
Chapter 6
Artificial Intelligence for Dynamic
Spectrum Management

Abstract In the past decade, a significant advancement has been made in artifi-
cial intelligence (AI) research from both theoretical and application perspectives.
Researchers have also applied AI techniques, particularly machine learning (ML)
algorithms, to DSM, the results of which have shown superior performance as com-
pared to traditional ones. In this chapter, we first provide a brief review on ML
techniques. Then we introduce recent applications of ML algorithms to enablers of
DSM, which include spectrum sensing, signal classification and dynamic spectrum
access.

6.1 Introduction

Artificial intelligence (AI), also known as machine intelligence, has been seen as
the key power to drive the development of future information industry [1]. The term
AI was coined by John McCarthy in a workshop at Dartmouth College in 1956,
and he defined AI as “the science and engineering of making machines, especially
intelligent computers” [2]. Generally, AI is defined as the study of the intelligent
agent, which is able to judge and execute actions by observing the surrounding
environment so as to complete certain tasks. The intelligent agent can be a system or a
computer program.With the significant advancement in the computational capability
of computer hardware, various theories, especially machine learning techniques, and
applications of AI have been developed in the past two decades.

With the surging demand for wireless services and the increasing connections of
wireless devices, the network environments are becoming more and more complex
and dynamic, which imposes stringent requirements on DSM. In the age of 5G, AI
has been seen as an effective tool to support DSM in order to tackle the transmission
challenges, such as high rate,massive connections and low latency [3, 4]. By adopting
ML techniques, the traditional model-based DSM schemes would be transformed to
the data-driven DSM schemes, in which the controller in the network can adjust
itself adaptively and intelligently to improve the efficiency and robustness of DSM.
AI-based DSM schemes have thus attracted more and more attention in recent years,
and have shown great potentials in practical scenarios.
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The applications ofAI techniqueswould bring significant benefits toDSM.Firstly,
the AI-based DSM schemes normally do not need environmental information as
the prior knowledge, and they can extract useful features from the surroundings
automatically. Secondly, AI-based DSM schemes can be re-trained periodically and
thus they are more robust to the changing environment. Additionally, by applying AI
techniques, DSM can be done in a decentralized and distributed manner, leading to a
significant reduction of signal overheads, especially for large-scale systems. Finally,
once trained, AI-based DSM schemes are low in complexity for processing newly
arrived data and thus they are more suitable for practical implementation.

While it is believed that machine learning techniques are effective methods for
developing and optimizing the next generation networks [5], there also exist some
challenges in applying AI techniques in DSM. For example, different from images,
the received signal and its higher order statistics in wireless networks are normally
complex numbers, which are hard to process directly by neural networks. Addi-
tionally, in a typical wireless communication system, accurate network data such as
channel information, is hard to obtain in practice. Hence, there are many remaining
challenges and problems to be addressed for achieving wireless intelligence. In this
chapter, we first provide a brief review of machine learning techniques, then intro-
duce some applications of these algorithms to DSM, including spectrum sensing,
signal classification and dynamic spectrum access.

6.2 Overview of Machine Learning Techniques

As the core technique of AI, machine learning (ML) is a multidisciplinary subject
involving multiple disciplines such as probability theory, statistics, information the-
ory, computational theory, optimization theory, and computer science. T. Mitchell
provided a brief definition ofmachine learning in 1997 as follows: “machine learning
is the study of computer algorithms that improve automatically through experience”
[6]. Hence, themain objective ofML is tomake agents simulate or implement human
learning behaviors. For example, with the help of ML algorithms, a machine agent is
able to learn from training data to achieve different tasks such as image recognition.

Based on the type of training data used, ML can be divided into two branches,
namely, supervised learning and unsupervised learning. The former requires labeled
training data, while the latter only uses unlabeled training data.

In supervised learning, the objective for an agent is to learn a parameterized
function from the given labeled training dataset and then based on the function learnt
to predict the result directly while new data arrives. The common tasks in supervised
learning are regression and classification. Specifically, regression is to determine the
quantitative relationship between certain variables based on a set of training data,
and classification is to find a function to determine the category to which the input
data belongs.

In unsupervised learning, since the training data is unlabeled, the agent needs
to adopt clustering methods to obtain the relationship. A clustering method aims to
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divide the training data into several classes based on the similarity of the data. The
objective of clustering is to minimize intra-class distance while maximizing inter-
class distance. Compared to supervised learning, unsupervised learning is more like
self-study.

Labeled data can also be generated through online learning such as reinforcement
learning (RL). In particular, RL produces labeled experiences to train itself from
continuous interactions with the environment, it is developed to solve a Markov
decision process (MDP) M = {S,A,P,R}, where S is the state space, A is the
action space, P is the transition probability space and R is the reward function [7].

