Skip to main content

Conducting Polymers as Cost Effective Counter Electrode Material in Dye-Sensitized Solar Cells

  • Chapter
  • First Online:
Solar Energy

Abstract

Dye-sensitized solar cells (DSCs) are third generation photovoltaic devices capable of harvesting solar energy to generate electricity. DSCs have gained significant research interest during past decades due to its high theoretical power conversion efficiencies and most importantly the cost effectiveness and environment friendly fabrication process. Firstly, in this chapter, the function of the counter electrode (CE) in a DSC has been discussed in brief. The CE participates in the electron transfer from the external circuit back to the redox mediator thereby catalyzing its regeneration reaction. In the state of art DSCs, Pt has been the preferred CE material. Properties such as promising conductivity and high electrocatalytic activity towards the process of reduction of \( {\text{I}}^{-}_{3} \) to \( {\text{I}}^{-}\) which is the typical redox mediator, contributes to its applicability as the preferred CE material. However, the use of Pt CE adhere major drawbacks such as the high cost and its susceptibility to undergo corrosion. These limitations have emphasized the importance of exploring alternative cost effective functional materials with better conductivity and electrocatalytic properties. Subsequently, the limitations of using Pt as the CE materials, and the advantages and challenges associated with alternative materials have been elaborated. Conducting polymers with extended conjugate electron systems are a promising substitute material for Pt in DSCs. A wide range of conducting polymers and polymer hybrid composites have been investigated for their applicability as CEs in DSCs. These polymers have gained popularity not just due to cost effectiveness compared to Pt but also due to their promising conductivity, superior electrocatalytic properties, easy preparation and fabrication. Different types of conjugated polymers and polymer hybrid composites, their synthetic methods, fabrication processes and their respective photovoltaic performances are then reviewed. Finally, the future prospects of conducting polymers as CE material has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wamg F (2004) Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the oriented attachment mechanism. J Am Chem Soc 126:14943–14949

    Article  CAS  Google Scholar 

  • Ahmad S, Yum J-H, Xianxi Z, Gratzel M, Butt H-J, Nazeeruddin MK (2010) Gye-sensitized solar cells based on poly (3,4,-ethylenedioxythiophene) counter electrode derived from ionic liquids. J Mater Chem 20:1654–1658

    Article  CAS  Google Scholar 

  • Ameen S, Shaheer Akhtar M, Kim G-S, Kim YS (2009) Plasma-enhanced polymerized aniline/TiO2 dye-sensitized solar cells. J Alloy Compd 487:382–386

    Article  CAS  Google Scholar 

  • Ameen S, Akhtar MS, Kim YS, Yang O-B, Shin H-S (2010) Sulfamic acid-doped polyaniline nanofibres thin-film based counter electrode: application in dye-sensitized solar cells. J. Phys. Chem. 114(10):4760–4764

    CAS  Google Scholar 

  • Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585

    Article  CAS  Google Scholar 

  • Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin SM, Gratzel M (2008) High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat Mater 7:626–630

    Article  CAS  Google Scholar 

  • Bay L, West K, Winther-Jensen B, Jacobsen T (2006) Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system. Solar Energy Mater Solar Cells 90(3):341–351

    Article  CAS  Google Scholar 

  • Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42(11):1819–1826

    Article  CAS  Google Scholar 

  • Braga A, Moreira S, Zampieri P, Bacchin J, Mei P (2008) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92(4):418–424

    Article  CAS  Google Scholar 

  • Bu C, Tai Q, Liu Y, Guo S, Zhao X (2013) A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J Power Sources 221:78–83

    Article  CAS  Google Scholar 

  • Cao F, Oskam G, Searson PC (1995) A solid state, dye sensitized photoelectrochemical cell. J Phys Chem 99(47):17071–17073

    Article  CAS  Google Scholar 

  • Chen Z, Cotterell B, Wang W, Guenther E, Chua SJ (2001) A mechanical assessment of flexible optoelectronic devices. Thin Solid Films 394(1):201–205

