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Key Points
•	 Myopia is a significant global public health and socioeconomic problem.
•	 Pathologic myopia has become a major cause of blindness or visual impair-

ment in both Asian and Western populations.
•	 Myopia may be a highly heritable trait, with environmental influences such 

as outdoor activity playing important roles in its development and 
progression.

•	 Control of myopia in children is important, and various strategies includ-
ing pharmacologic and lens-related interventions have proven efficacy.

•	 Imaging is important to detect complications of pathologic myopia, and both 
medical and surgical interventions may be useful for their management.
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1.1	 �Global Epidemiology

Myopia has become a significant global public health and socioeconomic problem 
[1–4]. East Asia, and other parts of the world to a lesser extent, has been faced with an 
increasing prevalence of myopia [5, 6]. The prevalence of myopia and high myopia 
(HM) (the definition of myopia and HM is spherical equivalence (SE) of −0.50 diop-
ters (D) or less and SE −5.00 D or −6.00 D, respectively) in young adults in urban 
areas of East Asian countries has risen to 80–90% and around 20%, respectively [7, 
8]. According to a summary of 145 studies regarding the global prevalence of myopia 
and HM, there are approximately 1950 million with myopia (28.3% of the global pop-
ulation) and 277 million with HM (4.0% of the global population), and these numbers 
are predicted to increase to 4758 million (49.8% of the global population) for myopia, 
and 938 million (9.8% of the global population) for HM by 2050 [9].

The prevalence of childhood myopia is substantially higher in urban East Asian 
countries (49.7–62.0% among 12-year-old children) [7, 10] compared with other 
countries (6.0–20.0% among 12-year-old children) [9]. Similarly, in teenagers and 
young adults, the prevalence of myopia is higher in East Asian countries (65.5–
96.5%) [8] compared with other countries (12.8–35.0%) [9]. However, the geo-
graphic difference of myopia prevalence in older populations is less than that in 
younger populations. The prevalence rates of myopia in adults in urban East Asian 
countries are only slightly higher than in Western countries.

The prevalence of myopia has remained consistently high among Chinese chil-
dren in urban settings, but the evidence does not support the idea that it is caused 
by purely genetic difference [10]. The association of an urbanized setting with high 
myopia rates is likely to be influenced by possible modifiable risk factors such as 
near work and outdoor time.

Despite the relatively low prevalence in the general population, pathologic myo-
pia (PM) is a major cause of blindness or visual impairment in both Asian and 
Western populations. One study has shown that the prevalence of PM was 28.7% 
among high myopes and 65% of those with HM and were over 70 years old had PM 
[11]. Based on the global prediction of HM on 2050, PM may increase to over 200 
million in future [9]. Treatment strategies against PM have not been effective [12].

Generational differences in prevalence are seen with the highest rates in young 
adults (myopia 65.5–96.5% and HM 6.8–21.6%) and the lowest rates in older adults 
(myopia 25.0–40.0% and HM 2.4–8.2%). The disease progression pattern of HM 
and subsequent development of PM may be different between young adults and 
older adults due to generational differences, or changes in the lifestyle factors such 
as the education system, near work, and outdoor time exposure in rapidly develop-
ing urban Asian countries.

1.2	 �Pathogenesis of Myopia

Ocular Biometric Changes in Human Myopia  The axial length of the eye or, 
more precisely, the vitreous chamber depth is the primary individual biometric con-
tributor to refractive error in children, young adults, and the elderly [13–15], with 
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the vitreous chamber depth accounting for over 50% of the observed variation in 
spherical equivalent refractive error (SER), followed by the cornea (~15%) and 
crystalline lens (~1%) [15]. However, the dimensions, curvature, and refractive 
index of each individual ocular structure contribute to the final refractive state. The 
choroid is typically thinner in myopic compared to non-myopic eyes (most pro-
nounced at the fovea [16, 17]) and thins with increasing myopia and axial length in 
both adults [18–25] and children [26–28]. Significant choroidal thinning is also 
observed in eyes with posterior staphyloma [29], and has been associated with the 
presence of lacquer cracks [30], choroidal neovascularization [31], and reduced 
visual acuity [32]. The choroid also appears to be a biomarker of ocular processes 
regulating eye growth given that the central macular choroid thins during the initial 
development and progression of myopia [33–35] and thickens in response to 
imposed peripheral myopic retinal image defocus [36, 37], topical anti-muscarinic 
agents [38, 39], and increased light exposure [40]; clinical interventions associated 
with a slowing of eye growth in children.