ML techniques can also be grouped into two categories, namely, statistical
machine learning (SML) and deep learning (DL). Using statistics and optimization
theory, SML constructs proper probabilistic and statistical models with training data.
DL, on the other hand, makes use of artificial neural network (ANN), also known as
deep neural network (DNN), to perform supervised learning tasks. In recent years,
neural network techniques have also been applied to RL, leading to the birth of deep
reinforcement learning (DRL). In the following, we will provide a brief introduction
to SML, DL and DRL.

6.2.1 Statistical Machine Learning

The objective of SML is to construct a probabilistic and statistical model using
the training data, then, based on the constructed model, to make inferences with
new data [8]. SML can be applied in both supervised learning and unsupervised
learning. The commonly used supervised learning methods with SML are support
vector machine (SVM) and K-nearest neighbor (KNN), and the commonly used
unsupervised learning methods with SML are K-means and Gaussian mixture model
(GMM).

1. K-NearestNeighbor:K-NearestNeighbor (KNN) algorithm is a basic supervised
learning algorithm for classification. Let T = {(x1, y1), (x2, y2), . . . , (xN , yN )}
denote a given training dataset, where xi is the i-th data set and yi is the corre-
sponding label. Assume that all data sets come from J classes. For a newly arrived
data set x, its label, i.e., class, is determined by its K nearest labeled neighbors
based on the adopted classification decision rules. Hence, the basic elements in
KNN are the number of neighbors K , the distance measure and the classification
decision rule.
Specifically, the classification process consists of two steps: the first step is to
search K labeled data sets which are closest to the newly arrived data set x
according to the given distance measure. Denote the region covering these K data
sets as NK (x). The second step is to determine its label y by using the chosen
classification decision rule based on NK (x). The commonly used classification
decision rule is the majority voting rule, which is given as
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y = arg max
c j , j=1,...,J

∑

xi∈NK (x)

I
(
yi = c j

)
(6.1)

where I (·) is the indicator function that indicates if a label belongs to class c j .
For example, I (yi = c j ) = 1 if yi = c j , and I (yi = c j ) = 0, otherwise.

2. Support Vector Machine: Support vector machine (SVM) algorithm is a typ-
ical binary classification algorithm. The basic idea of the SVM algorithm is to
find a decision hyperplane to maximize the margin between different classes.
Specifically, for a given training data set T = {(x1, y1), (x2, y2), . . . , (xN , yN )},
where yi ∈ {−1, 1}, the objective of the SVM algorithm is to find the hyperplane
denoted byw · x + b = 0 to make the data sets linearly separable, wherew and b
are the normal vector and the intercept of the plane, respectively. If the decision
hyperplane is obtained, the corresponding classification decision function is given
as

f (x) = sign(w · x + b) (6.2)

The hyperplane can be learnt by solving the following convex quadratic program-
ming problem

min
1

2
‖w‖2 + C

N∑

i=1

ξi (6.3)

s.t. yi (w · xi + b) ≥ 1 − ξi , i = 1, 2, . . . , N (6.4)

xi ≥ 0, i = 1, 2, . . . , N (6.5)

where C is a punishment parameter and ξi is the soft constant for i-th data set.
Generally, SVM is used to solve a linear classification problem, but it can also
be used as a nonlinear classifier by introducing different kernel functions such as
Gaussian kernel function and radial basis function.

3. K-means: K-means algorithm is a clustering algorithm, in which the unlabeled
data sets are processed iteratively to form K clusters. Specifically, at the beginning,
K data sets are chosen to form the initial centroids of the K clusters. Then, the K-
means algorithm alternates the following two steps. The first step is to assign each
of the remaining data sets to its nearest cluster. This is determined by evaluating
the Euclidian distance between the data set and the centroid of each cluster and
choosing the cluster with the smallest distance. The second step is to update the
centroid of each cluster, denoted as ck , based on the newly labeled data sets.
Mathematically, this can be expressed as

ck = 1

|Nk |
∑

x∈Nk

x, k = 1, 2, . . . , K (6.6)

where Nk denote the set of examples assigned to cluster k. These two steps will
repeat until a termination condition is met.
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Although K-means algorithm can be implemented with low complexity, its per-
formance is influenced significantly by the initialization parameters such as the
number of clusters and the cluster centroids.

4. Gaussian Mixture Model: Gaussian mixture model (GMM) is a widely used
model for unsupervised learning. The probability density function (PDF) of the
data sets can be expressed as

p (xi ) =
K∑

k=1

πk p
(
xi

∣∣μk,�k
)

(6.7)

where K is the number of Gaussian components, πk is the mixing coefficient that

satisfies
K∑

k=1
πk = 1, and p

(
xi

∣∣μk,�k
)
denotes the PDF of the kth Gaussian

component with mean μk and covariance �k , which can be expressed as

p
(
xi

∣∣μk,�k
) = 1

π |�k | exp
(
−(

xi − μk

)H
�−1

k

(
xi − μk

))
(6.8)

The unknown parameters of the GMM can be denoted as � = {
πk,μk,�k

}K
k=1.

