Skip to main content

Nonvolatile Field-Effect Transistors Using Ferroelectric-Doped HfO2 Films

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

The discovery of ferroelectricity in hafnium oxide (HfO2) thin films renewed the interest in ferroelectric nonvolatile memories. In particular, not only ferroelectric capacitors but also ferroelectric field-effect transistor based on this material have now become appealing concepts. This is mainly due to robust ferroelectric properties even upon aggressive scaling and to the compatibility with common fabrication processes used in the semiconductor industry. In this chapter, we review the key achievements of HfO2-based FeFETs since their first report in 2012. First, material properties of HfO2 for memory applications are briefly summarized, discussing the impact of doping as well as the electrical switching and reliability characteristics. Then, FeFETs having a 10-nm-thick silicon-doped HfO2 layer in the gate stack are illustrated, and their main figures of merit are discussed, including memory window, write and read operations, endurance and retention aspects as well as parasitic charge trapping. Finally, the integration in advanced technology nodes and the performance of large active memory arrays is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Mitsui, Ferroelectrics and antiferroelectrics, in Springer Handbook of Condensed Matter and Materials Data, ed. by W. Martienssen, H. Warlimont (Springer, Heidelberg, 2005), pp. 903–938

    Google Scholar 

  2. T. Mikolajick, Ferroelectric nonvolatile memories, in Encyclopedia of Materials Science and Technology, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan (Elsevier, Oxford, 2002), pp. 1–5

    Google Scholar 

  3. D.A. Buck, Ferroelectrics for digital information storage and switching, master thesis. MIT Digital Computer Laboratory (1952)

    Google Scholar 

  4. J. Merz, J.R. Anderson, Ferroelectric storage devices. Bell Lab. Rec. 33, 335–342 (1955)

    Google Scholar 

  5. J.R. Anderson, Feroelectric materials as storage elements for digital computers and switching systems. Trans. Amer. Inst. Elect. Engrs. 71, Part I: Commun. Electr. 395–401 (1953)

    Google Scholar 

  6. B. Dennard, US Patent (1968)

    Google Scholar 

  7. D. Bondurant, Ferroelectronic RAM memory family for critical data storage. Ferroelectrics 112, 273–282 (1990)

    Google Scholar 

  8. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1994).

    Google Scholar 

  9. T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M.J. Kastner, N. Nagel, M. Moert, C. Mazure, FeRAM technology for high density applications. Microelectron. Reliab. 41, 947–950 (2001)

    Google Scholar 

  10. C.-U. Pinnow, T. Mikolajick, Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13–K19 (2004).

    Google Scholar 

  11. M. Röhner, T. Mikolajick, R. Hagenbeck, N. Nagel, Integration of FeRAM devices into a standard CMOS process—impact of ferroelectric anneals on CMOS characteristics. Integr. Ferroelectr. 47, 61–70 (2002)

    Google Scholar 

  12. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, Polarization fatigue in ferroelectric films: basic experimental findings, phenomenological scenarios, and microscopic features. J. Appl. Phys. 90, 1387–1402 (2001)

    Google Scholar 

  13. K. Maruyama, M. Kondo, S.K. Singh, H. Ishiwara, New ferroelectric material for embedded FRAM LSIs. Fujitsu Sci. Tech. J. 43, 502–507 (2007)

    Google Scholar 

  14. J.-M. Koo, B.-S. Seo, S. Kim, S. Shin, J.-H. Lee, H. Baik, J.-H. Lee, J.H. Lee, B.-J. Bae, J.-E. Lim, D.-C. Yoo, S.-O. Park, H.-S. Kim, H. Han, S. Baik, J.-Y. Choi, Y. J. Park, Y. Park, Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application. IEDM Techn. Digest. 340–343 (2005)

    Google Scholar 

  15. H.P. McAdams, R. Acklin, T. Blake, X.-H. Du, J. Eliason, J. Fong, W.F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, N. Qian, Y. Qiu, K.A. Remack, J. Rodriguez, J. Roscher, A. Seshadri, S.R. Summerfelt, A 64-Mb embedded FRAM utilizing a 130 nm 5LM Cu/FSG logic process, IEEE J. Solid-St. Circ. 39, 667–677 (2004)

