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Abstract Glandular trichomes, the epidermal projections over aerial plant parts
primarily function in defense against stresses including protection from insects and
microbes. These structures are characterized by dedicated genetic machinery for
overproduction of structurally diverse secondary metabolites. Certain secondary
metabolites of trichome origin display interesting pharmacological activities, and
therefore are of immense economical interest as drug, aroma and allelochemicals.
For obvious reasons, glandular trichomes have been focus of ‘omics’ studies, partic-
ularly for elucidating molecular basis of such a large scale production of secondary
metabolites. In the last decade, next generation sequencing has fueled the devel-
opment of transcriptome landscapes of glandular trichomes of several medicinal
and aromatic plants. Taken together, these studies have started to unravel gene and
metabolic networks operating in glandular trichomes, and therefore are potentially
useful for identification of novel molecular targets for strategic metabolic engineer-
ing of economically important secondary metabolites as well as for development
of stress tolerant plant varieties. The present book chapter will update our current
knowledge about aspects of glandular trichome biology including its applied value
in plant biology.
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17.1 Introduction

A vast number of Angiosperms possess hair-like epidermal structures which are
termed as trichomes. Sometimes, similar structures have also been reported in gym-
nosperms, bryophytes (Uphof 1962), lichens and algae (Engene et al. 2012). Tri-
chomes are primarily present on surface of leaves and stem, but they are also found
on petals, petioles, peduncles and seeds, depending upon the species. Trichomes
display tremendous diversity in terms of cellular organization, structure and chem-
istry. These structures can be broadly divided into two categories—glandular and
non glandular, depending upon their morphology and secretion ability (Fahn 2000;
Kolb and Muller 2004). Irrespective of the types, all the trichomes originate from
epidermal cells. Some of the epidermal cells elongate and modify into unicellular
trichomes or may undergo division and specialization to develop into multicellular
trichomes. Glandular trichomes, characterized by presence of gland cell(s) or secre-
tory cell(s) have been reported in approximately 30% of all vascular plant species
(Fahn 2000) and in a single plant species several types of trichomes (both glandular
and non-glandular) have been reported to be present together. Owing to their remark-
able ability to biosynthesize, store and secrete a range of secondary metabolites, the
glandular trichomes are often referred to as biofactories of specialized metabolites.
They secrete a mixture of chemicals that often offer a vast array of uses in the phar-
maceutical, pesticides and flavour & fragrance industries, besides playing important
role in plant biology. These structures are regarded as suitable systems for study-
ing molecular basis of cellular differentiation and biosynthesis of specialized plant
metabolites. For obvious reasons, there have been emerging interests to study the
gene expression and metabolism in these structures with main focus on identifica-
tion of genes involved in biosynthesis of trichome specific natural products. Thus,
due to their wide occurrence, usage as development model and many other important
functions, glandular trichomes have been of academic and applied significance.

17.2 Morphology and Classification of Glandular
Trichomes

Glandular trichomes have a multicellular structure, consisting of a stalk, which is
terminated by a glandular head (Turner et al. 2000). They are developed from a
single protodermal cell, which following vertical enlargement and multiple divi-
sions develop into a trichome structure. On the basis of structure and cellular organi-
zation, glandular trichomes can be subdivided into two major classes, namely peltate
and capitate trichomes (Fig. 17.1) (Werker 2000). The peltate trichomes are gener-
ally characterized by presence of a short stalk, composed of one or two cells, and
large head, comprising of four to eight secretory cells, having a large sub-cuticular
space (Turner et al. 2000; Werker 2000). The secretory cells are remarkably active
in biosynthesizing metabolites that along with other molecules are transported out
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Fig. 17.1 Types of glandular trichomes. a and c Schematic diagrams showing peltate and capiate
trichomes, respectively. b Scanning electronmicroscopic view of leaf surface of amember of family
lamiaceae showing peltate trichome (Author’s own lab, unpublished picture). d Light microscopic
view of leaf surface of N. tabacum showing glandular trichomes

and stored in a prominent sub-cuticular space. Capitate trichomes are characterized
by presence of a single basal cell, which is embedded within the epidermal layer,
one or two stalk cells and one or two spherical secretory heads (Werker 2000; Bisio
et al. 1999). The Solanum sp., for example are characterized by presence of eight
types of trichomes. Out of them, four (i.e., type I, IV, VI and VII) are glandular
capitate trichomes and the rest (i.e., type II, III, V and VIII) are non-glandular (Glas
et al. 2012). The type I and IV glandular trichomes are capitate, whereas type VI and
VII appear to display a peltate structure. These types differ in number of stalk and
secretory cells. In S. lycopersicum, Type I and Type VI are the two abundant types
of glandular trichomes (McDowell et al. 2011). Type I trichomes consist of a mul-
ticellular stalk with a single, small gland cell at the tip where as Type VI trichomes
have a unicellular stalk with a four-cell glandular head. The glandular trichomes of
Nicotiana tabacum, N. sylvestris and N. rustica exhibit very similar features, charac-
terized by presence of 4 to 6 stalk cells and 1 to 6 head cells. In N. tabacum, usually,
two types of capitate glandular trichomes are found (Shepherd et al. 2005); the larger
ones with a long stalk and a chlorophyllous head due to presence of chloroplast, and
the smaller ones with a short stalk and non- chlorophyllous head. In contrast to the



368 M. Kundan et al.

long trichomes, short trichomes do not possess chloroplasts in their head cells. In
the members of Lamiaceae, for example, Ocimum sp. and Mentha piperita (mint),
both types of glandular trichomes are present together. TheMentha species has non-
glandular trichomes, peltate glandular trichomes and capitate glandular trichomes,
present on abaxial and adaxial surfaces of the leaf.