Visual Environment, Emmetropization, and Myopia  Much of the knowledge on 
vision-dependent changes in ocular growth has emanated from animal experiments 
in which either the quality of image formed on the retina is degraded (known as 
form deprivation [FD]), or the focal point of the image is altered with respect to the 
retinal plane (known as lens defocus). Both FD and lens defocus result in abnormal 
eye growth and development of refractive errors.

Monochromatic Higher-Order Aberrations as a Myopigenic Stimulus  Myopia 
may develop due to the eye’s emmetropization response to inherent ocular aberra-
tions that degrade retinal image quality and trigger axial elongation [41]. Evidence 
concerning the relationship between higher order abberation (HOAs) during dis-
tance viewing and refractive error from cross-sectional studies is conflicting [41, 
42]. However, during or following near-work tasks, adult myopic eyes tend to dis-
play a transient increase in corneal and total ocular HOAs, suggesting a potential 
role for near-work-induced retinal image degradation in myopia development [43, 
44]. Longitudinal studies of myopic children also indicate that eyes with greater 
positive spherical aberration demonstrate slower eye growth [45, 46].

Accommodation  Given the association between near work and the development 
and progression of childhood myopia [47], numerous studies have compared various 
characteristics of accommodation between refractive error groups. Typically, this 
involves the accuracy of the accommodation response, since lag of accommodation 
(hyperopic retinal defocus) may stimulate axial elongation as observed in some ani-
mal models. The slowing of myopia progression during childhood with progressive 
addition or bifocal lenses, designed to improve accommodation accuracy and mini-
mize lag of accommodation, adds some weight to the role of accommodation in 
myopia development and progression [48, 49]. However, the exact underlying mech-
anism of myopia control with such lenses may be related to imposed peripheral reti-
nal defocus or a reduction in the near vergence demand [50]. Certainly, elevations in 
measured lag observed in myopes arise after rather than before onset [51].
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1.3	 �Key Environmental Factors on Myopia

Near work and education: Many studies have established a strong link between 
myopia and education [52–57]. Moreover, Mountjoy et al. have shown that expo-
sure to longer duration of education was a causal risk factor for myopia [53]. The 
exact mechanism linking increased education with myopia is unclear. Although it is 
possible that optical [43, 58] or biomechanical [59, 60] ocular changes associated 
with near work could potentially promote myopic eye growth in those with higher 
levels of education (and hence near-work demands), population studies examining 
the link between near-work activities and myopia have been conflicting, with some 
studies suggesting an association between near work and myopia [47, 61], and oth-
ers indicating no significant effects [62]. The relatively inconsistent findings linking 
near work with myopia development suggests a potential role for other factors in the 
association between education and myopia.

Outdoor Activity  A number of recent studies report that the time children spend 
engaged in outdoor activities is negatively associated with their risk of myopia [62–68]. 
Both cross-sectional and longitudinal studies indicate that greater time spent outdoors 
is associated with a significantly lower myopia prevalence and reduced risk of myopia 
onset in childhood. Although some studies report significant associations between 
myopia progression and outdoor activity [66, 68], this is not a consistent finding across 
all longitudinal studies [69]. A recent meta-analysis of studies examining the relation-
ship between outdoor time and myopia indicated that there was a 2% reduction in the 
odds of having myopia for each additional hour per week spent outdoors [70].

