Skip to main content

p-Type Dye Sensitized Solar Cells: An Overview of Factors Limiting Efficiency

  • Chapter
  • First Online:
Solar Energy

Abstract

The energy crisis is a global problem that drives investment on renewable energy sources worldwide. Utilization of solar energy has become an effective strategy for sustainable energy generation, as it has the potential to fill the energy gap created due to the depletion of fossil fuel. On the ever-extending ladder of solar harvesting technologies, third generation dye-sensitized solar cells (DSCs) have the advantages of better cost effectiveness and environmental footprint when compared to the first-generation silicon solar cells and second-generation thin film photovoltaics. The ultimate goal of constructing high-efficiency multi-junction devices has set the target of improving single junction components of DSCs (n- and p-type), separately. The pace of development of single junction p-DSCs has been much slower than that of n-DSCs. Discovery of suitable materials and techniques have lifted the performance of n-DSCs to more than 14% since it was first reported in 1991. On the other hand, p-DSCs have a maximum efficiency of 2.51%. It is important to bridge the gap between the efficiencies of these single junction configurations, in order to adopt the concept of multi-junction/tandem-DSCs that have the potential to reach higher efficiencies by harvesting a larger fraction of the solar spectrum. This chapter focuses on reviewing literature on development of p-DSCs. First, as an introduction, the structure, function and kinetics of p-DSCs are described. Next, the two main factors that affect the overall performance of a p-DSC; light harvesting capacity, and energy loss within the device, are comprehensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed J, Blakely CK, Prakash J, Bruno SR, Yu M, Wu Y, Poltavets VV (2014) Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications. J Alloy Compd 591:275–279

    Article  CAS  Google Scholar 

  • Awais M, Dowling DD, Rahman M, Vos JG, Decker F, Dini D (2013) Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells. J Appl Electrochem 43:191–197

    Article  CAS  Google Scholar 

  • Awais M, Gibson E, Vos JG, Dowling DP, Hagfeldt A, Dini D (2014) Fabrication of efficient NiO photocathodes prepared via RDS with novel routes of substrate processing for p-type dye-sensitized solar cells. ChemElectroChem 1:384–391

    Article  CAS  Google Scholar 

  • Bach U, Lupo D, Comte P, Moser J, Weissörtel F, Salbeck J, Spreitzer H, Grätzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583

    Article  CAS  Google Scholar 

  • Baxter JB (2012) Commercialization of dye sensitized solar cells: present status and future research needs to improve efficiency, stability, and manufacturing. J Vacuum Sci Technol Vacuum Surf Films 30:020801

    Article  CAS  Google Scholar 

  • Bessho T, Yoneda E, Yum J-H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin MK, Grätzel M (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934

    Article  CAS  Google Scholar 

  • Bomben PG, Thériault KD, Berlinguette CP (2011) Strategies for optimizing the performance of cyclometalated ruthenium sensitizers for dye-sensitized solar cells. Eur J Inorg Chem 2011:1806–1814

    Article  CAS  Google Scholar 

  • Bomben PG, Robson KC, Koivisto BD, Berlinguette CP (2012) Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coord Chem Rev 256:1438–1450

    Article  CAS  Google Scholar 

  • Bonomo M, Barbero N, Matteocci F, Carlo AD, Barolo C, Dini D (2016) Beneficial effect of electron-withdrawing groups on the sensitizing action of squaraines for p-type dye-sensitized solar cells. J Phys Chem C 120:16340–16353

    Article  CAS  Google Scholar 

  • Bonomo M, Congiu M, de Marco ML, Dowling DP, di Carlo A, Graeff CF, Dini D (2017a) Limits on the use of cobalt sulfide as anode of p-type dye-sensitized solar cells. J Phys D Appl Phys 50:215501

    Article  CAS  Google Scholar 

  • Bonomo M, Sabuzi F, di Carlo A, Conte V, Dini D, Galloni P (2017b) KuQuinones as sensitizers for NiO based p-type dye-sensitized solar cells. New J Chem 41:2769–2779

    Article  CAS  Google Scholar 

  • Chapin DM, Fuller C, Pearson G (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    Article  CAS  Google Scholar 