17.3 Glandular Trichomes as Source of Economically
Important Natural Products

The glandular trichomes have the ability to synthesise, store and secrete diverse sec-
ondary metabolites such as terpenoids (Gershenzon and Dudareva 2007), flavonoids
(Treutter 2006), phenylpropenes (Gang et al. 2002), methyl ketones (Fridman et al.
2005) and acyl sugars (Kroumova and Wagner 2003). Many of these secondary
metabolites are of human interest and utilized as pharmaceuticals and neutraceuti-
cals (Table 17.1) (Mahmoud and Croteau 2002; Schilmiller et al. 2008). For instance,
Lamiaceae, an important aromatic plant family with species such as Basil (Ocimum
basilicum), lavender (Lavandula spica), mint (Mentha × piperita), oregano (Orig-
anumvulgare) and thyme (Thymus vulgaris), is renowned for its essential oil,which is
produced exclusively in glandular trichomes (Schilmiller et al. 2008). Artemisinin,
a sesquiterpene lactone, produced in the glandular trichomes of Artemisia annua
(a member of Asteraceae family), is used as an effective drug for the treatment of
malaria (Duke et al. 1994;Weathers et al. 2011). The glandular trichomes ofCannabis

Table 17.1 A list of plants with economically important natural products produced primarily by
glandular trichomes

Plant species Metabolite Important compound References

Mentha piperita Monoterpene Menthol Gang et al. (2002)

Salvia sclarea Diterpene Sclareol Moulines et al. (2004),
Frija et al. (2011)

Cannabis sativa Cannabinoids Tetrahydrocannabinol
(THC); Cannabidiol
(CBD)

Sirikantaramas et al.
(2005), Pellati et al.
(2008), Taura et al. (2007)

Humulus lupulus Terpenes Humulone Wang et al. (2008)

Gossypium hirsutum Sesquiterpene Gossypol Mellon et al. (2014)

Artemisia annua Sesquiterpene Artemisinin (Weathers et al. 2011)

Cistus creticus Diterpene Labdanum Attaguile et al. (1995),
Demetzos et al. (1997,
2001)

Thymus vulgaris Monoterpene Thymol and Carvacrol Dauqan and Abdullah
(2017)

Origanum vulgare Monoterpene Carvacrol and Thymol Sivropoulou et al. (1996)
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sativa are source of unique terpeno-phenolic compounds, known as cannabinoids.
The Tetrahydrocannabinol (THC)-a psychoactive cannabinoid displays anti-nausea
and anti-cancer activities (Sirikantaramas et al. 2005; Pellati et al. 2008) whereas
Cannabidiol (CBD)—a non psychoactive cannabinoid has been found to be effective
in prevention of neurodegenerative and cardiovascular diseases (Pellati et al. 2008;
Taura et al. 2007). Gossypol and other related disesquiterpene produced by the tri-
chomes of Gossypium hirsutum (cotton), possessing anti-fungal activities are poten-
tial natural pesticides (Mellon et al. 2014; Dayan and Duke 2003). The labdane-type
diterpenes, produced in trichomes of Cistus creticus (Pink Rock-Rose) trichomes
exhibit gastric antiulcer (Attaguile et al. 1995), antifungal, antibacterial and anti-
inflammatory activities (Demetzos et al. 1997; Demetzos et al. 2001).M. piperita tri-
chomes produce monoterpenes including menthone and menthol (Lange et al. 2000)
where asM. spicata (spearmint) produces carvone, that gives attribute like odour and
taste to the plant and have been used as flavouring agent in food and pharmaceuti-
cal preparations (Chauhan et al. 2009). Several species from Solanaceae family like
Solanum lycopersicum, S. habrochaites and S. pennellii contain diverse metabolites
in their glandular trichomes such as monoterpenes, sesquiterpenes, methylketones,
diterpenes and acyl sugars (Antonious 2001; Besser et al. 2009); The glandular tri-
chomes of Ocimum basilicum (Basil) secrete phenylpropanoids (Gang et al. 2002);
gland exudates ofMedicago sativa (alfa alfa) contain lipophilic amides (Ranger et al.
2005) and accumulate flavonoids that contributes to the plant’s antioxidant properties
(Aziz et al. 2005). The glandular trichomes of Salvia sclarea (clary sage) trichomes
accumulates sclareol—a labdane diterpene, that is used as precursor for Ambrox
or Ambroxane, which finds application in flavour and fragrance industry (Moulines
et al. 2004; Frija et al. 2011).

17.4 Role of Glandular Trichomes in Plant Biology

Trichomes cover the outermost layer of plant organs such as leaf and stem and
thereby are directly exposed to the surroundings to encounter prevailing, changing
and often challenging growth conditions. In this regard, these structures can act as a
component of physical defense system of plants against insects, pathogens and some
abiotic stresses (Fig. 17.2). In addition, owing to the appreciable biosynthetic capa-
bilities for producing secondary metabolites, the glandular trichomes are involved in
ecological interactions, including chemical defense against invading pathogens and
insects (Runyon et al. 2010; Tian et al. 2012).

17.4.1 Role in Abiotic Stress Tolerance

Abiotic stress conditions trigger an array of morphological, physiological, molecular
and biochemical changes that drastically affect plant growth and development and
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Fig. 17.2 Schematic representation summarizing role of trichomes in stress

remains the major constraint to crop yield. In the recent past, several studies have
demonstrated that trichomes under adverse abiotic environmental conditions play a
vital role in the plant survival.