Duration of Outdoor Activity and Myopia  In a large longitudinal study, Jones and 
colleagues [62] reported that children who engaged in outdoor activities for 14 h per 
week or more exhibited the lowest odds of developing myopia. A number of recent 
randomized controlled trials have reported that interventions that increase children’s 
outdoor time (by 40–80 min a day) significantly reduce the onset of myopia in child-
hood [71–73]. In the “Role of outdoor activity in myopia study” [74], children who 
were habitually exposed to low ambient light levels (on average less than 60 min 
exposure to outdoor light per day) had significantly faster axial eye growth compared 
to children habitually exposed to moderate and high light. These findings from 
human studies suggest that children who are exposed to less than 60 min a day of 
bright outdoor light are at an increased risk of more rapid eye growth and myopia 
development, and that approximately 2 h or more of outdoor exposure each day is 
required to provide protection against myopia development in the human eye.

1.4	 �Genetics of Myopia

Myopia is highly heritable; genes explain up to 80% of the variance in refractive 
error in twin studies. For the last decade, genome-wide association study (GWAS) 
approaches have revealed that myopia is a complex trait, with many genetic variants 
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of small effect influencing retinal signaling, eye growth, and the normal process 
of emmetropization. Particularly notable are genes encoding extracellular matrix-
related proteins (COL1A1, COL2A1 [75, 76], and MMP1, MMP2, MMP3, MMP9, 
MMP10 [77, 78]). For candidates such as PAX6 and TGFB1, the results were repli-
cated in multiple independent extreme/high myopia studies and validated in a large 
GWAS meta-analysis in 2018, respectively [79, 80]. However, the genetic architec-
ture and its molecular mechanisms are still to be clarified, and while genetic risk 
score prediction models are improving, this knowledge must be expanded to have 
impact on clinical practice.

Gene–environment (GxE) interaction analysis has focused primarily on educa-
tion. An early study in North American samples examined GxE for myopia and 
the matrix metalloproteinases genes (MMP1–MMP10): a subset of single nucleo-
tide polymorphism (SNPs) was only associated with refraction in the lower educa-
tion level [78, 81]. A subsequent study in five Singapore cohorts found variants 
in DNAH9, GJD2, and ZMAT4, which had a larger effect on myopia in a high 
education subset [82]. Subsequent efforts to examine GxE considered the aggregate 
effects of many SNPs together. A study in Europeans found that a genetic risk score 
comprising 26 genetic variants was most strongly associated with myopia in indi-
viduals with a university level education [83]. A study examining GxE in children 
considered near work and time outdoors in association with 39 SNPs and found 
weak evidence for an interaction with near work [83, 84]. Finally, a Consortium 
for Refractive Error and Myopia (CREAM) study was able to identify additional 
myopia risk loci by allowing for a GxE approach [85].

Mendelian randomization (MR) offers a better assessment of causality than that 
available from observational studies [86, 87]. Two MR studies found a causal effect of 
education on the development of myopia [53, 80]. Both found a larger effect through 
MR than that estimated from observational studies suggesting that confounding in 
observational studies may have been obscuring the true relationship [55, 79]. As 
expected, there was little evidence of myopia affecting education (−0.008  years/
diopter, P = 0.6). Another study focused on the causality of low vitamin D on myopia 
found only a small estimated effect on refractive error [88] suggesting that previous 
observational findings were likely confounded by the effects of time spent outdoors.

Due to the high polygenicity of myopia and low explained phenotypic variance 
by genetic factors (7.8%), clinical applications derived from genetic analyses of 
myopia are currently limited. Risk predictions for myopia in children are based 
on family history, education level of the parents, the amount of outdoor exposure, 
and the easily measurable refractive error and axial length. Currently, we are able 
to make a distinction between high myopes and high hyperopes based on the poly-
genic risk scores derived from CREAM studies: persons in the highest decile for 
the polygenic risk score had a 40-fold greater risk of myopia relative to those in 
the lowest decile. A prediction model, including age, sex, and polygenic risk score, 
achieved an area under curve (AUC) of 0.77 (95% CI  =  0.75–0.79) for myopia 
versus hyperopia in adults (Rotterdam Study I–III) [80]. To date, one study has 
assessed both environmental and genetic factors together and showed that modeling 
both genes and environment improved prediction accuracy [89].