  • Chapin DM, Fuller CS, Pearson GL (1957) Solar energy converting apparatus. Google Patents

    Google Scholar 

  • Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006). Dye-sensitized solar cells with conversion efficiency of 11.1%. Jap J Appl Phys 45:L638

    Google Scholar 

  • Congiu M, Bonomo M, Marco MLD, Dowling DP, di Carlo A, Dini D, Graeff CF (2016) Cobalt sulfide as counter electrode in p-Type dye-sensitized solar cells. ChemistrySelect 1:2808–2815

    Article  CAS  Google Scholar 

  • Cui J, Lu J, Xu X, Cao K, Wang Z, Alemu G, Yuang H, Shen Y, Xu J, Cheng Y (2014) Organic sensitizers with pyridine ring anchoring group for p-type dye-sensitized solar cells. J Phys Chem C 118:16433–16440

    Article  CAS  Google Scholar 

  • Daniel U, Anamaria D, Sebarchievicia I, Miclau M (2017) Photovoltaic performance of Co-doped CuCrO2 for p-type dye-sensitized solar cells application. Energy Procedia 112:497–503

    Article  CAS  Google Scholar 

  • Du S, Cheng P, Sun P, Wang B, Cai Y, Liu F, Zheng J, Lu G (2014) Highly efficiency p-type dye sensitized solar cells based on polygonal star-morphology Cu2O material of photocathodes. Chem Res Chin Univ 30:661–665

    Article  CAS  Google Scholar 

  • Fraas LM (2014) History of solar cell development. Springer, Berlin

    Book  Google Scholar 

  • Gao J, Miao J, Li P-Z, Teng WY, Yang L, Zhao Y, Liu B, Zhang Q (2014) A p-type Ti (IV)-based metal–organic framework with visible-light photo-response. Chem Commun 50:3786–3788

    Article  CAS  Google Scholar 

  • Gennari M, Légalité F, Zhang L, Pellegrin Y, Blart E, Fortage J, Brown AM, Deronzier A, Collomb M-N, Boujtita M (2014) Long-lived charge separated state in NiO-based p-type dye-sensitized solar cells with simple cyclometalated iridium complexes. J Phys Chem Lett 5:2254–2258

    Article  CAS  Google Scholar 

  • Georgios Coutsolelos A, Nikolaou V, Plass F, Planchat A, Charisiadis A, Charalambidis G, Angaridis P, Kahnt A, Odobel F (2018) The effect of the triazole ring in hybrid electron donor-acceptor systems towards light harvesting in NiO-based devices

    Google Scholar 

  • Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustain Energy Rev 68:234–246

    Article  CAS  Google Scholar 

  • Grätzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philos. Trans. R. Soc. A: Math Phys Eng Sci 365:993–1005

    Article  CAS  Google Scholar 

  • Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798

    Article  CAS  Google Scholar 

  • Hadsadee S, Rattanawan R, Tarsang R, Kungwan N, Jungsuttiwong S (2017) Push-Pull N-annulated perylene-based sensitizers for dye-sensitized solar cells: theoretical property tuning by DFT/TDDFT. ChemistrySelect 2:9829–9837

    Article  CAS  Google Scholar 

  • Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  • He M, Ji Z, Huang Z, Wu Y (2014) Molecular orbital engineering of a panchromatic cyclometalated Ru (II) dye for p-type dye-sensitized solar cells. J Phys Chem C 118:16518–16525

    Article  CAS  Google Scholar 

  • Ji Z, Natu G, Huang Z, Kokhan O, Zhang X, Wu Y (2012) Synthesis, photophysics, and photovoltaic studies of ruthenium cyclometalated complexes as sensitizers for p-type NiO dye-sensitized solar cells. J Phys Chem C 116:16854–16863

    Article  CAS  Google Scholar 

  • Ji Z, Natu G, Wu Y (2013) Cyclometalated ruthenium sensitizers bearing a triphenylamino group for p-type NiO dye-sensitized solar cells. ACS Appl Mater Interfaces 5:8641–8648