17.4.1.1 Role in Heavy Metal Detoxification and Homeostasis

The extensive and burgeoning accumulation of heavy metals (HMs) in the biosphere
due to anthropogenic disturbances has become a predicament condition for all forms
of life including both plants and animals. HMs are non-biodegradable, inorganic
chemical constituents which inflict detrimental effects on plants and animals includ-
ing humans (Cirlakova 2009). HMs at elevated levels can hamper the functions of
several important cellular biomolecules such as DNA, nuclear proteins, enzymes and
pigments which can lead to excessive generation of reactive oxygen species (ROS)
(Zengin and Munzuroglu 2005; Ali et al. 2013). The increased generation of ROS
such as superoxide free radicals (O2·−), hydroxyl free radicals (OH·−) or non-free
radical species such as singlet oxygen (1O2) and hydrogen peroxide (H2O2) due to
disturbance of cellular homeostasis cause an imbalance between ROS generation
and scavenging, results in oxidative stress (Sytar et al. 2013). This stress condition
implicates serious deteriorative anomalies within plant cells such as DNA damage,
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protein degradation, redox imbalance, leakage of ions, and disruption of cell compo-
nents and membranes which ultimately can lead to cell death via programmed cell
death (PCD) pathways (Sharma et al. 2012).

Plants have evolved a repertoire of defense strategies to cope with heavy metal
stress (Kupper and Kroneck 2005). Trichomes have been implicated in ion home-
ostasis and heavy metal detoxification process either by serving as storage sites for
HMs or as secretion sites of a wide array of secondary metabolites that counteract
perilous effects of heavy metal contamination (Hauser 2014). The HMs have been
found to be accumulated in the trichomes of both hyper (Sarret et al. 2006; Broad-
hurst et al. 2004) and non-hyper accumulating (Lavid et al. 2001; Dominguez-Solis
et al. 2004) plants. The role of trichomes in heavy metal sequestration and detoxi-
fication has been studied in details in N. tabacum. On exposure of tobacco plant to
the toxic level of cadmium (Cd), trichomes were reported to be the primary sites on
the leaf surface, which are engaged in exudation of Cd crystals. Also cysteine syn-
thase overexpressing tobacco lines showed Cd tolerance with 20% less endogenous
Cd concentration as compared to wild-type plants and its trichome density has been
reported to be 25% higher than the wild-type control plants (Harada and Choi 2008).
The sequencing of cDNA libraries corresponding to the trichomes of tobacco, with
or without Cd treatment revealed that trichomes are the primary sites of expression
of genes encoding for stress related proteins such as antipathogenic T-phylloplanin-
like proteins, glutathione peroxidase and many other classes of pathogenesis-related
(PR) proteins. Furthermore, the glutathione levels were found to be elevated in the
tip cells of trichomes as compared to other cells, reflecting the existence of a well
developed sulfur-dependent protective system for heavymetal detoxification. Higher
expression of genes encoding metallothionins, functioning in metal tolerance has
been documented in trichomes of some plants species such as Vicia faba (Foley and
Singh 1994). These observations clearly indicate that trichomes have well developed
molecular machinery for accumulation, sequestration and exudation of heavymetals.

17.4.1.2 Role in Ozone Stress

During the past century, average tropospheric global ozone (O3) concentration has
drastically elevated and is expectedly increasing further (Hartmann et al. 2014;
Oltmans et al. 2013). Several reports suggest that elevated level of atmospheric
O3 inhibits plant growth and development and results in decrease in productivity
(Ainsworth et al. 2012; Fares et al. 2013). Certain plants show more tolerance to
ozone stress than others but the underlying mechanism is still not well understood
(Ainsworth 2017; Feng et al. 2017). In plants O3 enters mainly via the stomata and
reacts with organic molecules in the apoplast and resulting in excessive generation
of ROS and ultimately leading to cell damage and cell death (Ainsworth 2017; Cho
et al. 2011; Kanagendran et al. 2017). Studies were conducted to investigate the
role of glandular and non-glandular trichomes in response to ozone stress. In order
to cover a broad range of trichome characteristics, such as trichome density, tri-
chome type etc. twenty-three herbaceous plant species were selected for this study
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and it was reported that peltate and capitate glandular trichomes showed significant
level of tolerance against ozone stress whereas no such resistance was observed in
non-glandular trichomes. Also species with lower glandular trichomes on their leaf
surface were found to be more vulnerable to ozone stress as compared to those with
higher density of glandular trichomes. These results shed light on the possible role of
glandular trichome in the reduction of ozone toxicity and may function as chemical
barricades that play a key role in neutralizing the toxic O3 before entering into the
apoplast (Li et al. 2017).

Apart from this, there are several reports from many species which proposed
that glandular trichomes might play role in tolerance to drought stress. For exam-
ple, a study in tomato found that overexpression of SIMX1, a MIXTA like MYB
transcription factor, led to enhanced trichome density including both glandular and
non-glandular trichomes accompanied with increased drought tolerance but yet there
are no concrete evidences of the role of glandular trichomes specifically involved in
imparting the drought tolerance (Ewas et al. 2016).

17.4.2 Role in Biotic Stress Tolerance

Various biotic factors are the major threats to the productivity of large number of
important plant species. Several studies demonstrated that trichomes act as chemical
defense barrier against insects, pests, herbivores, fungal infections, and even plants
of parasitic behaviour (Tian et al. 2012; Peiffer et al. 2009). Apart from non-glandular
trichomes, glandular trichomes synthesize and/or accumulate highly interesting sec-
ondary metabolites such as terpenoids, phenylpropenes, methyl ketones (Fridman
et al. 2005; Ben-Israel et al. 2009), proteinase inhibitors (Tian et al. 2012) and acyl
sugars (Schilmiller et al. 2012; Stout et al. 2012; Xu et al. 2013) and contribute sub-
stantially to chemical arsenal of plant defense strategies and thus play a fundamental
role in both structural and chemical defense strategy against several herbivory and
pathogen attacks and are interesting targets for breeding (Glas et al. 2012; Gruber
et al. 2006).