1  Introduction and Overview on Myopia: A Clinical Perspective
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1.5	 �Prevention of the Onset of Myopia

The vast majority of literature suggests that most cases of myopia develop during 
the school-going age in children. After the age of 6 years, the prevalence of myopia 
starts to rise [90–94]. The highest annual incidence of myopia is reported among 
school children from urban mainland China [92] and Taiwan [95], ranging from 
20% to 30% through ages 7–14 years, with earlier onset of myopia also being iden-
tified [94]. A study in Japan showed that while the prevalence of myopia has been 
increasing from 1984 to 1996, the prevalence among children aged 6 or younger has 
remained unchanged. This suggests that the majority of increased myopia onset is 
secondary to increased educational intensity [94].

Rates of progression increase dramatically with the year of onset and this has 
been suggested by spherical equivalent refraction and axial length [96]. Myopic 
refractions tend to stabilize in late adolescent but can remain progressive until adult-
hood. The mean age at myopia stabilization is 15.6 years but this can vary among 
children of different ethnicities [97].

Several factors have been found to be associated with the development of inci-
dent myopia in school. Asian ethnicity [93, 98], parental history of myopia [62, 
99], reduced time outdoors [62], and level of near-work activity [47, 100] are risk 
factors for incident myopia, although the evidence can be seen as controversial in 
some instances.

Evidence of time spent outdoors as a risk factor for myopia progression was first 
presented in a 3-year follow-up study of myopia in school children, showing that 
those who spent more time outdoors were less likely to progress [64]. Consistent 
results were reported in various studies, such as the Sydney Myopia Study, Orinda 
Study, as well as the Singapore Cohort Study of Risk Factors for Myopia [63, 65, 
101]. This led to the commencement of several clinical trials which confirmed the 
protective effect and indicated a dose-dependent effect, among them, the randomized 
clinical trial in Guangzhou which reported that an additional 40 min of outdoor activ-
ity can reduce the incidence of myopia by 23% [63]. Additionally, the trial in Taiwan 
suggested that an extra 80 min may further reduce incidence by 50% [72, 73].

Near-work activity as a risk factor for myopia has not been entirely consistent. 
A meta-analysis reported a modest, but statistically significant, association between 
time spent performing near work and myopia (odds ratio, 1.14) [47]. Core tech-
niques to implementing interventions of near-work activities include effective mea-
sures of near-work-related parameters, real-time data analyses, and alert systems. 
Wearable devices that possess these techniques have emerged in the last decade.

It has been estimated that without any effective controls or interventions the 
proportion of myopes in the population will reach up to 50% and 10% for high 
myopes by 2050 [9]. Approaches that have produced a reduction of at least 50% 
in incidence, such as time outdoors, lead to delayed onset and have the potential to 
make a significant difference on the impending myopia epidemic.

Another critical issue is the need to balance educational achievement and inter-
ventions to prevent myopia progression in East Asia. This balance can be seen in 
Australia [102], with not only some of the highest educational ranks in the world but 
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also high levels of outdoor activity and light intensity. Preventing the onset of myo-
pia is certainly challenging in the East Asian population and requires a collaborative 
effort among clinics, schools, parents, and the entire society.

1.6	 �Understanding Pathologic Myopia

Pathologic myopia (PM) is a major cause of blindness in the world, especially in 
East Asian countries [103–107]. The cause of blindness in patients with PM includes 
myopic maculopathy with or without posterior staphyloma, myopic macular reti-
noschisis, and glaucoma or glaucoma-like optic neuropathy. The term “pathologic 
myopia” describes the situation of pathologic consequences of a myopic axial 
elongation. According to a recent consensus article by Ohno-Matsui et al. [108], 
pathologic myopia was defined by a myopic chorioretinal atrophy equal to or more 
serious than diffuse atrophy (by Meta-analysis for pathologic myopia (META-PM) 
study group classification [109]) and/or the presence of posterior staphylomas.