    Article  CAS  Google Scholar 

  • Jiang J-Q, Sun C-L, Shi Z-F, Zhang H-L (2014) Squaraines as light-capturing materials in photovoltaic cells. RSC Adv 4:32987–32996

    Article  CAS  Google Scholar 

  • Jiang T, Bujoli-Doeuff M, Farré Y, Blart E, Pellegrin Y, Gautron E, Boujtita M, Cario L, Odobel F, Jobic S (2016) Copper borate as a photocathode in p-type dye-sensitized solar cells. RSC Adv 6:1549–1553

    Article  CAS  Google Scholar 

  • Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J-I, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    Article  CAS  Google Scholar 

  • Kato N, Moribe S, Shiozawa M, Suzuki R, Higuchi K, Suzuki A, Sreenivasu M, Tsuchimoto K, Tatematsu K, Mizumoto K (2018) Improved conversion efficiency of 10% for solid-state dye-sensitized solar cells utilizing P-type semiconducting CuI and multi-dye consisting of novel porphyrin dimer and organic dyes. J Mater Chem A 6:22508–22512

    Article  CAS  Google Scholar 

  • Law KY, Bailey FC (1992) Squaraine chemistry. Synthesis, characterization, and optical properties of a class of novel unsymmetrical squaraines:[4-(dimethylamino) phenyl](4’-methoxyphenyl) squaraine and its derivatives. J Organic Chem 57:3278–3286

    Article  CAS  Google Scholar 

  • Lefebvre J-F, Sun X-Z, Calladine JA, George MW, Gibson EA (2014) Promoting charge-separation in p-type dye-sensitized solar cells using bodipy. Chem Commun 50:5258–5260

    Article  CAS  Google Scholar 

  • Li B, Wang L, Kang B, Wang P, Qiu Y (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:549–573

    Article  CAS  Google Scholar 

  • Liu Z, Li W, Topa S, Xu X, Zeng X, Zhao Z, Wang M, Chen W, Wang F, Cheng Y-B (2014a) Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells. ACS Appl Mater Interfaces 6:10614–10622

    Article  CAS  Google Scholar 

  • Liu Z, Xiong D, Xu X, Arooj Q, Wang H, Yin L, Li W, Wu H, Zhao Z, Chen W (2014b) Modulated charge injection in p-type dye-sensitized solar cells using fluorene-based light absorbers. ACS Appl Mater Interfaces 6:3448–3454

    Article  CAS  Google Scholar 

  • Lu J, Liu Z, Pai N, Jiang L, Bach U, Simonov AN, Cheng YB, Spiccia L (2018) Molecular engineering of zinc-porphyrin sensitisers for p-type dye-sensitised solar Cells. ChemPlusChem 83:711–720

    Article  CAS  Google Scholar 

  • Lyu S, Farré Y, Ducasse L, Pellegrin Y, Toupance T, Olivier C, Odobel F (2016) Push–pull ruthenium diacetylide complexes: new dyes for p-type dye-sensitized solar cells. RSC Adv. 6:19928–19936

    Article  CAS  Google Scholar 

  • Marinakis N, Willgert M, Constable EC, Housecroft CE (2017) Optimization of performance and long-term stability of p-type dye-sensitized solar cells with a cycloruthenated dye through electrolyte solvent tuning. Sustain Energy Fuels 1:626–635

    Article  CAS  Google Scholar 

  • Miclau M, Miclau N, Banica R, Ursu D (2017) Effect of polymorphism on photovoltaic performance of CuAlO2 delafossite nanomaterials for p-type dye-sensitized solar cells application. Mater Today 4:6975–6981

    Google Scholar 

  • Nattestad A, Perera I, Spiccia L (2016) Developments in and prospects for photocathodic and tandem dye-sensitized solar cells. J Photochem Photobiol, C 28:44–71

    Article  CAS  Google Scholar 

  • Novelli V, Awais M, Dowling DP, Dini D (2015) Electrochemical characterization of rapid discharge sintering (RDS) NiO cathodes for dye-sensitized solar cells of p-type. Am. J. Anal. Chem 6:176–187

