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Abstract
Pulmonary hypertension (PH) is a devastating disease that results in a progres-
sive increase in pulmonary vascular resistance, right ventricular failure, and ulti-
mately death of patients. Recent advances in our understanding of pathogenesis 
of diseases, including PH, have led to the study of extracellular vesicles (EV) as 
mediators of disease. Subsets of EV are microvesicles (MV), exosomes (Exo), 
and apoptotic bodies, and they are released from a variety of cell types and carry 
cargo such as proteins and microRNAs (miR). MicroRNAs contained within 
these EV play an important role in disease including in the pathogenesis of PH 
as well as other lung diseases.
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7.1	 �Extracellular Vesicles (EV)

Extracellular vesicles (EV) are nano-sized, membrane-bound vesicles released from 
cells that can mediate intercellular communication [1]. Different EV types, includ-
ing exosomes (Exo), microvesicles (MV), and apoptotic bodies, have been 
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characterized on the basis of their biogenesis or release pathways: Exosomes (Exo) 
are 50–100 nm membrane vesicles of endocytic origin. They are released into the 
extracellular space by fusion with the plasma membrane. Exosomes contain 
endosome-specific proteins such as Alix and TSG101, components of microdo-
mains in the plasma membrane such as cholesterol, ceramide, integrins, and tet-
raspanins, mRNAs, microRNA (miRNAs), and other non-coding RNAs. ExoCarta, 
an exosome database, provides a comprehensive list of exosomes identified (http://
exocarta.org/) [2, 3]. Microvesicles (MV), also referred to as microparticles (MP), 
especially in the cardiovascular field, are sized 20–1000  nm. They are formed 
through the outward budding and separation of the plasma membrane. During their 
formation, microvesicles retain surface molecules from parent cells and part of their 
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Fig. 7.1  Endothelial (EC) and smooth muscle (SMC) cells release extracellular vesicles (EV) and 
interact through transfer of EV. Increased circulating levels of endothelium-derived microvesicles 
(MV) have been documented in PH patients (a). Visovatti et  al. demonstrated increased CD39 
expression and function in circulating MV of idiopathic PAH patients, which may be associated 
with the increased ATPase/ADPase activity in MV (b). Tual-Chalot et al. showed that circulating 
MV from hypoxic rats can suppress endothelial-dependent vascular relaxation in rat aorta and 
pulmonary arteries by decreasing NO production (c). More recently, Aliotta et al. reported that 
healthy mice injected with circulating or lung EV isolated from MCT-treated mice show elevated 
right ventricular-to-body weight ratio and pulmonary arterial wall thickness-to-diameter ratio 
compared to that of mice injected with control EV (d). Deng et al. showed a high abundance of 
miR-143-3p in PASMC-derived exosomes and a paracrine pro-migratory and pro-angiogenic 
effect of these miR-143-3p-enriched PASMC-derived exosomes on PAEC (e). However, the cross 
talk between EC and SMC through EV transfer, especially from EC to SMC, and underlying 
molecular mechanisms remain unclear (f)
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cytosolic content (proteins, RNAs, microRNAs) [3, 4]. Apoptotic bodies are the 
largest vesicles of the EV with a size of 1–5 μm. They are formed through outward 
blebbing of the cell membrane during the late steps of apoptosis. Apoptotic bodies 
contain cellular organelles, proteins, DNAs, RNAs, and microRNAs [2, 3, 5].

7.2	 �EV in Pulmonary Hypertension (PH)

Pulmonary hypertension (PH) is a devastating disease that results in a progressive 
increase in pulmonary vascular resistance, right ventricular failure, and ultimately 
death of patients [6, 7]. Recent studies have shown that abnormal EV secretion is 
associated with the pathogenesis of PH, and increased circulating levels of 
endothelium-derived MV have been documented in various cardiovascular diseases 
including PH [4, 8]. In PH patients the levels of circulating endothelial CD31+ 
(PECAM+)/CD41-, CD144+(VE-cadherin+), and CD62e+ (E-selectin+) positive 
microvesicles are increased compared with control subjects. Moreover, PAH 
patients exhibit higher values of endothelial PECAM+ and VE-cadherin+-positive 
MV versus those with chronic pulmonary disease-related PH [8]. Higher levels of 
endothelium-derived MV bearing E-selectin are also noted in thromboembolic PH 
as compared with non-thromboembolic PH subjects [9], suggesting that the etiol-
ogy of the disease may influence MV levels [10].