17.4.2.1 Insect Resistance

Recent studies in many tomato wild relatives have reported the correlation of the
presence, longevity, density, and size of the type I and the shorter multicellular
type IV glandular trichomes with resistance against the whitefly (Firdaus et al.
2013). Previously, studies found that suppression of a glandular trichome specific
P450 hydroxylase gene in tobacco led to resistance against aphids. The analysis
of P450 suppressed transgenic tobacco plants displayed elevated concentration of
cembratriene-ol (CBT-ol) which displayed potent aphidicidal activity (Wang et al.
2001). NtLTP1, a glandular-specific lipid transfer protein from tobacco has been
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implicated in secretion of lipid compounds from trichome heads. The transgenic
tobacco lines overexpressing NtLTP1 displayed enhanced tolerance to aphids (Choi
et al. 2012). The investigation of the effect of the hairless (hl) mutation on trichome
density, chemical composition and herbivory resistance in tomato suggested that leaf
surface extracts have low levels of sesquiterpene and polyphenolic compound and hl
mutation causes structural distortion of trichomes in leaf tissue and leads to decreased
tolerance against insect herbivory (Kang et al. 2010).

17.4.2.2 Resistance Against Pathogens

Glandular trichomes are often capable of secreting exudates displaying antifungal
activities. In a wild potato species (S. berthaultii), a trichome exudate was reported to
confer resistance to Phytophthora infestans (Lai et al. 2000). The disease incidence
has shown negative correlation with the density and polyphenol-oxidase activity of
short type A trichome bearing a four-lobed membrane-bound gland at their tips. In
chickpea (Cicer arietinum) the concentration of a highly acidic trichome exudate
is critical in response to infection by Ascochyta rabiei. Low concentrations of exu-
dates promote germination of Ascochyta rabiei conidia whereas high concentrations
inhibit its germination (Armstrong-Cho and Gossen 2005). The damaged trichomes
have been observed as entry sites for the infection and colonialization of several
different fungal pathogens such as Phoma clematidina on clematis (Van De Graaf
et al. 2002), powdery mildew (Erysiphe necator) on grapevine buds (Rumbolz and
Gubler 2005), Botrytis cinerea on harvested tomato (Charles et al. 2008), and Beau-
veria bassiana on poppy (Landa et al. 2013). A trichome specific glycoprotein known
as T-phylloplanin in tobacco was reported to be a potent inhibitor of oomycete Per-
onospora tabacina germination (Kroumova et al. 2007). Also tobacco plants with
low expression of phylloplanin are more susceptible to pathogen attacks. Altogether
the above mentioned examples clearly provide ample evidences of the active role
of trichomes in imparting stress tolerance to several biotic stresses and mediating
ecological interactions.

17.5 Omics Approaches for Studying Gene Expression
and Function in the Context of Glandular Trichome
Biology

Apart from being sources of economically important natural products, trichomes
function as physical and chemical defense structures. These structures therefore are
interesting systems to understand the molecular basis of secondary metabolism and
plant defense. The “Omics” approaches such as transcriptomics, proteomics and
metabolomics can provide detailed information about the metabolic and gene regu-
latory networks operating in trichomes to favour secondary metabolism and defense
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responses. Initial studies based on Sanger sequencing of cDNA libraries of trichomes
provided limited but useful information about the transcriptome landscape of tri-
chomes. Later on, application of next generation sequencing (NGS) revolutionized
the area of trichome biology by providing comprehensive information about genes
expressing in trichomes (Table 17.2). A dedicated database, TrichOme hosting tran-
scriptomics (ESTs/unigene sequences) andmetabolomics (mass-spectrometry-based
trichome metabolite profiles) resources of trichomes of a number of plant species is
available (Dai et al. 2010) (http://www.planttrichome.org/). The “Omics” approaches
have revealed that genes involved in secondary metabolism, defense response, and
lipid biosynthesis are enriched in transcriptomes of glandular trichomes. Several
medicinal and aromatic plants have been studied for identification and characteriza-
tion of genes expressing in glandular trichomes (Table 17.3). These studies have been
vital for elucidation of molecular basis of biosynthesis of several important natural
products as well as for functional attributes of trichomes (Huchelmann et al. 2017;
Tissier 2018). In the following heads, the features of gene expression in glandular
trichomes have been summarized.

17.5.1 Genes Encoding Enzymes of Secondary Metabolism

Sanger sequencing of cDNA libraries corresponding to the glandular trichomes of
N. tabacum and N. sylvestris, for example, provided platform for identification of
genes involved in the trichome specific secondarymetabolism leading to cembrenoid
and labdanoid diterpenoid biosynthesis (Wang et al. 2001, 2002; Wang and Wagner
2003; Ennajdaoui et al. 2010; Sallaud et al. 2012). A terpene synthase named as
cembratriene-ol synthase (CBTS) and CYP71D16, a CYP450 enzyme have been
shown to be involved in cembrenoid biosynthesis. The labdanoid biosynthesis, on the
other hand is driven by enzymes namely copalyl diphosphate synthase 2 (CPS2) and
abienol synthase (ABS). The expression of the genes encoding CBTS, CYP71D16,
CPS2 and ABS was reported to be trichome specific and therefore their promoter
regions can be used for driving trichome specific gene expression. In addition, the
characterization of genes expressing primarily in glandular trichomes led to the
discovery of metabolic pathways involved in natural product biosynthesis in sev-
eral medicinal and aromatic plants. C. sativa, for example, biosynthesize bioac-
tive cannabinoids, primarily in the glandular trichomes of female flower. The genes
involved in the cannabinoid biosynthesis have been identified using transcriptome
resource of glandular trichomes of C. sativa, which in turn helped in elucidation of
the pathway at molecular level (Sirikantaramas et al. 2005; Taura et al. 2007, 2009;
Page and Boubakir 2011).