The objective of the GMM algorithm is to find the optimal parameters � ={
πk,μk,�k

}K
k=1 to maximize the following log-likelihood function

L (�) =
N∑

i=1

ln

(
K∑

k=1

πk · p (
xi

∣∣μk,�k
)
)

(6.9)

Since there is no closed-form solution for the above problem, the expectation
maximization (EM) algorithm is usually adopted to solve for the optimal param-
eters � = {

πk,μk,�k
}K
k=1 in an iterative manner with properly chosen initial

values for them. The EM algorithm is generally composed of two steps in each
iteration, namely, the expectation step and the maximization step. Denote γik
as a latent variable which represents the probability that example xi belongs
to the k-th cluster. In the expectation step, the latent variable γik is updated

as: γik = πk p
(
xi

∣∣μk,�k

)

K∑
k=1

πk p
(
xi

∣∣μk,�k

) , for i = 1, . . . , N and k = 1, . . . , K . In the max-

imization step, the parameter � is updated as: πk = 1
N

N∑
i=1

γik , μk =
N∑
i=1

γikxi

N∑
i=1

γik

, and

�k =
N∑
i=1

γik(xi−μk)(xi−μk)
H

N∑
i=1

γik

, for k = 1, . . . , K .
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Fig. 6.1 The basic model of
a fully-connected ANN,
which is composed of input
layer, output layer and
hidden layers. The
commonly used activation
functions are sigmoid
function, Tanh function and
ReLu function

6.2.2 Deep Learning

Deep learning (DL) has significantly advanced the development of computer vision
(CV) and natural language processing (NLP) recently. As the core technique of DL,
ANN has been used to approximate the relationship between an input and an output.
Generally, a typical ANN is composed of three parts, namely, input layer, output
layer and hidden layers as shown in Fig. 6.1. In each layer, many cells with differ-
ent activation functions are placed, and the cells in adjacent layers are connected
with each other in a pre-designed manner. With the development of ANNs, there are
different network structures used for different types of data. For example, a convolu-
tional neural network (CNN), which consists of convolutional layers, pooling layers
and fully connected layers, is suitable for images; while a recurrent neural network
(RNN), which contains many recurrent cells in the hidden layers, is suitable for time
series data. Furthermore, in order to improve the generalization and convergence
performance of the DL, dropout and other techniques are introduced in the design
of neural networks [9].

1. Convolutional Neural Network: Convolutional neural network (CNN) is a spe-
cial network for processing images, in which the cells adopt convolution opera-
tions. A typical CNN is composed ofmultiple convolutional layers, pooling layers
and fully-connected layers [10].
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a. Convolutional Layer: Different from the fully-connected layers, a convo-
lutional layer contains a set of multiple feature maps, which are obtained by
using different convolution kernels to operate on the input image. In particular,
one feature map is calculated by one convolution kernel operating on the input
image, which means all the elements in the same feature map share the same
weight and bias with each other. Besides, the size of the convolution kernel
is smaller than that of the input, and the CNN has the unique characteristic
referred to as sparse interactions.

b. Pooling Layer: A pooling layer is usually placed after a convolutional layer
in a CNN to capture invariant features. Specifically, the pooling operation is to
replace the output of one position in the input image with a summary statistic
of the neighborhood. A commonly used pooling method is the max-pooling
function, which gives the maximum output of the rectangular region. In fact,
the pooling operation can be seen as an action to add a strong prior knowledge.

In order to utilize the extracted feature maps, fully-connected layers are normally
used as the last several layers of a CNN. With the help of the special structure,
CNNs can process data with clear mesh topology effectively.

2. Recurrent Neural Network: Recurrent neural network (RNN) is a powerful tool
for time series data, which have shown superior performance on speech recogni-
tion [11]. Different from traditional neural networks, there are many connected
cells in each layer in an RNN. All cells in the same layer have the same structure
and each of them passes its information to its successor. The output of an RNN
is determined by not only its current input but also the memory recorded in the
past time steps. However, conventional RNNs cannot learn long-term dependent
information and suffer from the gradient vanishing problem easily. Then long
short-term memory (LSTM) network, as a kind of gated RNN network, is pro-
posed to mitigate this problem. Specifically, in each cell of an LSTM network,
there are three gates, namely, the input gate, the forget gate and the output gate,
which are given as follows

it = σ(Wiht−1 + Ui xt + bi )

ft = σ(W f ht−1 + U f xt + b f )

ot = σ(Woht−1 + Uoxt + bo)

(6.10)

where it , ft , and ot are the input gate, the forget gate and the output gate, respec-
tively;Wi , Ui , bi ,W f , U f , b f , Wo, Uo, bo are the weight matrices and biases of
the corresponding gate, respectively; and σ(·) is the sigmoid function. Addition-
ally, each cell has a self-loop and its cell state is jointly controlled by the forget
gate and the input gate. Specifically, the forget gate determines what information
to remove and the input gate determines what information to add to the next cell
state. Mathematically, the cell state can be expressed as

ct = ft · ct−1 + it · tanh(Wcht−1 + Ucxt + bc) (6.11)
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Fig. 6.2 The standard DRL
framework, in which an
agent selects actions by
inputting its state to the
neural network and executes
the action to interact with the
environment continuously

where Wc, Uc and bc are the weight matrices and the bias of the cell memory,
respectively. The gated structure allows the LSTM network to learn the long-term
dependent information while avoiding vanishing gradients.