A posterior staphyloma is an outpouching of a circumscribed area of the poste-
rior fundus, where the radius of curvature is less than the curvature radius of the sur-
rounding eye wall [110], and can be associated with, or lead to, vision-threatening 
complications such as myopic maculopathy [109, 111–114] and myopic optic neu-
ropathy/glaucoma [115, 116]. Based upon and modifying Curtin’s [117] classical 
categorization of posterior staphylomas, with types I–V as primary staphylomas 
and types VI–X as compound staphylomas, Ohno-Matsui [118] used 3D-magnetic 
resonance imaging (3D-MRI) and wide-field fundus imaging to re-classify staphy-
lomas into six types: wide macular, narrow macular, peripapillary, nasal, inferior, 
and others.

In the META-PM classification [109], myopic maculopathy lesions have been 
categorized into five categories from “no myopic retinal lesions” (category 0), “tes-
sellated fundus only” (category 1), “diffuse chorioretinal atrophy” (category 2), 
“patchy chorioretinal atrophy” (category 3), to “macular atrophy” (category 4). 
These categories were defined based on long-term clinical observations that showed 
the progression patterns and associated factors of the development of myopic cho-
roidal neovascularization (CNV) for each stage. Three additional features were 
added to these categories and were included as “plus signs”: (1) lacquer cracks, (2) 
fuch spot and (3) myopic CNV.

Myopic CNV is a major sight-threatening complication of pathologic myopia. It 
is the most common cause of CNV in individuals younger than 50 years, and it is the 
second most common cause of CNV overall [119, 120]. Anti-vascular endothelial 
growth factor (anti-VEGF) therapy is the first-line treatment for myopic CNV, as 
shown by the RADIANCE study [121] and the MYRROR study [122].

Panozzo and Mercanti proposed the term “myopic traction maculopathy (MTM)” 
to encompass various findings characterized by a traction as visualized by optical 
coherence tomography (OCT) in highly myopic eyes [123]. A dome-shaped macula 
(DSM) is an inward protrusion of the macula as visualized by OCT [124–126]. 
Imamura, Spaide, and coworkers reported that a DSM was associated with, and 
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caused by, a local thickening of the subfoveal sclera [127]. It was postulated that the 
local thickening of the subfoveal sclera was an adaptive or compensatory response 
to the defocus of the image on the fovea in highly myopic eyes.

1.7	 �Imaging in Myopia

Imaging the myopic eye can be challenging due to various structural changes 
(abnormal eye elongation, scleral and corneal curvature irregularities, cataracts 
leading to poor clarity; or retinal thinning causing abnormal projections of the final 
image [128, 129]).

Optic disc imaging can also be used to predict the development of glaucoma, 
where visualization of myopic tilting of the optic disc with peripapillary atrophy 
(PPA) and pitting of the optic disc [130] is a possible predisposing factor [131, 132]. 
Serial imaging investigative measures can therefore be utilized for monitoring the 
development of open-angle, normal-tension glaucoma [133]. Features such as optic 
disc tilt, PPA, and abnormally large or small optic discs are the earliest known struc-
tural alterations that potentially predict the development of pathological myopia and 
can be observed even in young highly myopic adults. Unfortunately, these features 
(some also with associations to glaucoma) also interfere with the visualization of 
optic disc margins [134, 135] and are also not easy to discern in highly myopic 
eyes [136]. There is also added difficulty in eyes with myopic maculopathy, where 
visual field defects result in further interference [137]. As such, the answer to these 
challenges may lie in imaging deep optic nerve head structures (such as parapapil-
lary sclera, scleral wall, and lamina cribosa) [138] in highly myopic eyes for more 
precise diagnoses of glaucoma.

The ability to view distinct retinal layers with OCT has enhanced visualization 
of myopic traction maculopathy (MTM). Examples of features that can be seen 
include inner or outer retinal schisis, foveal detachment, lamellar or full-thickness 
macular hole, and/or macular detachment [139, 140]. Non-stereoscopic fundus pho-
tographs are inadequate for detailed studies of posterior staphylomas as the change 
in contour at the staphyloma edge is not always discernible. The OCT overcomes 
this limitation because of its excellent depth resolution [141, 142].

