroelectric field-effect transistors using poly(3-hexylthiopene) (P3HT) channel layer have also been fabricated on TiN substrates in order to compare the device characteristics of the pure P(VDF-TrFE) and blended PVDF/P(VDF-TrFE) thin films in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.F. Scott, C.A. Araujo, Science 246, 1400–1405 (1989)

    Google Scholar 

  2. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22–27 (1998)

    Google Scholar 

  3. Y. Arimoto, H. Ishiwara, MRS Bull. 29, 823–828 (2004)

    Google Scholar 

  4. I.M. Ross, US Patent No. 2,791,760 (1957)

    Google Scholar 

  5. B.E. Park, H. Ishiwara, Appl. Phys. Lett. 79, 806–808 (2001)

    Google Scholar 

  6. B.E. Park, K. Takahashi, H. Ishiwara, Appl. Phys. Lett. 85, 4448–4450 (2004)

    Google Scholar 

  7. K.H. Kim, J.P. Han, S.W. Jung, T.P. Ma, IEEE Electron Device Lett. 23, 82–84 (2002)

    Google Scholar 

  8. K. Takahashi, K. Aizawa, B.E. Park, H. Ishiwara, Jpn. J. Appl. Phys. 44, 6218–6220 (2005)

    Google Scholar 

  9. S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25, 369–371 (2004)

    Google Scholar 

  10. M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)

    Google Scholar 

  11. S.Y. Wu, IEEE Trans. Electron Devices 21, 499–504 (1974)

    Google Scholar 

  12. J.H. Kim, D.W. Kim, H.S. Jeon, B.E. Park, Jpn. J. Appl. Phys. 46, 6976–6978 (2007)

    Google Scholar 

  13. J.H. Kim, J.N. Kim, B.E. Park, J. Korean Phys. Soc. 51, 723–726 (2007)

    Google Scholar 

  14. T. Furukawa, Phase Transition 18, 143–211 (1989)

    Google Scholar 

  15. D.W. Kim, G.G. Lee, B.E. Park, J. Korean Phys. Soc. 51, 719 (2007)

    Google Scholar 

  16. R.C.G. Naber, J. Massolt, M. Spijkman, K. Asadi, P.W.M. Blom, Appl. Phys. Lett. 90, 113509 (2007)

    Google Scholar 

  17. S. Fujisaki, Y. Fujisaki, H. Ishiwara: Appl. Phys. Lett. 90, 162902 (2007)

    Google Scholar 

  18. S.J. Kang, Y.J. Park, J.W. Sung, P.S. Jo, C.M. Park, K.J. Kim, B.O. Cho, Appl. Phys. Lett. 92, 012921 (2008)

    Google Scholar 

  19. N. Meng, X. Zhu, R. Mao, M.J. Reece, E. Bilotti, J. Mater. Chem. C 5, 3296–3305 (2017)

    Google Scholar 

  20. B. Ploss: Polymer, 41, 6087–6093 (2000)

    Google Scholar 

  21. Y. Cho, et al., Adv. Electron. Mater. 2, 201600225 (2016)

    Google Scholar 

  22. T. Furukawa, Phase Trans. 18, 143–211 (1989)

    Google Scholar 

  23. Q.M. Zhang, V. Bharti, X. Zhao, Science 280, 2101–2104 (1998)

    Google Scholar 

  24. G.H. Gelinck et al., Nat. Mater. 3, 106–110 (2004)

    Google Scholar 

  25. A. Rose, Z. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Nature 434, 876–879 (2005)

    Google Scholar 

  26. J. Veres et al., Adv. Funct. Mater. 13, 199–204 (2003)

    Google Scholar 

  27. B.E. Park, Korea Patent No. KR 10–0966301 (2010)

    Google Scholar 

  28. B.E. Park, Japan Patent No. JP 5,241,489 B2 (2013)

    Google Scholar 

  29. B.E. Park, US Patent No. US 8,120,082 B2 (2012)

    Google Scholar 

  30. M.W.J. Prins, S.E. Zinnemers, J.F. Cillessen, J.B. Giesbers, Appl. Phys. Lett. 70, 458 (1997)

    Google Scholar 

Download references

This work was supported by the 2020 Research Fund of the University of Seoul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Eun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, DH., Park, BE. (2020). Nonvolatile Ferroelectric Memory Transistors Using PVDF, P(VDF-TrFE) and Blended PVDF/P(VDF-TrFE) Thin Films. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_9

Download citation

Publish with us

Policies and ethics