6.2.3 Deep Reinforcement Learning

As the combination of DL and RL, deep reinforcement learning (DRL) has shown
superior performance in sequential decision-making tasks. In the DRL framework,
as shown in Fig. 6.2, the agent inputs its observation (state) s (t) ∈ S into the neural
network and outputs an action a(t) ∈ A. Then it obtains a rewardR(s(t), a(t))which
is used to evaluate the profit of the selected action by executing it. After a period of
learning, the agent can learn the optimal strategy, which maps an state to an action, to
maximize its long-term accumulative reward from continuous interactions with the
environment. Similar to RL, the basic elements of DRL are also state space S, action
spaceA and the reward function R. Different from the traditional RL, which uses a
table to indicate the relationship between the state space and the action space, DRL
uses a neural network as the function approximator, and therefore it works more
effectively for problems with high dimensional state and action spaces. In DRL,
the commonly used methods are deep Q-network (DQN), double deep Q-network
(DDQN), asynchronous advantage actor-critic (A3C) and deep deterministic policy
gradient (DDPG).

1. Deep Q-network: Different from the tabular method in traditional RL, a neural
network called deep Q-network (DQN) is adopted to approximate the relation-
ship between state space and action space [12]. Since the DQN is optimized by
minimizing the temporal difference error, the loss function of DQN is given as

L (θ) = E

[(
yDQN − Q (s, a; θ)

)2]
(6.12)
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where E [·] indicates the expectation operation, Q(s, a; θ) is the Q-function with
the parameter θ , and the target value yDQN is given as

yDQN = R (s, a) + γ Q
(
s ′, a′; θ

)
(6.13)

To improve the performance of the basic DQN, two other techniques, i.e., experi-
ence replay and quasi-static target network, are introduced in the design of DQN
technique.

• Experience Replay: The agent needs to construct a fixed-length memory M,
which is based on the first-in-first-out (FIFO) rule. In each training step t , the
agent needs to store newly obtained experience into the memory M, and then
a mini-batch dt of experiences is sampled randomly from M for training.

• Quasi-static Target Network: The agent constructs two DQNs of the same
structure, i.e., the target DQN Q(s, a; θ ′) and the trained DQN Q(s, a; θ),
where θ ′ and θ are their respective parameters. In every K steps, the trained
network share its parameter with the target network.

Additionally, in order to balance the relationshipbetween exploration andexploita-
tion, the ε-greedy algorithm is usually adopted in a DRL. Specifically, an agent
selects the action corresponding to the maximum Q-value of the trained network
with a probability 1 − ε, and selects an action randomly otherwise. After the
algorithm converges, the agent just selects the action with the maximumQ-value,
and the target network is closed.

2. Double Deep Q-network: Since the target value is from the same DQN, the
Q-function may be overestimated and trapped in a local optimum, leading to
the performance degradation. To improve the performance of DQN, double deep
Q-network (DDQN) can be adopted to provide more accurate estimation of the Q-
function [13]. In the DDQN, the target value yDDQN can be expressed as follows

yDDQN = R (s, a) + γ Q

(
s ′, argmax

a′∈A
Q

(
s ′, a′; θ

) ; θ ′
)

(6.14)

After years of development, ML has become the most concerned discipline in the
information age and shown strong effectiveness in applications. As the main force
of AI technique, more and more ML algorithms are applied in various fields in order
to achieve industrial intelligence.

6.3 Machine Learning for Spectrum Sensing

Spectrum sensing is an important task to realize DSM in wireless communication
systems, and is usually used to assist users to find out the channel status. In order to
increase the accuracy of spectrum sensing, many spectrum sensing algorithms have
been developed in the past years, such as estimator-correlator (EC) detector, the semi-
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blind energy detector and the blindly combined energy detection (BCED). Although
the EC detector can achieve the optimal performance, it needs the knowledge of PU
signals and noise level. The semi-blind energy detector is more practical, and it only
requires the knowledge of the noise power. However, the performance of the semi-
blind energy detector depends heavily on the accurate knowledge of noise power,
which is usually uncertain. The BCED does not need any prior knowledge about the
PU signals or noise, but the performance is worse than the performance of the semi-
blind energy detector. It is noticed that most existing algorithms are model-driven,
and need the prior knowledge of noise or PU signals to achieve good performance.
However, this feature makes them unsuitable for practical environment, and the lack
of prior knowledge would result in performance degradation.

To solve the above issues, machine learning techniques have been adopted to
develop cooperative spectrum sensing (CSS) framework [14]. Specifically, the work
considers a CR network, in which multiple SUs share a frequency channel with
multiple PUs. The channel is considered to be unavailable for SUs to access if at
least one PU is active and it is available if there is no active PU. For cooperative
sensing, each SU estimates the energy level of the received signals and reports it to
another SU who acts as a fusion center. After the reports of the energy level from
all SUs are collected, the fusion center makes the final classification of the channel
availability.