The OCT itself has its shortcomings; the sclera cannot be visualized using the 
OCT. These limitations also extend to the use of OCT angiography (OCTA). There 
is currently no standard protocol for segmentation; the outcome parameters for 
OCTA have not been clearly defined either. Although some authors have tried to 
use analysis of flow voids or signal voids in the choriocapillaris to quantify the 
area taken up by the microvasculature [143, 144], the data pertaining to myopic 
patients are but insufficient [145]. Looking into the future, there is, however, incipi-
ent research suggesting that the comprehension of blood supply and changes in 
vasculature from the anterior to the posterior segment of the myopic eye is crucial 
to the understanding of the disease [146–149].

Photoacoustic imaging has shown promise recently to fill the gaps between OCT 
and ultrasound in terms of penetration depth [150]. This modality has been used 
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before to image the posterior pole of the eye in vitro and in animal models in vivo. 
This can also be used in concurrence with angiography, measuring oxygen satura-
tion and pigment imaging [151]. However, there are some limitations pertaining to 
this modality notwithstanding moderate depth resolution, pure optical absorption 
sensing, need for contact detection with ultrasound sensor, and a relatively long 
acquisition time. In view of these limitations, we are yet to receive tangible results 
from photoacoustic imaging for posterior pole imaging in humans.

1.8	 �Glaucoma in Myopia

Axial myopization leads to marked changes of the optic nerve head: (1) an enlarge-
ment of all three layers of the optic disc (i.e., optic disc Bruch’s membrane open-
ing, optic disc choroidal opening, optic disc scleral opening) with the development 
of a secondary macrodisc, (2) an enlargement and shallowing of the cup, (3) an 
elongation and thinning of the lamina cribrosa with a secondary reduction in the 
distance between the intraocular space with the intraocular pressure (IOP) and the 
retro-lamina compartment with the orbital cerebrospinal fluid pressure, (4) a direct 
exposure of the peripheral posterior lamina cribrosa surface to the orbital cerebro-
spinal fluid space, (5) an elongation and thinning of the peripapillary scleral flange 
with development and enlargement of the parapapillary gamma zone and delta zone, 
(6) an elongation and thinning of the peripapillary border tissue of the choroid, 
and (7) a rotation of the optic disc around the vertical axis, and less often and to a 
minor degree around the horizontal axis und the sagittal axis. These changes make it 
more difficult to differentiate between myopic changes and (additional) glaucoma-
associated changes such as a loss of neuroretinal rim and thinning of the retinal 
nerve fiber layer, and these changes may make the optic nerve head more vulner-
able, potentially explaining the increased prevalence of glaucomatous optic neu-
ropathy in highly myopic eyes.

Population-based investigations and hospital-based studies have shown that the 
prevalence of glaucomatous optic neuropathy (GON) was higher in highly myopic 
eyes than in emmetropic eyes [152–166]. A previous study revealed that at a given 
IOP in patients with chronic open-angle glaucoma, the amount of optic nerve dam-
age was more marked in highly myopic eyes with large optic discs than in non-
highly myopic eyes [165].

Highly myopic glaucomatous eyes as compared with non-highly myopic glau-
comatous eyes may have a markedly lower IOP threshold to develop optic nerve 
damage. It could indicate that an IOP of perhaps lower than 10 mmHg might be 
necessary to prevent the development of GON in these highly myopic eyes, and that 
in highly myopic eyes with axial elongation-associated enlargement and stretching 
of the optic disc and parapapillary region as the main risk factors for GON in high 
myopia a normal IOP may be sufficient to lead to GON [136].