    Article  Google Scholar 

  • Chen D, Huang F, Cheng Y, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye sensitized solar cells. Adv Mater 21:2206–2210

    Article  CAS  Google Scholar 

  • Chiang C-H, Chen S-C, Wu C-G (2013) Preparation of highly concentrated and stable conducting polymer solutions and their application in high-efficiency dye-sensitized solar cell. Org Electron 14(9):2369–2378

    Article  CAS  Google Scholar 

  • Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han LY (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys Part 2 45 (24–28):L638–L640

    Google Scholar 

  • Cui X, Xie Z, Wang Y (2016) Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 8(23):11984–11992

    Article  CAS  Google Scholar 

  • Daeneke T, Uemura Y, Duffy NW, Mozer AJ, Koumura N, Bach U, Spiccia L (2012) Aqueous dye-sensitized solar cell electrolytes based on the ferricyanideferrocyanide redox couple. Adv Mater

    Google Scholar 

  • Fan B, Mai X, Sun K, Ouyang J (2008) Conducting polymer/carbon nanotube composite as counter electrode of dye sensitized solar cells. Appl. Phys. Lett. 93:143103

    Article  CAS  Google Scholar 

  • Fonstad C, Rediker R (1971) Electrical properties of high-quality stannic oxide crystals. J Appl Phys 42(7):2911–2918

    Article  CAS  Google Scholar 

  • Fu D, Huang P, Bach U (2012) Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition—correlation of nanostructure, catalytic activity and optical properties. Electrochim Acta 77:121–127

    Article  CAS  Google Scholar 

  • Gao L, Mao X, Zhu H, Xiao W, Gan F, Wang D (2014) Electropolymerization of PEDOT on CNTs conductive network assembled at water/oil interface. Electrochim Acta 136(1):97–104

    Google Scholar 

  • Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16:5848–5860

    Article  CAS  Google Scholar 

  • Gong F, Xu X, Zhou G, Wang Z-S (2013) Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys Chem Chem Phys 15(2):546–552

    Article  CAS  Google Scholar 

  • Gorlov M, Pettersson H, Hagfeldt A, Kloo L (2007) Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids. Inorg Chem 46(9):3566–3575

    Article  CAS  Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414(6861):338–344

    Article  Google Scholar 

  • Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4(2):145–153

    Article  CAS  Google Scholar 

  • Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851

    Article  CAS  Google Scholar 

  • Guan G, Yang Z, Qiu L, Sun X, Zhang Z, Ren J (2013) Oriented PEDOT:PSS on aligned carbon nanotubes for efficient dyesensitized solar cells. J Mater Chem A 1(42):13268–13273

    Google Scholar 

  • Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33(5):269–277

    Article  CAS  Google Scholar 

  • He B, Tang Q, Luo J, Li Q, Chen X, Cai H (2014) Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: improved photovoltaic performances of dyesensitized solar cells. J Power Sour 256:170–177

    Article  CAS  Google Scholar 

  • Hou S, Cai X, Wu H, Lv Z, Wang D, Fu Y, Zou D (2012) Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells. J Power Sour 215:164–169

    Article  CAS  Google Scholar 

  • Huang KC, Huang JH, Wu CH, Liu CY, Chen HW, Chu CW, Lin CL, Ho KC (2011) Nanographite/polyaniline composite films as the counter electrodes for dye-sensitized solar cells. J Mater Chem 21:10384–10389

    Article  CAS  Google Scholar 

  • Hwang DK, Song D, Jeon SS, Han TH, Kang YS, Im SS (2014) Ultrathin polypyrrole nanosheets doped with HCl as counter electrodes in dye-sensitized solar cells. J Mater Chem A 2(3):859

    Article  CAS  Google Scholar 

  • Jeon SS, Kim C, Ko J, Im SS (2011) Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J Mater Chemi 21(22):8146–8151