    Article  CAS  Google Scholar 

  • Odobel F, Pellegrin Y (2013) Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 4:2551–2564

    Article  CAS  Google Scholar 

  • O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737

    Google Scholar 

  • Outlook AE (2018) With projection to 2050, US Energy Information Administration (EIA), 6 Feb 2018

    Google Scholar 

  • Perera IR, Daeneke T, Makuta S, Yu Z, Tachibana Y, Mishra A, Bäuerle P, Ohlin CA, Bach U, Spiccia L (2015) Application of the tris (acetylacetonato) iron (III)/(II) Redox Couple in p-Type Dye-Sensitized Solar Cells. Angew Chem Int Ed 54:3758–3762

    Article  CAS  Google Scholar 

  • Perera I, Hettiarachchi C, Ranatunga R (2019) Metal–organic frameworks in dye-sensitized solar cells. In: Advances in solar energy research. Springer, Berlin

    Google Scholar 

  • Powar S, Daeneke T, Ma MT, Fu D, Duffy NW, Götz G, Weidelener M, Mishra A, Bäuerle P, Spiccia L (2013) Highly efficient p-Type dye-sensitized solar cells based on tris (1, 2-diaminoethane) cobalt (II)/(III) Electrolytes. Angew Chem Int Ed 52:602–605

    Article  CAS  Google Scholar 

  • Powar S, Xiong D, Daeneke T, Ma MT, Gupta A, Lee G, Makuta S, Tachibana Y, Chen W, Spiccia L (2014) Improved photovoltages for p-type dye-sensitized solar cells using CuCrO2 nanoparticles. J Phys Chem C 118:16375–16379

    Article  CAS  Google Scholar 

  • Renaud AL, Cario L, Deniard P, Gautron E, Rocquefelte X, Pellegrin Y, Blart E, Odobel F, Jobic S (2013a) Impact of Mg doping on performances of CuGaO2 based p-type dye-sensitized solar cells. J Phys Chem C 118:54–59

    Article  CAS  Google Scholar 

  • Renaud AL, Chavillon B, Cario L, Pleux LCL, Szuwarski N, Pellegrin Y, Blart E, Gautron E, Odobel F, Jobic SP (2013b) Origin of the black color of NiO used as photocathode in p-type dye-sensitized solar cells. J Phys Chem C 117:22478–22483

    Article  CAS  Google Scholar 

  • Renaud A, Cario L, Pellegrin Y, Blart E, Boujtita M, Odobel F, Jobic S (2015) The first dye-sensitized solar cell with p-type LaOCuS nanoparticles as a photocathode. RSC Adv 5:60148–60151

    Article  CAS  Google Scholar 

  • Sabuzi F, Armuzza V, Conte V, Floris B, Venanzi M, Galloni P, Gatto E (2016) KuQuinones: a new class of quinoid compounds as photoactive species on ITO. J Mater Chem C 4:622–629

    Article  CAS  Google Scholar 

  • Shah A, Platz R, Keppner H (1995) Thin-film silicon solar cells: a review and selected trends. Sol Energy Mater Sol Cells 38:501–520

    Article  CAS  Google Scholar 

  • Sheibani E, Zhang L, Liu P, Xu B, Mijangos E, Boschloo G, Hagfeldt A, Hammarström L, Kloo L, Tian H (2016) A study of oligothiophene–acceptor dyes in p-type dye-sensitized solar cells. Rsc Adv 6:18165–18177

    Article  CAS  Google Scholar 

  • Shi Z, Lu H, Liu Q, Cao F, Guo J, Deng K, Li L (2014) Efficient p-type dye-sensitized solar cells with all-nano-electrodes: NiCo2S4 mesoporous nanosheet counter electrodes directly converted from NiCo2O4 photocathodes. Nanoscale Res Lett 9:608

    Article  CAS  Google Scholar 

  • Tian H (2019) Solid-state p-type dye-sensitized solar cells: progress, potential applications and challenges. Sustain Energy Fuels