The terpenoid biosynthesis necessitates substrate supply in the form of isoprene
units. Two pathways, namely mevalonate (MVA) and 2-C-methyl-D-erythritol-4-
phosphate (MEP) pathway, localized in cytoplasm and plastids, respectively are
responsible for generation of isoprene pool. As the glandular trichomes are often
enriched in terpenoid class of secondary metabolites, for example, those having
monoterpene, diterpene and sesquiterpene backbones, the key genes involved in the
MVA and MEP pathways such as DXS and HMGR, respectively are upregulated

http://www.planttrichome.org/
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Table 17.2 List of summarizing transcriptome sequencing studies on glandular trichomes of dif-
ferent plant species

Species Trichome type Transcriptome
sequencing
approach

ESTs/Unigenes References

Solanum
lycopersicum

Mixed Sanger 7254 [ESTs] Besser et al.
(2009)

S. lycopersicum Type I Sanger 831 [ESTs] McDowell et al.
(2011)

S. lycopersicum Type VI NGS 225,000 [ESTs] McDowell et al.
(2011)

S. lycopersicum Type VII Sanger 791 [ESTs] McDowell et al.
(2011)

S. lycopersicum Mixed stems NGS 278000 [ESTs] McDowell et al.
(2011)

S. lycopersicum Mixed NGS 195,377 [ESTs] Bleeker et al.
(2011)

Solanum
habrochaites

Mixed Sanger 2656 [ESTs] van Der Hoeven
et al. (2000), Fei
et al. (2004)

S. habrochaites Type I Sanger 978 [ESTs] McDowell et al.
(2011)

S. habrochaites Type IV Sanger 1425 [ESTs] McDowell et al.
(2011)

S. habrochaites Type VI NGS 224000 [ESTs] McDowell et al.
(2011)

S. habrochaites Mixed leaves NGS 108,000 [ESTs] McDowell et al.
(2011)

S. habrochaites Mixed NGS 182386 [ESTs] Bleeker et al.
(2011)

Solanum
pimpinellifolium

Type VI NGS 227,000 [ESTs] McDowell et al.
(2011)

Solanum
pennelllii

Type IV Sanger 1277 [ESTs] McDowell et al.
(2011)

S. pennelllii Type VI Sanger 1137 [ESTs] McDowell et al.
(2011)

S. pennelllii Mixed leaves NGS 275000 [ESTs] McDowell et al.
(2011)

Solanum
arcanum

Mixed stems NGS 415,000 [ESTs] McDowell et al.
(2011)

Ocimum
basilicum

Peltate Sanger 4804 [ESTs] Iijima et al.
(2004a)

O. basilicum Peltate Sanger 5422 [ESTs] Iijima et al.
(2004b)

(continued)
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Table 17.2 (continued)

Species Trichome type Transcriptome
sequencing
approach

ESTs/Unigenes References

O. basilicum Peltate Sanger 7314 [ESTs] Kapteyn et al.
(2007)

O. basilicum Peltate Sanger 1344 [ESTs] Gang et al.
(2001)

Medicago sativa Stem glandular
trichomes

Sanger 9659 [ESTs] Aziz et al.
(2005)

Medicago
truncatula

Glandular
trichomes

Sanger 10,377 [ESTs] Dai et al. (2010)

Artemisia.
annua

Glandular
trichomes

NGS 406,044 [ESTs] Wang et al.
(2009)

Humulus
lupulus

Glandular
trichomes

Sanger 12,665 [ESTs] Wang et al.
(2008)

H. lupulus Glandular
trichomes

Sanger 10,581 [ESTs] Nagel et al.
(2008)

Cannabis sativa Glandular
trichomes from
female flower

Sanger 1075 [unigenes] Marks et al.
(2009)

Cistus creticus Glandular
trichomes

Sanger 2022 [ESTs] Falara et al.
(2008)

Mentha ×
piperita

Peltate Sanger 1316 [ESTs] Lange et al.
(2000)

Mentha spicata Peltate
glandular
trichomes

NGS 25,000
[unigenes]

Jin et al. (2014)

Salvia fruticosa Glandular
trichomes

Sanger 1459 [ESTs] Chatzopoulou
et al. (2010)

Nicotiana
tabacum

Glandular
trichomes

Sanger 5139 [ESTs] Cui et al. (2011)

N. tabacum Glandular
trichomes with
or without Cd

Sanger 2000 [ESTs] Harada et al.
(2010)

Nicotiana
benthamiana

Glandular
trichomes

Sanger 6686 [ESTs] Slocombe et al.
(2008)

in glandular trichome as compared to trichome free leaf sample (Glas et al. 2012;
Huchelmann et al. 2017; Balcke et al. 2017; Wang et al. 2009). Likewise, genes
involved in the biosynthesis of flavonoid and phenylpropanoid class of secondary
metabolites have been reported to display higher transcript levels in glandular tri-
chomes.
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Table 17.3 List of characterized genes involved in aspects of glandular trichome biology