    Article  CAS  Google Scholar 

  • Jeon N, Hwang DK, Kang YS, Im SS, Kim D-W (2013) Quasi-solid state dye-sensitized solar cells assembled with polymeric ionic liquid and poly(3,4,-ethylenedioxythiophene) counter electrode. Electrochem Commun 34:1–4

    Article  CAS  Google Scholar 

  • Jiang X, Li H, Li S, Huang S, Zhu C, Hou L (2018) Metal-organic framework-derived Ni–Co alloy@carbon microspheres as high-performance counter electrode catalysts for dye-sensitized solar cells. Chem Eng J 334:419–431

    Article  CAS  Google Scholar 

  • Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J-I, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897

    Article  CAS  Google Scholar 

  • Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459

    Article  CAS  Google Scholar 

  • Lee P (2019) Solar energy. In: Managing global warming-an interface of technology and human issues, pp 317–332

    Google Scholar 

  • Lee C, Wei X, Kyssar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  • Lee Y, Kim B, Ifitiquar S, Park C, Yi J (2014) Silicon solar cells: Past, present and the future. J Korean Phys Soc 65(3):355–361

    Article  CAS  Google Scholar 

  • Li Q, Wu J, Tang Q, Lan Z, Li P, Lin J, Fan L (2008) Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochem Commun 10:1299–1302

    Article  CAS  Google Scholar 

  • Li C-T, Lee C-P, Fan M-S, Chen P-Y, Vittal R, Ho K-C (2014) Ionic liquiddoped poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells: cationic and anionic effects on the photovoltaic performance. Nano Energy 9:1–14

    Article  CAS  Google Scholar 

  • Macdiarmid AG (1997) Polyaniline and polypyrrole: where are we headed. Synth Met 84:27–34

    Article  CAS  Google Scholar 

  • Maiaugree W, Lowpa S, Towannang M, Rutphonsan P, Tangtrakarn A, Pimanpang S, Maiaugree P, Ratchapolthavisin N, Sang-aroon W, Jarernboon W, Amornkitbamrung V (2015) A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste. Sci Rep 5:15230

    Article  CAS  Google Scholar 

  • Makris T, Dracopoulos V, Sterigiopoulos T, Lianos P (2011) A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta 56:2004–2008

    Article  CAS  Google Scholar 

  • Mishra A, Fischer MKR, Bauerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angewandte Chemie Int Ed 48(14):2474–2499

    Google Scholar 

  • Murakami TN, Ito S, Wang Q, Nazeeruddin MK, Bessho T, Cesar I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153(12):A2255–A2261

    Article  CAS  Google Scholar 

  • Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Mueller E, Liska P, Vlachopoulos N, Graetzel M (1993) Conversion of light to electricity by cis-X2bis (2,20-bipyridyl-4,40-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X¼ Cl–, Br–, I–, CN–, and SCN–) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115(14):6382–6390

    Article  CAS  Google Scholar 

  • Nazeeruddin MK, Pechy P, Gratzel M (1997) Efficient panchromatic sensitization ¨ of nanocrystalline TiO2 films by a black dye based on atrithiocyanatoruthenium complex. Chem Commun 18:1705–1706

    Article  Google Scholar 

  • Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248:1455–1468

    Article  CAS  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  • Park NG, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells. J Phys Chem B 104(38):8989–8994

    Article  CAS  Google Scholar 

  • Peng T, Sun W, Huang C, Yu W, Sebo B, Dai Z, Guo S, Zhao XZ (2013) Self-assembled free-standing polypyrrole nanotube membrane as an efficient FTO- and Pt-free counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 6:14–17

    Article  CAS  Google Scholar 

  • Perera IR, Gupta A, Xiang W, Baeneke T, Bach U, Evans RA, Spiccia L (2014) Introducing manganese complexes as redox mediators for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16(24):12021–12028

    Article  CAS  Google Scholar 

  • Rahman MS, Hammed WA, Yahya RB, Mahmud HNME (2016) Prospects of conducting polymer and graphene as counter electrodes in dye-sensitized solar cells. J Polym Res 23:192–205