    Google Scholar 

  • Tian L, Föhlinger J, Pati PB, Zhang Z, Lin J, Yang W, Johansson M, Kubart T, Sun J, Boschloo G (2017) Ultrafast dye regeneration in a core–shell NiO–dye–TiO2 mesoporous film. Phys Chem Chem Phys 20:36–40

    Article  Google Scholar 

  • Ursu D, Dabici A, Vajda M, Bublea N-C, Duteanu N, Miclau M (2018) Effect of Cu2O morphology on photovoltaic performance of p-type dye-sensitized solar cells. Ann West Univ Timisoara-Phys 60:67–74

    Article  CAS  Google Scholar 

  • Venkatraman V, Raju R, Oikonomopoulos SP, Alsberg BK (2018) The dye-sensitized solar cell database. J Cheminform 10:18

    Article  CAS  Google Scholar 

  • Wu H, Zhang T, Wu C, Guan W, Yan L, Su Z (2016) A theoretical design and investigation on Zn-porphyrin-polyoxometalate hybrids with different π-linkers for searching high performance sensitizers of p-type dye-sensitized solar cells. Dyes Pigm 130:168–175

    Article  CAS  Google Scholar 

  • Xiong D, Zhang W, Zeng X, Xu Z, Chen W, Cui J, Wang M, Sun L, Cheng YB (2013) Enhanced performance of p-type dye-sensitized solar cells based on ultrasmall Mg-doped CuCrO2 nanocrystals. Chemsuschem 6:1432–1437

    Article  CAS  Google Scholar 

  • Xu X, Zhang B, Cui J, Xiong D, Shen Y, Chen W, Sun L, Cheng Y, Wang M (2013) Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale 5:7963–7969

    Article  CAS  Google Scholar 

  • Xu Z, Xiong D, Wang H, Zhang W, Zeng X, Ming L, Chen W, Xu X, Cui J, Wang M (2014) Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO 2 nanoplates. J Mater Chem A 2:2968–2976

    Article  CAS  Google Scholar 

  • Xu B, Wrede S, Curtze A, Tian L, Pati P, Kloo L, Wu Y, Tian H (2019) An indacenodithieno [3, 2‐b] thiophene based organic dye for solid‐state p‐Type dye‐sensitized solar cells. ChemSusChem

    Google Scholar 

  • Yu M, Natu G, Ji Z, Wu Y (2012) p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J Phys Chem Lett 3:1074–1078

    Article  CAS  Google Scholar 

  • Yu Z, Perera IR, Daeneke T, Makuta S, Tachibana Y, Jasieniak JJ, Mishra A, Bäuerle P, Spiccia L, Bach U (2016) Indium tin oxide as a semiconductor material in efficient p-type dye-sensitized solar cells. NPG Asia Mater 8:e305

    Article  CAS  Google Scholar 

  • Yum J-H, Baranoff E, Wenger S, Nazeeruddin MK, Grätzel M (2011) Panchromatic engineering for dye-sensitized solar cells. Energy Environ Sci 4:842–857

    Article  CAS  Google Scholar 

  • Zannotti M, Wood CJ, Summers GH, Stevens LA, Hall MR, Snape CE, Giovanetti R, Gibson EA (2015) Ni Mg mixed metal oxides for p-type dye-sensitized solar cells. ACS Appl Mater Interfaces 7:24556–24565

    Article  CAS  Google Scholar 

  • Zhang L, Boschloo G, Hammarström L, Tian H (2016) Solid state p-type dye-sensitized solar cells: concept, experiment and mechanism. Phys Chem Chem Phys 18:5080–5085

    Article  CAS  Google Scholar 

  • Zhu L, Yang HB, Zhong C, Li CM (2014) Rational design of triphenylamine dyes for highly efficient p-type dye sensitized solar cells. Dyes Pigm 105:97–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to Mr. Dushan Wijewardena for the extended support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishanie Rangeeka Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peiris, S., Ranatunga, R.J.K.U., Perera, I.R. (2020). p-Type Dye Sensitized Solar Cells: An Overview of Factors Limiting Efficiency. In: Tyagi, H., Chakraborty, P., Powar, S., Agarwal, A. (eds) Solar Energy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0675-8_16

Download citation

Publish with us

Policies and ethics