    Google Scholar 

  16. I.M. Ross, Semiconductive translating device, U.S. patent 2791760 A (1957)

    Google Scholar 

  17. J.L. Moll, Y. Tarui, IEEE Trans. Electron Devices 10, 338 (1963)

    Google Scholar 

  18. T.P. Ma, J.-P. Han, Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 23, 386–388 (2002)

    Google Scholar 

  19. S. Sakai, R. Ilangovan, Metal–ferroelectric–insulator–semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004)

    Google Scholar 

  20. T.S. Boescke, J. Mueller, D. Braeuhaus, U. Schroeder, U. Boettger, Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011)

    Google Scholar 

  21. X. Sang, E.D. Grimley, T. Schenk, U. Schroeder, J. M. LeBeau, Appl. Phys. Lett. 106, 162905 (2015)

    Google Scholar 

  22. International technology roadmap for semiconductors, emerging research devices (2013/14) http://www.itrs.net

  23. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, IEEE Spectr. 44, 29 (2007)

    Google Scholar 

  24. M. Trentzsch et al., A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs. IEEE Int. Electron Devices Meeting (IEDM), 11.5.1–11.5.4 (2016)

    Google Scholar 

  25. S. Dünkel et al., A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. IEEE Int. Electron Devices Meeting (IEDM), 19.7.1–19.7.4 (2017)

    Google Scholar 

  26. F.M. Spiridonov, L.N. Komissarova, A.G. Kocharov, V.I. Spitsyn, Russ. J. Inorg. Chem. 14, 1332 (1969)

    Google Scholar 

  27. C. Richter, T. Schenk, M.H. Park, F. Tscharntke, E.D. Grimley, J.M. LeBeau, C. Zhou, C.M. Fancher, J.L. Jones, T. Mikolajick, U. Schroeder, Adv. Electron. Mater. 3, 1700131 (2017)

    Google Scholar 

  28. M. Hoffmann, U. Schroeder, T. Schenk, T. Shimizu, H. Funakubo, O. Sakata, D. Pohl, M. Drescher, C. Adelmann, R. Materlik, A. Kersch, T. Mikolajick, J. Appl. Phys. (2015) accepted

    Google Scholar 

  29. D. Martin, J. Müller, T. Schenk, T. M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Müller, D. Pohl, U. Schroeder, S. V. Kalinin, T. Mikolajick; Adv. Mat. 26(48), 8198–8202 (2014)

    Google Scholar 

  30. I. Stolichnov, M. Cavalieri, E. Colla, T. Schenk, T. Mittmann, T. Mikolajick, U. Schroeder, A.M. Ionescu, ACS Appl. Mater. Interfaces 2018.

    Google Scholar 

  31. M.H. Park, T. Schenk, U. Schroeder, Dopants in atomic layer deposited HfO2 thin films, Chapter 3.1, in Ferroelectricity in Doped Hafnium Oxide: Materials Properties and Devices (Elsevier, Amsterdam, 2019)

    Google Scholar 

  32. F.P.G. Fengler, R. Nigon, P. Muralt, E.D. Grimley, X. Sang, V. Sessi, R. Hentschel, J.M. LeBeau, T. Mikolajick, U. Schroeder, Adv. Electron. Mater. 1700547 (2018)

    Google Scholar 

  33. M. Pešic´, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E.D. Grimley, X. Sang, J.M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Funct. Mater, 26, 4601–4612 (2016)

    Google Scholar 

  34. U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S.V. Kalinin, T. Mikolajick, Jpn. J. Appl. Phys. 53, 08LE02 (2014)

    Google Scholar 

  35. S. Clima, D. Wouters, C. Adelmann, T. Schenk, U. Schroeder, M. Jurczak, M. Pourtois, Appl. Phys. Lett. 104, 092906 (2014)

    Google Scholar 

  36. P. Polakowski, J. Müller, Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106, 232905 (2015). https://doi.org/10.1063/1.4922272