    Article  CAS  Google Scholar 

  • Saranya K, Rameez Md, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—an overview. Eur Polymer J 66:207–227

    Article  CAS  Google Scholar 

  • Sekkarapatti M, Nikolakapoulou A, Raptis D, Dracopoulos V, Paterakis G, Lianos P (2015) Reduced graphene oxide/Polypyrrole/PEDOT composite films as efficient Pt-free counter electrode for dye-sensitized solar cells. 173:276–281

    Google Scholar 

  • Sima C, Grigoriu C, Antohe S (2010) Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 519(2):595–597

    Article  CAS  Google Scholar 

  • Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K (2010) In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J Phys Chem C 114(26):11673–11679

    Article  CAS  Google Scholar 

  • Sun X, Li Y, Dou J, Shen D, Wei M (2016) Metal-organic frameworks derived carbon as a high-efficiency counter electrode for dye-sensitized solar cells. J Power Sources 232:93–98

    Article  CAS  Google Scholar 

  • Tahar RBH, Ban T, Ohya Y, Takahashi Y (1998) Tin doped indium oxide thin films: electrical properties. J Appl Phys 83(5):2631–2645

    Article  Google Scholar 

  • Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X-Z (2011) In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. ACS Nano 5:3795–3799

    Article  CAS  Google Scholar 

  • Tang Q, Cai H, Yuan S, Wang X (2013) Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J Mater Chem A 1(2):317–323

    Article  CAS  Google Scholar 

  • Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS (2014) A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A 2(13):4474–4490

    Article  CAS  Google Scholar 

  • Upadhyaya HM, Hirata N, Haque SA, de Paoli M-A, Durrant JR (2006) Kinetic competition in flexible dye sensitised solar cells employing a series of polymer electrolytes. Chem Commun 8:877–879

    Article  CAS  Google Scholar 

  • U.S. Energy Information Administration (2016) International energy outlook-2016

    Google Scholar 

  • Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2(6):402–407

    Article  CAS  Google Scholar 

  • Wang Z-S, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    Article  CAS  Google Scholar 

  • Wang M, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Gratzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2(5):385–389

    Article  CAS  Google Scholar 

  • Wang H, Feng Q, Gong F, Li Y, Zhou G, Wang Z-S (2013) In situ growth of oriented polyaniline nano wires array for efficient cathode of Co(III)/Co(II) mediated dye-sensitized solar cell. J Mater Chem A 1:97–104

    Article  Google Scholar 

  • World Energy Council (2016). https://www.worldenergy.org/wp-content/uploads/2016/10/World-Energy-Resources-Full-report-2016.10.03.pdf

  • World Nuclear Association (2019) Renewable Energy and electricity, sustainable energy, renewable energy. http://www.world-nuclear.org/information-library/energy-and-the-environment/renewable-energy-and-electricity.aspx)

  • Wu J, Li Q, Fan L, Lan Z, Li P, Lin J, Hao S (2008) High-performance polypyrrole nanoparticles CE for dye-sensitized solar cells. J Power Sources 181:172–176

    Article  CAS  Google Scholar 

  • Wu J, Li Y, Tang Q, Yue G, Lin J, Huang M (2014). Bifacial dyesensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci Rep 4

    Google Scholar 

  • Xia J, Chen L, Yanagida S (2011) Application of polypyrrole as a CE for a dye-sensitized solar cell. J Mater Chem 21:4664–4649

    Google Scholar 

  • Xiao YM, Lin JY, Wu JH, Tai SY, Chou S-W, Yue GT, Wu J (2012) Pulse electropolymerization of high performance PEDOT/MWCNT CEs for Pt-free dye sensitized solar cells. J Mater Chem 22:19919–19925

    Article  CAS  Google Scholar 

  • Xiao Y, Lin J-Y, Wang W-Y, Tai S-Y, Yue G, Wu J (2013) Enhanced performance of low-cost dye-sensitized solar cells with pulse-electropolymerized polyaniline CEs. Electrochim Acta 90:468–474