Plant Biological functions
and metabolic
pathways

Genes References

Nicotiana tabacum Diterpene transport NtPDR1 Crouzet et al. (2013)

N. tabacum Lipid secretion NtLTP1 Choi et al. (2012)

N. tabacum Disease defense T-Phylloplanin Shepherd et al.
(2005), Choi et al.
(2012)

N. tabacum Terpenoid pathway α-Cembratrienol/β-
cembratrienol
synthase (CYC-1)

Wang and Wagner
(2003)

N. tabacum Aphid
resistance/CBT—
diol
synthase

CYP71D16 Wang et al. (2001,
2002)

N. sylvestris Insects
resistance/CBT –diol
synthase

NsCBTS Ennajdaoui et al.
(2010)

N. tabacum Labdane diterpene
biosynthesis

NtCPS2
NtABS

Sallaud et al. (2012)

Artemisia annua artemisinin
biosynthetic pathway

AaORA Lu et al. (2013)

A. annua Terpene and lipid
biosynthesis

CYP71AV1 Teoh et al. (2006),
Polichuk et al. (2010)

A. annua Terpene and lipid
biosynthesis

ALDH1 Teoh et al. (2009)

A. annua Terpene and lipid
biosynthesis

DBR2 Zhang et al. (2008a)

A. annua Terpene and lipid
biosynthesis

Alcohol
dehydrogenase 2
(ALDH2)

Polichuk et al. (2010)

A. annua Terpenoid pathway Amorpha-4,11-diene
synthase (KCS12)

Chang et al. (2000)

A. annua Terpenoid pathway Amorpha-4,11-diene
synthase (pAC12)

Mercke et al. (2000)

A. annua Terpenoid pathway Dihydroartemisinic
aldehyde reductase
(Red1)

Ryden et al. (2010)

A. annua Terpene and lipid
biosynthesis

2-Alkenal reductase
(DBR1)

Zhang et al. (2008b)

A. annua Terpenoid pathway β-Caryophyllene
synthase (QHS1)

Cai et al. (2002)

A. annua Terpenoid pathway β-Farnesene synthase
(β-FS)

Picaud et al. (2005)

(continued)
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Table 17.3 (continued)

Plant Biological functions
and metabolic
pathways

Genes References

A. annua Terpenoid pathway Germacrene A
synthase (AaGAS)

Bertea et al. (2006)

A. annua Terpenoid pathway (−)-β-Pinene
synthase (QH6)

Zhang et al. (2008b)

A. annua Sesquiterpene
β-Caryophyllene
Transport

AaPDR3 Cai et al. (2002)

Cannabis sativa Terpenoid pathway Olivetol synthase
(OLS)

Picaud et al. (2005)

C. sativa Terpenoid pathway Aromatic
prenyltransferase
(PT)

Bertea et al. (2006)

C. sativa Cannabinoid
pathway

�1-
Tetrahydrocannabinolic
acid synthase
(THCAS)

Sirikantaramas et al.
(2005)

C. sativa Cannabinoid
pathway

Cannabidiolic acid
synthase (CBDAS)

Taura et al. (2007)

Mentha citrata Terpenoid (−)-Linalool
synthase

Crowell et al. (2002)

Mentha. spicata Terpenoid, flavonoid MsTPS1 and
MsTPS2

Jin et al. (2014)

M. spicata Terpenoid Limonene
6-hydroxylase
(SM12, CYP71D18)

Lupien et al. (1999)

M. spicata Terpenoid Carveol
dehydrogenase
(ISPD)

Ringer et al. (2005)

Mentha × piperita Terpenoid Limonene
3-hydroxylase,
PM17, CYP71D13;
PM2, CYP71D13

Lupien et al. (1999)

M. piperita Terpenoid (+)-Menthofuran
synthase (MFS)

Bertea et al. (2001)

M. piperita Terpenoid Menthone:(+)-
neomenthol
reductase (MNR)

Davis et al. (2005)

(continued)
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Table 17.3 (continued)

Plant Biological functions
and metabolic
pathways

Genes References

M. piperita Terpenoid, flavonoid 4-coumarate-CoA
ligase, chalcone
synthase, chalcone
isomerase,
flavonoid-3′,
5′-hydroxylase,
flavonol-4-reductase,
flavonol
sulfotransferase, and
flavonoid
O-methyltransferases

Lange et al. (2000)

Humulus lupulus Terpenoid pathway Valerophenone
synthase (VPS)

Okada and Ito (2001)

H. lupulus Terpenoid pathway Myrcene synthase
(HIMTS2)

Wang et al. (2008)

H. lupulus Terpenoid pathway β-Caryophyllene/α-
Humulene synthase
(HISTS1)

Wang et al. (2008)

H. lupulus Terpenoid pathway Germacrene A
synthase (HISTS2)

Wang et al. (2008)

Ocimum basilicum Terpenoid pathway Terpinolene synthase
(TES)

Iijima et al. (2004b)

O. basilicum Terpenoid pathway Geraniol synthase
(GES)

Iijima et al. (2004a)

O. basilicum Terpenoid pathway Linalool synthase
(LIS)

Iijima et al. (2004b)

O. basilicum Terpenoid pathway α/β-Selinene
synthase (SES)

Iijima et al. (2004a)

O. basilicum Terpenoid pathway γ-Cadinene synthase
(CDS)

Iijima et al. (2004a)

O. basilicum Terpenoid pathway Germacrene D
synthase (GDS)

Iijima et al. (2004a)

O. basilicum Terpenoid pathway Geraniol/nerol
oxidase (GEDH1)

Iijima et al. (2006)