Using the machine learning technique such as K-means algorithm, GMM cluster-
ing, SVM algorithm and KNN algorithm, the fusion center can construct a classifier
to detect the channel availability. With unsupervised machine learning such as K-
means and GMM clustering, the detection of the channel availability relies on the
cluster that the sensing reports from all the SUs are mapped to. On the other hand,
with supervised machine learning such as SVM algorithm and KNN algorithm, the
classifier is first trained using the labeled sensing reports from all SUs. After the clas-
sifier is trained, it can be directly used to derive the channel availability. Compared
with traditional CSS techniques, the proposedmachine learning framework can bring
the following two advantages: (1) it is robust to the changes in the radio environment;
(2) it can achieve a better performance in terms of classification accuracy.

6.4 Machine Learning for Signal Classification

Signal classification, usually performed before signal detection, is a fundamen-
tal task in cognitive radio networks. Consider the modulation classification as an
example. Traditionally, there are two kinds of modulation classification approaches,
namely, the likelihood-based (LB) approach and the feature-based (FB) approach.
The LB approach is based on computing the likelihood function of received sig-
nals under different modulation schemes hypotheses, and the modulation scheme
with the maximum likelihood value is validated. With perfect knowledge of channel
and noise parameters, the LB approach can achieve the optimal performance in a
Bayesian sense. However, the estimation of these parameters imposes high compu-
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tation complexity. In the FB approach, useful features such as higher-order statistics
are extracted for decision-making. In general, the FB approach has lower compu-
tational complexity but it can only achieve sub-optimal performance. Therefore, in
order to achieve near optimal performance with low computational complexity, ML
techniques have been introduced in solving the modulation classification problem,
and have shown superior performance recently.

6.4.1 Modulation-Constrained Clustering Approach

In [15], a clustering-based LB classifier is proposed for modulation classification in
multiple-input and multiple-output (MIMO) communication systems. In that work, a
spatial-multiplexed MIMO system with Nt transmit antennas and Nr receive anten-
nas is considered, in which data symbols are transmitted independently from each
transmit antenna. The signal model of the n-th received signal vector y (n) is given
as

y (n) = Hs (n) + u (n) , n = 1, . . . , N (6.15)

where H ∈ C
Nr×Nt is the channel matrix which remains constant within each block

of N symbols, and u (n) denotes the AWGN vector.
For LB classifiers, the classification decision is made by selecting the modulation

scheme with the maximum likelihood

M̂ = argmax
M∈M

LM (6.16)

whereLM is the likelihood function corresponding to the modulation scheme M and
M is the set of candidate modulation schemes.

Since the noise at the receiver is Gaussian, the PDF of the received signals fol-
lows the GMM given in (6.7) where K = QNt , the mean and the Covariance matrix
of the k-th Gaussian component are given as μk = Hs(n) and �k = σ 2I, respec-
tively. The likelihood function for each modulation scheme can be calculated by
estimating the parameters of the GMMmodel using the EM algorithm introduced in
Sect. 6.2.1. However, the direct application of the EM algorithm presents the follow-
ing challenges. Firstly, the modulation order Q of a modulation scheme determines
the number of Gaussian components as well as the number of parameters to be esti-
mated in the GMM model. Thus, the computational complexity for calculating the
likelihood function of a higher-order modulation scheme can be extremely high.
Secondly, the initialization of the set of parameters is an important part in the EM
algorithm, and it would influence the converged performance and the convergence
speed of the algorithm significantly. Hence, in order to improve the performance of
the EM algorithm for modulation classification, there is a need to propose an EM
algorithm with less parameters to be estimated and a good initialization method.
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To reduce the number of parameters, a centroid reconstructionmethod is proposed
in [15] by exploiting the relationship among the constellations. With the help of the
proposed centroid reconstruction method, the number of parameters to be estimated
is reduced from QNt to Nt only. This also reduces the number of signal samples
needed for the estimation. Specifically, for multiple-input and single-output (MISO)
channels, the cluster centroidsμ = [μ1, μ2, . . . , μK ] can be reconstructed as follows

μ = 	A (6.17)

where A = [a1, a2, . . . , aNt ]T is the reconstructive coefficient matrix, which is a
known constant matrix for each modulation scheme, and � = [r1, . . . , rNt ] is the
corresponding reconstructive parameter vector.

By introducing constellation-structure-based centroid reconstruction in the EM
algorithm, the iteration of

{
μk

}K
k=1 can be replaced by the iteration of r1, r2, . . . , rNt .

If we denote � = {
r1, r2, . . . , rNt , δ

2I
}
as the set of the unknown parameters, the

likelihood function is shown as

L (�) =
N∑

n=1

ln

(
K∑

k=1

1

K
p (y (n) |� )

)
(6.18)

Hence, the proposed EM algorithm for modulation classification is shown as below.