    Article  CAS  Google Scholar 

  • Xiao Y, Han G, Li Y, Li M, Chang Y (2014) High performance of Pt-free dye-sensitized solar cells based on two-step electropolymerized polyaniline CEs. J Mat Chem A 2:3452–3460

    Article  CAS  Google Scholar 

  • Xu M, Li R, Pootrakulchote N, Shi D, Guo J, Yi Z, Zakeeruddin SM, Grätzel M, Wang P (2008) Energy-level and molecular engineering of organic D-p-A sensitizers in dye-sensitized solar cells. J Phys Chem C 112(49):19770–19776

    Article  CAS  Google Scholar 

  • Xu J, Li M, Wu L, Sun Y, Zhu L, Gu S, Liu L, Bai Z, Fang D, Xu W (2014a) A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells. J Power Sour 257:230–236

    Article  CAS  Google Scholar 

  • Xu P, Tang Q, Chen H, He B (2014b) Insights of close contact between polyaniline and FTO substrate for enhanced photovoltaic performances of dye-sensitized solar cells. Electrochim Acta 125:163–169

    Article  CAS  Google Scholar 

  • Yang F (2009) Thin film solar cells grown by organic vapor phase deposition. Princeton University

    Google Scholar 

  • Yang S-C, Yang D-J, Kim J, Hong J-M, Kim H-M, Kim H-d, Lee H (2008) Hallow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells. Adv Mater 20:1059–1064

    Article  CAS  Google Scholar 

  • Yella A, Lee HW, Tsao N, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency [science (629)]. Science 334(6060):1203

    CAS  Google Scholar 

  • Yen Y-S, Chou H-H, Chen Y-C, Hsu C-Y, Lin JT (2012) Recent developments in molecule-based organic materials for dye-sensitized solar cells. J Mater Chem 22(18):8734–8747

    Article  CAS  Google Scholar 

  • Yue G, Wu J, Xiao Y, Lin J, Huang M, Lan Z (2012) Application of poly(3,4- ethylenedioxythiophene):polystyrenesulfonate/polypyrrole counter electrode for dye-sensitized solar cells. J Phys Chem C 116(34):18057–18063

    Article  CAS  Google Scholar 

  • Yue G, Wu J, Xiao Y, Lin J, Huang M, Fan L (2013a) A dye-sensitized solar cell based on PEDOT:PSS counter electrode. Chin Sci Bull 58(4–5):559–566

    Article  CAS  Google Scholar 

  • Yue G, Wu J, Xiao Y, Lin J, Huang M, Lan Z (2013b) Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy 54:315–321

    Article  CAS  Google Scholar 

  • Yun S, Freitas JN, Nogueira AF, Wang Y, Ahmad S, Wang Z (2015) Dye sensitized solar cells employing polymers. Progr Polymer Sci 59:1–40

    Article  CAS  Google Scholar 

  • Zhang T-L, Chen H-Y, Su C-Y, Kuang D-B (2013) A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells. J Mater Chem A 1(5):1724

    Article  CAS  Google Scholar 

  • Zhou H, Wu L, Gao Y, Ma T (2011) Dye-sensitized solar cells using 20 natural dyes as sensitizers. J Photochem Photobiol A Chem 219(2–3):188–194

    Google Scholar 

  • Zhu H, Wei J, Wang K, Wu D (2009) Applications of carbon materials in photovoltaic solar cells. Sol Energy Mater Sol Cells 93(9):1461–1470

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samodha Subhashini Gunathilaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunasekera, S.S.B., Perera, I.R., Gunathilaka, S.S. (2020). Conducting Polymers as Cost Effective Counter Electrode Material in Dye-Sensitized Solar Cells. In: Tyagi, H., Chakraborty, P., Powar, S., Agarwal, A. (eds) Solar Energy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0675-8_17

Download citation

Publish with us

Policies and ethics