Helianthus anuus Terpenoid pathway Germacrene A acid
8β-hydroxylase
(CYP71BL1)

Ikezawa et al. (2011)

Cistus creticus Terpenoid pathway Geranylgeranyl
diphosphate synthase
(CcGGDPS1,
CcGGDPS2)

Pateraki and Kanellis
(2008)

C. creticus Terpenoid pathway Copal-8-ol
diphosphate synthase
(CcCLS)

Falara et al. (2011)

(continued)
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Table 17.3 (continued)

Plant Biological functions
and metabolic
pathways

Genes References

Salvia fruticosa Terpenoid 1,8-Cineole synthase
(Sf-CinS1)

Kampranis et al.
(2007)

S. pornifera Terpenoid Sabinene synthase
(Sp-SabS1)

Kampranis et al.
(2007)

Solanum
habrochaites

Terpenoid β-Elemene synthase
(ShTPS15)

Bleeker et al. (2011)

S. habrochaites Terpenoid Germacrene B
synthase (SSTLH1)

van Der Hoeven et al.
(2000)

S. habrochaites Terpenoid Germacrene D
synthase (SSTLH2)

van Der Hoeven et al.
(2000)

S. habrochaites Terpenoid α-Pinene synthase
(ShPIS)

Gonzales-Vigil et al.
(2012)

S. lycopersicum Terpenoid Neryl diphosphate
synthase (NDPS1)

Schilmiller et al.
(2009)

S. lycopersicum Terpenoid 1,8-Cineole synthase Falara et al. (2011)

S. americanum Defense protein
against insect attacks

SaPIN2b Schluter et al. (2010),
Luo et al. (2012)

17.5.2 Gene Involved in Primary Metabolism

The impressively active metabolism requires sufficient primary Carbon flux and
energy to support excessive production of secondary metabolites in glandular tri-
chomes. In this regard, transcriptomic and proteomic studies on glandular trichomes
suggested modulation of genes involved in primary metabolism as compared to
trichome-free leaf. The long glandular trichomes of tobacco contains chlorophyllous
head cell and can photosynthesize. Using proteomics approach, a novel Rubisco
small subunit (NtRbcS-T), preferentially expressing in head cells of long glandular
trichomes of tobacco was identified. NtRbcS-T was implicated in carbon fixation in
gland cell having a cellular environment overproducing specializedmetabolites along
with CO2 evolution (Laterre et al. 2017). A systems approach involving proteomics,
metabolomics and transcriptomics in type VI glandular trichomes and leaves from
a cultivated tomato variety (Solanum lycopersicum LA4024) provided important
insights into carbon flux regulation, source of reducing power and energy to support
intensified metabolism in these trichomes (Balcke et al. 2017). It was demonstrated
that although type VI glandular trichomes are photosynthetically active, the major
carbon flux to support trichome specific metabolism comes from leaf tissue. How-
ever, the reducing power and energy generated during photosynthesis can be utilized
in driving secondary metabolism (Balcke et al. 2017).

The “Omics” studies on N. tabacum and tomato revealed that the genes involved
in the metabolism of branched chain amino acids e.g. valine, leucine, isoleucine
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are upregulated in the glandular trichomes as compared to the trichome-free leaf
(Balcke et al. 2017; Jin et al. 2014). These observations are consistent with the role
of branched chain amino acids as precursors of acyl-sugars, which are enriched in the
glandular trichomes ofN. tabacum and tomato. The glandular trichomes, in addition,
were reported to display higher expression of genes involved in lipid metabolism,
especially those concerning with the biosynthesis of polyunsaturated fatty acids and
wax (Balcke et al. 2017; Jin et al. 2014; Sallets et al. 2014).

17.5.3 Transporter Genes

Gene expression analysis revealed that the genes encoding transporter proteins
belonging to ABC family transporters and Lipid transporter protein (LTP) are pref-
erentially expressed in glandular trichomes. By now, however, only limited num-
ber of transporter genes expressing in glandular trichomes have been functionally
characterized. An ABCG subfamily transporter gene, named as NtPDR1, display-
ing higher expression in the gland cells of long glandular trichomes of N.tabacum
has been implicated in transportation of terpenoid compounds such as diterpenoids
and sesquiterpenoids (Pierman et al. 2017). In A. annua, another ABCG sub-family
transporter, namely AaPDR3, whose expression is primarily restricted to the glan-
dular trichomes, has been shown to be involved in transportation of β-caryophyllene
(Fu et al. 2017). In N. tabacum, NtLTP1, a gene encoding lipid transporter protein is
involved in secretion of lipids from glandular trichomes (Choi et al. 2012).

17.5.4 Genes Involved in Abiotic and Biotic Stresses

The glandular trichomes have been reported to express genes involved in abiotic and
biotic stress responses. For example, genes belonging to these functional classes
putatively encode PR protein, metallothionein, T-phylloplanin RD22-like BURP
domain-containing proteins, and thaumatin-like protein, ascorbate peroxidise, glu-
tathione peroxidase, Fe- superoxide dismutase etc. (Sallets et al. 2014; Marks et al.
2009; Cui et al. 2011). The T-phyllopanin gene, displaying glandular trichome spe-
cific expression in N. tabacum has been demonstrated to confer defense against
pathogens (Shepherd et al. 2005).