  37. T. Mittmann et al., Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering. Adv. Mater. Interfaces (accepted).

    Google Scholar 

  38. J.F. Scott, Ferroelectric Memories (Springer, Berlin, 2000)

    Google Scholar 

  39. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, T. Mikolajick, ECS J. Solid State Sci. Technol. 2(4) N69–N72 (2013)

    Google Scholar 

  40. S. Müller, S.R. Summerfelt, J. Müller, U. Schroeder, T. Mikolajick, Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. IEEE Electron Device Lett. 33, 1300–1302 (2012)

    Google Scholar 

  41. A.G. Chernikova, D.S. Kuzmichev, D.V. Negrov, M.G. Kozodaev, S.N. Polyakov, A.M. Markeev, Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks. Appl. Phys. Lett. 108, 242905 (2016)

    Google Scholar 

  42. T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, U. Schroeder, Adv. Funct. Mat. submitted.

    Google Scholar 

  43. M. Pesic, S. Slesazeck, T. Schenk, U. Schroeder, T. Mikolajick, E-MRS conference. Lille (2015).

    Google Scholar 

  44. J. Knoch, S. Mantl, S. Feste; Chapter on HKMG/FeFET devices, in Nanoelectronics and Information Technology, ed. by R. Waser, 3rd edn. (Wiley VCH, 2012).

    Google Scholar 

  45. H.-T. Lue, C.-J. Wu, T.-H.. Teng, IEEE Trans. Electron Devices 49, 10 (2002)

    Google Scholar 

  46. L. Van Hai, T. Mitsue, S. Shigeki, Downsizing of ferroelectric-gate field-effect-transistors for ferroelectric-NAND flash memory cells, in Proceedings of the IMW (2011), pp. 1–4

    Google Scholar 

  47. J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlösser, R. Boschke, R. van Bentum, U. Schröder, T. Mikolajick, Ferroelectric Hafnium Oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. IEDM Digest Technical Papers 10.8.1–10.8.4 (2013)

    Google Scholar 

  48. E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müller, S. Slesazeck, U. Schroeder, R. Boschke, R.V. Bentum, T. Mikolajick, IEEE Trans. Electron Devices 61, 11 (2014)

    Google Scholar 

  49. J. Müller, J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroeder and T. Mikolajick, Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, in Proceeding of IEEE Symposia on VLSI Technology, (2012), pp. 25–26

    Google Scholar 

  50. E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Müller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlösser, R. Boschke, R.V. Bentum, M. Trentzsch, in Proceedings of the IRPS (2014)

    Google Scholar 

  51. J. Muller et al., High endurance strategies for hafnium oxide based ferroelectric field effect transistor, in Non-Volatile Memory Technology Symposium (NVMTS) (2016), pp. 1–7

    Google Scholar 

  52. H. Mulaosmanovic, E.T. Breyer, T. Mikolajick, S. Slesazeck, Ferroelectric FETs with 20-nm-thick HfO2 layer for large memory window and high performance. IEEE Trans. Electron Device 66, 3828–3833 (2019)

    Google Scholar 

  53. A. Sally, Reflections on the memory wall, in Proceedings of Conference Comput. Front. (2004), p. 162

    Google Scholar 

  54. E.T. Breyer, H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology. IEEE Int. Electron Devices Meeting (IEDM), 28.5.1–28.5.4 (2017)

    Google Scholar 

  55. H. Mulaosmanovic et al., Novel ferroelectric FET based synapse for neuromorphic systems, in Symposium on VLSI Technology, pp. T176–T177 (2017)

    Google Scholar 

  56. H. Mulaosmanovic, E. Chicca, M. Bertele, T. Mikolajick, S. Slesazeck, Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale, 10, 21755–21763 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors like to thank the FeFET team at Qimonda, Fraunhofer IPMS-CNT, GlobalFoundries, RWTH Aachen, Munich University of Applied Science, and NaMLab for their contribution to the results. This work was supported in part by the EFRE fund of the European Commission and in part by the Free State of Saxony, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schroeder, U., Slesazeck, S., Mulaosmanovic, H., Mikolajick, T. (2020). Nonvolatile Field-Effect Transistors Using Ferroelectric-Doped HfO2 Films. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_4

Download citation

Publish with us

Policies and ethics