1. Initialization: A two-stage initialization is proposed. In the first stage, fuzzy
estimation is introduced to transform the parameters into a smaller range. In
the second stage, modulation constrained K-means (MC K-means) algorithm
is adopted, in which the constellation structure and the centroid reconstruction
method are utilized.

2. E-step: Calculate the latent variable

γnk = p
(
y (n) |� )

K∑
k=1

πk · p (
y (n) |� ) (6.19)

and then the reconstructive parameters

r1 =

N∑
n=1

K∑
k=1

γnka1,k
(
y (n) − a2,kr2 − · · · − aNt ,krNt

)

N∑
n=1

K∑
k=1

γnk
(
a1,k

)2
(6.20)
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rm =

N∑
n=1

K∑
k=1

γnkam,k
(
y (n) − a1,kr1 − · · · − aNt ,krNt

)

N∑
n=1

K∑
k=1

γnk
(
am,k

)2
(6.21)

where m = 2, . . . , Nt .
3. M-step: The cluster centroids μ and the noise variance σ are updated iteratively

as below
μk = a1,kr1 + a2,kr2 + · · · + aNt ,krNt , k = 1, . . . , K (6.22)

and

σ 2 =

N∑
n=1

K∑
k=1

γnk
(
y (n) − μk

) (
y (n) − μk

)H

N∑
n=1

K∑
k=1

γnk

(6.23)

where k = 1, . . . , K .
4. Classification Decision: Repeat Step 2 and Step 3 iteratively until the likelihood

function is converged. Then make the classification decision according to the
criterion defined in (6.16).

Simulation results in [15] show that the proposed algorithm performs well with
short observation length in terms of classification accuracy. Additionally, the perfor-
mance achieved by the proposed algorithm is close to that of the average likelihood
ratio-test upper bound (ALRT-UB), which can be seen as the performance upper
bound of any modulation classification algorithm.

6.4.2 Deep Learning Approach

The modulation classifier in Sect. 6.4.1 requires accurate knowledge of the channel
model. In addition, the channel model may not be available in practice. As a powerful
supervised learning framework, DL can also be applied in modulation classification.
In [16], a low-complexity blind data-driven modulation classifier based on DNN is
proposed, which operates under uncertain noise condition modeled by a mixture of
white Gaussian noise, white non-Gaussian noise and time-correlated non-Gaussian
noise.

In [16], a single-input and single-output (SISO) channel is considered, and the
n-th received signal sample is given as

r (n) = hs (n) + u (n) , n = 1, 2, . . . , N (6.24)
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where s (n) is the transmitted symbol from an unknown modulation scheme Mi , N
is the number of symbols in a block, h is the channel coefficient and u (n) denotes
the additive noise.

Denote the set of the candidate modulation schemes and the received signal
sequence by M = {Mi , i = 1, 2, . . . , L} and r = [r(1), r(2), ..., r(N)], respec-
tively. Let P(Mi |r) denote the a posterior probability of the modulation scheme
Mi given the received signal r. The objective of the work is to find the modulation
scheme which maximizes the a posterior probability. This is known as the maximum
a posterior (MAP) criterion.

M̂i = argmax
Mi∈M

P(Mi |r) (6.25)

In order to accurately make classification decisions with low complexity, the
DNN is adopted to learn the a posterior probability P(Mi |r), i = 1, . . . , L . The
DNN is used as an approximation function f mapping the received signal to the a
posterior probability. The in-phase and quadrature (IQ) components of the received
signal samples are chosen as the inputs to the proposed neural network. Motivated
by its superior performance for processing time-dependent data, the long short-
term memory (LSTM) network is introduced in the design of the proposed neural
network. There are three main reasons that the LSTM network is suitable for solving
a modulation classification problem.

1. The LSTM network is able to learn features effectively from highly time-
dependent data. This indicates the neural network with LSTM layer have advan-
tages in learning the a posterior probability from the signal samples which are
highly time-dependent over time-correlated non-Gaussian channels.

2. Different from the fully-connected network which can only receive a one-
dimensional as input, LSTMnetwork allows two-dimensional vectors as the input
in each time step. Hence, the network can process complex signal samples com-
posed of IQ components, and can learn better from the input data.

3. Compared to the conventional fully-connected network, there are fewer parame-
ters in the LSTM network because all time steps share the same weight matrices
and biases.

Additionally, in order to summarize the output form the LSTM network, a tempo-
ral attention mechanism is adopted in the final LSTM layer over the outputs from all
time steps. In the temporal attention mechanism, each output has a different weight,
which indicates the importance of each to the modulation classification results.

Specifically, the proposed seven layer-neural network is composed of three
stacked-LSTM layers and four fully-connected layers. In the training phase, the
one-hot coding vectors of true modulation schemes of the input signal samples are
used as the labels. The Adaptive Moment Estimation (Adam) optimizer is used to
minimize the loss function to optimize the weights and bias in the network. After the
training phase, the modulation classification is made by according to the MAP cri-
terion defined in (6.25). The simulation results show that the classification accuracy
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of the proposed classifier approaches that of the ML classifier with all the chan-
nel and noise parameters known. Moreover, under uncertain noise conditions, with
lower computational online complexity, the proposed classifier can achieve a better
performance than the EM and ECM classifiers.