17.6 Transcription Factor Genes Involved in the Regulation
of Secondary Metabolism in Glandular Trichomes

Transcription factors play central role in regulation of gene expression associ-
ated with metabolic pathways. Limited information pertaining to the transcription
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factors regulating glandular trichome localized metabolism is currently available.
Their identification and characterization is, however, crucial for unveiling molecular
mechanism involved in the trichome specific expression of structural genes of sec-
ondary metabolism. A number of transcription factors belonging to diverse families
have been identified with respect to transcriptional regulation of structural genes of
artemisinin biosynthesis in A. annua. The transcription factors namely AaWRKY1,
AaERF1/2, AaORA, AaMYC2, AabZIP1, AaNAC1 and AaSPL2 positively regulate
the expression of genes involved in artemisinin biosynthesis (Yu et al. 2012; Lu et al.
2013; Zhang et al. 2015; Jiang et al. 2016; Shen et al. 2016; Lv et al. 2016; 2019).
These transcription factors often regulate multiple structural genes simultaneously
and therefore play crucial role in fine-tuning of the secondary metabolism under spa-
tial and temporal cues including hormone signaling. InMentha spicata, transcription
factor genes namely MsYABBY5 and MsMYB displaying preferential expression in
peltate glandular trichomes have been implicated in the regulation of monoterpene
production (Wang et al. 2016; Reddy et al. 2017). Another glandular trichome spe-
cific transcription factor gene, Expression of terpenoid 1 (EOT1), belonging to SHI
transcription factor family has been demonstrated to regulate terpenoid biosynthesis
in S. lycopersicum (Spyropoulou et al. 2014).

17.7 Regulatory Genes Involved in Development
of Glandular Trichomes

The studies on Arabidopsis have provided detailed information about the molecu-
lar players involved in the initiation, development and patterning of non-glandular
trichomes (Serna and Martin 2006; Pattanaik et al. 2014). It was established that a
complex of three regulatory proteins, viz. MYB, bHLH and WD40 proteins (MBW)
plays a central role in the regulation of trichome development in Arabidopsis. In
general, the understanding of molecular mechanism of regulation of glandular tri-
chome development is comparatively very limited and it is not clear whether aMBW
like regulatory complex is involved in the regulation of glandular trichome devel-
opment. The studies, conducted so far, have however revealed that transcription
factors, mostly belonging to Homeodomain Zipper (HD-Zip), C2H2 Zinc Finger,
bHLH and MYB familes are involved in the regulation of glandular trichome devel-
opment. With the current information, it is also apparent that these regulators might
be functionally conserved. Overexpression of AmMIXTA, an R2-R3 MYB family
transcription factor gene resulted in enhanced density of glandular trichome in N.
tabacum. Similarly, MIXTA like transcription factors, SlMIXTA1 and AaMIXTA
positively regulate glandular trichome development in tomato and A. annua, respec-
tively (Ewas et al. 2016; Shi et al. 2018). A HD-Zip transcription factor gene, named
as Wooly (Wo) has been implicated in the regulation of glandular trichome develop-
ment in tomato (Yang et al. 2011). The overexpression of mutant allele of tomatoWo
gene resulted inmodified glandular trichome development inN. tabacum, suggesting
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that orthologs of Wo gene could be functionally conserved regulators in Solanaceae
(Yang et al. 2015). Recently, a C2H2 Zinc finger transcription factor gene, namely
Hair (H) has been identified as positive regulator of glandular trichome development
in S. lycopersicum. It was also demonstrated that H interacts with Wo and thereby
they might regulate trichome development in a combinatorial manner (Chang et al.
2018). Members of HD-Zip transcription factor families have also been shown to
regulate glandular trichome development in A. annua (Yan et al. 2017) and Cucumis
sativus (Liu et al. 2016). Recently, a bHLH transcription factor, SlMYC1 has been
identified as regulator of the development of type VI glandular trichomes as well as
terpenoid biosynthesis in tomato (Xu et al. 2018).

17.8 Conclusions and Future Outlook

Glandular trichomes belong to defense repertoire of plants against invading pest and
pathogens. These structures have also been implicated in conferring tolerance against
abiotic stresses such as drought, UV and heavy metal challenge. The impressively
active metabolic and genetic machinery enable them to overproduce, accumulate
and secrete secondary metabolites that include some economically important natural
products. For obvious reasons, glandular trichomes have potential to be developed as
production system for economically important secondary metabolites through strate-
gic metabolic engineering involving tools of genome engineering. This approach
appears to be attractive to fuel the attempts towards development of alternate pro-
duction system for those secondarymetabolites,which are biosynthesized by rare and
endangered plant species. The next generation transcriptome sequencing and other
related approaches have been instrumental in identification of genes involved in the
trichome specific natural product biosynthesis. However, a detailed understanding of
metabolic and gene regulatory networks leading to the biosynthesis and accumula-
tion of metabolites in glandular trichomes awaits further investigations. There is also
a need of isolation and characterization of novel and highly active trichome specific
promoters. Another important area of research is to understand molecular basis of
glandular trichome development, which, as of now, remains poorly understood. The
knowledge about molecular regulators of glandular trichome development will be
useful in enhancing trichome density and thereby the yield of trichome localized
metabolites. Further, glandular trichomes can serve as a rich pool of useful genes
which could be potential targets for systematic transgenesis towards development of
plants tolerant to environmental stresses. However, by now, only a limited number of
genes, particularly those involved in secondary metabolism in trichomes have been
characterized. It is therefore desirable to carry out investigations pertaining to the
elucidation of functions of other trichome specific genes. Altogether the compre-
hensive and detailed knowledge of fundamental aspects of trichome biology will
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provide new leads to plant biologists to exploit the untapped biotechnological poten-
tial of trichomes to engineer plants that would exhibit increased resistance to pests
and tolerance to many abiotic stresses and also would produce specialized natural
compounds of valuable industrial/pharmaceutical potential.
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