MV are not only a biomarker of PH but rather actively contribute to develop-
ment of PH [11, 12]. Visovatti and colleagues demonstrated increased CD39 
expression and function in circulating MV of idiopathic PAH patients, which may 
be associated with the increased ATPase/ADPase activity in MV [13]. The 
endothelium-dependent relaxation of rat pulmonary arteries is suppressed after 
incubation with MV obtained from rats exposed to chronic hypoxia as compared to 
control arteries exposed to normoxia, accompanied by attenuated eNOS activity 
and increased ROS production [11]. In another study, Lee and colleagues demon-
strated that mesenchymal stromal cell-derived exosomes exert a pleiotropic protec-
tive effect on the lung and inhibit vascular remodeling and hypoxic PH with 
suppression of STAT3/miR-17 levels and induction of miR-204 levels in the lung 
[14]. Moreover, a recent study reported that healthy mice injected with EV isolated 
from MCT-treated mice show elevated right ventricular-to-body weight ratio and 
pulmonary arterial wall thickness-to-diameter ratio compared to that of mice 
injected with control EV, providing direct in vivo evidence that EV contribute to 
pulmonary vascular remodeling and PH [12].

7.3	 �MicroRNA Transfer Through EV in PH

MicroRNAs (miRNAs, miRs) are small single-stranded non-coding RNAs that medi-
ate post-transcriptional degradation or translation repression of target messenger 
RNAs (mRNAs) [15, 16]. Many miRNAs have been identified to play important 
roles in disease development, including PH [17–19]. In addition to the primary 
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intracellular locations, miRNAs can be exported extracellularly into the circulation 
system [20–23] through the transfer of EV.  A recent study by Aliotta et  al. has 
reported dysregulated miRNA profiling in the circulating exosomes of monocrota-
line (MCT)-induced PH in mice, as well in patients with idiopathic pulmonary 
artery hypertension (IPAH) [24], suggesting that exosome (and maybe also other 
EV)-mediated miRNA signaling may play a role in the pathogenesis of PH. This 
hypothesis is supported by their finding that healthy mice injected with EV isolated 
from MCT-treated mice show induced right ventricular hypertrophy and pulmonary 
vessel wall thickening [12].

In the pulmonary vasculature, endothelial and smooth muscle cells (EC and 
SMC) are the two key cell types that play a major role in the pathobiology of PH 
[25]. The miRNA cross talk between EC and SMC via EV in pulmonary vasculature 
is exemplified by a recent study by Deng et al. [26]. This study demonstrates that 
migration and angiogenesis of pulmonary arterial endothelial cells (PAEC) are 
induced not only by exosome-derived miR-143 but also by co-culture of PAEC with 
pulmonary arterial SMC (PASMC) under conditions where direct cell-cell contact 
is prevented. The miR-143-enriched exosomes derived from PASMC are internal-
ized by PAEC which lead to increased EC migration and angiogenesis. This study 
also shows that miR-143 is upregulated in the pulmonary vasculature of murine 
models of PH and in patients with PH. Genetic deletion of miR-143 or pharmaco-
logical inhibition of miR-143  in mice prevented the development of hypoxia-
induced pulmonary hypertension. Hence, cross talk between EC and SMC via 
miR-143-enriched exosomes may be involved in the pathogenesis of PH under 
in vivo conditions.

Our knowledge about the cross talk between EC and SMC through EV transfer, 
especially the information transfer from EC to SMC, is still very limited and further 
studies are warranted.

7.4	 �Future Direction and Clinical Implications

The release of extracellular vesicles (EV) is a phenomenon shared by most cell types, 
including EC and SMC [1]. EV released into the extracellular space can enter body 
fluids and/or potentially reach neighboring and/or distal cells. The cargo of EV 
includes the proteins, lipids, nucleic acids, and membrane receptors of the cells from 
which they originate. Hence, EV can function as the “mail carrier” and transfer infor-
mation (microRNAs, proteins, etc.) to their target cells, thus representing an impor-
tant mechanism for intercellular communications [3, 4, 27–32]. The EV-mediated 
intercellular communications are evolutionarily conserved [33]. Therefore, EV are 
rich sources of biomarkers for diagnosis and/or prognosis of human diseases [34–41] 
and provide us potential therapeutic approaches [42, 43].
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