6.5 Deep Reinforcement Learning for Dynamic Spectrum
Access

In traditional DSA mechanism, there exists a centralized control node responsible
for allocating the spectrum resources to users. Before making the access decisions,
the centralized node needs to collect the global network information, such as the
position information of users and base stations as well as the channel state infor-
mation. However, such global network information is difficult to obtain in practice,
as it imposes significant signal overheads on the system especially when there is a
large number of users. Additionally, the collected information may be outdated in a
highly dynamic network environment, resulting in invalid access strategy and poor
performance. To solve the above issues, intelligent DSA framework operating with
local network information is desirable. Recently, researchers introduced DRL tech-
niques for DSA, showing superior performance on sequential decision-making tasks,
to enable more flexible and intelligent DSA mechanism [17]. Since agents in DRL
can make full use of the representation ability of neural networks, the decision space
can be high-dimensional and continuous, which can guarantee the performance of
the DSA mechanisms for large-scale networks.

In the following sections, we will introduce several typical applications on the
use of DRL techniques for DSA.

6.5.1 Deep Multi-user Reinforcement Learning for
Distributed Dynamic Spectrum Access

In [18], a DRL-based DSA framework is proposed to manage dynamic spectrum
access in multichannel wireless networks, in which each user acts as an agent to
make channel access decisions intelligently and independently to maximize its long-
term transmission rate.

In this work, a wireless network composed of N users and K shared orthogonal
channels is considered. Denote the set of users and the set of channels as N =
{1, 2, . . . , N } andK = {1, 2, . . . , K }, respectively. It is assumed that each user needs
to choose a single channel for transmission in each time slot, and it always has packets
to transmit. Additionally, the transmission is successful if there is only one user
accessing the channel, and the transmission fails otherwise. After each transmission,
each user can receive a binary observation on(t) to indicate whether its transmission
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is successful or not, i.e., on(t) = 1 if the transmission is successful and on(t) = 0
otherwise.

With the assumption that users don’t have message exchange in each time slot,
they can only make access decisions by their local observations. In order solve the
above problem, a DRL-based distributed framework for DSA is proposed, in which
each user acts as an agent and constructs a DQN. The action space, state space and
reward function are described as follows.

1. Action Space: In each time slot, each user needs to choose whether to transmit or
not. If the user chooses to transmit, it needs to select a channel for transmission.
The action of user n in time slot t is given as

an(t) ∈ {0, 1, . . . , K } (6.26)

where an(t) = 0 indicates that user n chooses not to transmit in time slot t .
2. State Space: The state of each user is composed of its action and observation

up to time slot t , which is given as

Hn(t) = ({an (i)}t−1
i=1 , {on (i)}t−1

i=1

)
(6.27)

3. Reward Function: Since the objective is to maximize the long-term rate, the
function of achievable rate is chosen as the reward function

rn(t) = B log2(1 + SN Rn(k)) (6.28)

where B is the channel bandwidth and SN Rn(k) is SNR of user n on channel k.

In the DRL-based framework proposed in [18], in order to capture features from
observations, the LSTM network is introduced in the structure of the adopted DQN.
Additionally, the DDQN method is also adopted to improve the performance of the
DQN. In the training phase, each user trains the parameters of their respective DQN
cooperatively by communicating with a central unit. After updating the parameters,
each user uses the trained DQN to make access decisions autonomously and inde-
pendently. After the DQN is well-trained, the central unit is closed, and users use the
converged DQN to obtain efficient access policy directly.

6.5.2 Deep Reinforcement Learning for Joint User
Association and Resource Allocation

In heterogeneous networks (HetNets), all the base stations (BSs) normally provide
services to users on shared spectrum bands in order to improve the spectrum effi-
ciency. However, most existing methods need accurate global network information,
e.g., channel state information, as the prior knowledge, which is difficult to obtain
in practice.
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In [19], a distributed DRL-based DSA framework is proposed for user association
and resource allocation in the downlink HetNets. Specifically, a three-tier heteroge-
neous network is considered, which consists of Nm macrocell base stations (MBSs),
Np pico base stations (PBSs), N f femto base stations (FBSs) and N user equip-
ments (UEs). The sets of UEs and BSs are denoted, respectively, byN = {1, . . . , N }
and B = {0, 1, . . . , L − 1}, where L = Nm + Np + N f . All the BSs share the same
K orthogonal channels for downlink transmission, and the set of channels can be
denoted as K = {1, . . . , K }.

For each UE i , denote bli (t) = (
b0i (t) , . . . bL−1

i (t)
)
, i ∈ N , l ∈ B as the binary

user-association vector, where bli (t) = 1 if UE i is associated with the BSl at time t
and bli (t) = 0 otherwise. For each BS, a binary channel-allocation vector is defined
as cki (t) = (

c1i (t) , . . . cKi (t)
)
, i ∈ N , k ∈ K , where cli (t) = 1 if UE i uses channel

resource Ck at time t and cli (t) = 0 otherwise. It is assumed that each UE can only
be connected to one BS and each channel can only be allocated to one UE for each
BS in each time slot t .

The transmission power between UE i and its associated BS l on channel Ck at
time t can be denoted as pkli (t) = (

p1li (t) , . . . , pK
li (t)

)
, l ∈ B, i ∈ N, k ∈ K . Since

all the BSs share the common spectrum resource, the co-channel interference should
be considered. Hence, the signal-to-interference-plus-noise-ratio (SINR) of UE i
associated with BS l and allocated with channel Ck is given as

�k
li (t) = bli (t) h

i,k
l (t) cki (t) pkli (t)∑

j∈B\{l}b
j
i (t) hi,kj (t) cki (t) pkji (t) + WN0

(6.29)

where hi,kl (t) is the channel gain between the UE i and BS l at time t , W is the
bandwidth of each channel and N0 is the noise spectral power. Therefore, the total
achievable transmission rate of UE i at time t can be expressed as

ri (t) =
L−1∑

l=0

bli (t)
K∑

k=1

W log2
(
1 + �k

li (t)
)

(6.30)

Considering that the operation cost of the UE i from BS l is determined by the
transmit power pkli (t), the total operation cost of UE i is given as

ϕi (t) =
L−1∑

l=0

ϕl
i (t) =

L−1∑

l=0

λlb
l
i (t)

K∑

k=1

cki (t) pkli (t) (6.31)

where λl is the price per unit of transmit power from BS l. Then we define the utility
function of UE i as the total achievable profit minus the operation cost, which is
denoted as

ωi (t) = ρi (t) ri (t) − ϕi (t) (6.32)

where ρi > 0 is the profit per unit transmission rate.
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In this work, the objective of each UE is to maximize its own long-term utility.
Since the problem is an integer programming problem and the objective of the prob-
lem is long-term, it is difficult to adopt the traditional optimization algorithms such
as convex optimization to solve it. Additionally, the dimension of the decision space
increases exponentially. Hence, a distributed DRL-based multi-agent framework for
user association and resource allocation is proposed to maximize the long-term util-
ity.

The state space, action space and reward function for modeling such a problem
are given as follows.

1. State Space: In each time slot, the state is composed of the QoS of all the UEs,
and we have

s (t) = {s1 (t) , s2 (t) , . . . , sN (t)} (6.33)

where si (t) is a binary index indicating that whether UE i’s QoS is larger than the
minimum threshold �i or not, i.e., if the UE i’s QoS is larger than �i , si (t) = 1
and otherwise, si (t) = 0.

2. Action Space: In each time t , each UE needs to choose a BS and a channel to
access. Hence, the action of UE i consists of two parts, i,e, the user-association
vector and the resource-allocation vector

akli (t) = {
bli (t) , cki (t)

}
(6.34)

where bli (t) ∈ {0, 1} and cki (t) ∈ {0, 1}.
3. Reward Function: The reward function of UE i is mainly determined by its

achievable rate in time slot t . Besides, to improve the convergence performance
of the algorithm, the action-selection cost is also considered in the design of the
reward function.

Ri (t) =
{

ωi (t) , �i (t) ≥ �i

−	i , otherwise
(6.35)

where �i =
L−1∑
l=0

K∑
k=1

�li
k is SINR of UE i , �i is a pre-designed minimum QoS

requirement and 	i is the action-selection cost, which is a positive value.

In the proposed framework, each UE is equipped with a DQN to make access
decisions independently. In the initialization stage, each UE is first connected to the
BS which resulted in the maximum received signal reference power (RSRP) and
constructs a DQN, in which the parameter is initialized randomly. At each training
time t , each UE has a common state s and selects an action, namely, access request,
according to its Q-value Qi (s, ai , θ) obtained from its DDQN. The access request
contains the indices of the required BS and the channel. Then, if the BS accepts
the request, the BS would send a feedback signal to the UE, which indicates the
resource is available, and otherwise, the BS would not reply. After connecting to the
chosen BS and accessing the chosen channel, the UE obtains an immediate reward
ui (s, ai ) and a new state s ′, then stores the current experience

〈
s, ai , ui (s, ai ) , s ′〉
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into its replay memoryD. Finally, each UE updates the parameter θ of its DDQN by
using stochastic gradient descent (SGD) algorithms based on the random samples
from the memory D.

6.6 Summary

In this chapter, we have provided a brief review on machine learning techniques, and
have described some applications on AI-based DSM mechanisms such as spectrum
sensing, signal classification and dynamic spectrum access. These AI-based DSM
mechanism have been shown to achieve better performance and robustness than
conventional schemes. Additionally, they can also provide more efficient and flexible
ways to implement the DSM. In the future, the combination of AI techniques and
the DSM mechanisms would become a novel and promising research direction.
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