Although it has not yet been firmly proven that GON in high myopia is depen-
dent on IOP, most researchers recommend lowering IOP in highly myopic patients 
with glaucoma. Based on the morphological findings described above, the target 
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pressure in highly myopic glaucoma may be lower than in non-highly myopic glau-
coma. Due to the peculiar anatomy of the optic nerve head in highly myopic eyes, 
most diagnostic procedures fail in precisely assessing the status of the optic nerve 
in highly myopic eyes with glaucoma. It includes factors such as a decreased spa-
tial and color contrast between the neuroretinal rim and the optic cup making a 
delineation of both structures more difficult; a peripapillary retinoschisis leading 
to an incorrect segmentation of the retinal nerve fiber layer upon optical coher-
ence tomography; a large gamma zone (and delta zone) which makes using the end 
of Bruch’s membrane as reference point for the measurement of the neuroretinal 
rim useless; and macular Bruch’s membrane defects and other reasons for non-
glaucomatous visual field defects which reduces the diagnostic precision of perim-
etry for the detection of presence and progression of GON.

1.9	 �Management of Myopic Choroidal Neovascularization

Myopic choroidal neovascularization (myopic CNV) is the second most common 
cause of CNV after age-related macular degeneration (AMD) [167, 168]. It is one 
of the most sight-threatening complications of pathological myopia [119, 169] and is 
the most common cause of CNV in those 50 years or younger [167], with significant 
social and economic burden. The prevalence of myopic CNV is between 5.2% and 
11.3% in individuals with pathological myopia [12], with female preponderance seen 
in most studies [167–170]. The long-term outcome of CNV is poor if left untreated. In 
a 10-year follow-up study of 25 patients with myopic CNV, visual acuity deteriorated 
to 20/200 or worse in 89% and 96% of eyes in 5 years and 10 years, respectively [168].

On slit-lamp biomicroscopy, myopic CNV manifests as a small, flat, grayish subret-
inal lesion adjacent to or beneath the fovea [109, 168, 169, 171]. On SD-OCT, myopic 
CNV presents as a hyper-reflective material above the retinal pigment epithelium band 
(type 2 CNV), with variable amount of subretinal fluid. Clinical diagnosis is confirmed 
by fundus fluorescein angiography (FFA). Most myopic CNVs are type 2 neovascular-
ization and present with a “classic” pattern on FA. OCT angiography (OCTA) was able 
to detect flow within myopic CNV vascular complexes and hence delineate vascular 
networks in these myopic neovascular membranes that lie above the retinal pigment 
epithelium (RPE) where flow signals are spared from attenuation [172].

Prior to the advent of anti-VEGF therapy, the main treatment options for myopic 
CNV were limited to thermal laser photocoagulation [173], photodynamic ther-
apy with verteporfin (vPDT) [174, 175]. These treatments had limited efficacy in 
improving vision significantly and have now largely been relegated to the annals of 
history by anti-vascular endothelial growth factor (anti-VEGF) therapy [176]. Once 
active myopic CNV is diagnosed, prompt treatment with intravitreal anti-VEGF 
therapy should be administered as soon as possible [121, 177]. Current evidence 
suggests a pro-re-nata (PRN) regimen without a loading phase can be considered 
in most patients. Patients should be monitored monthly with OCT and treatment 
administered until cessation of disease activity on OCT or visual stabilization.
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1.10	 �Management of Myopia-Related Retinal Complications

Myopic traction maculopathy (MTM) [123] is estimated to occur in approxi-
mately 8–34% in individuals with high myopia [178–180] and encompasses reti-
nal thickening, macular retinoschisis, foveal detachment, lamellar macular hole 
with or without epiretinal membrane and/or vitreomacular traction [123], and/
or full-thickness macular hole (HM) with or without retinal detachment. Central 
to the pathogenesis of MTM is traction, which was postulated to arise from one 
or more of the following mechanisms [181]: vitreomacular traction associated 
with perifoveal posterior vitreous detachment (PVD) [182–184]; relative incom-
pliance of the internal limiting membrane (ILM) [185–189], epiretinal membrane 
(ERM) [180, 182, 190–192], and cortical vitreous remnant after PVD [193] to the 
outer retina which conforms to the shape of the posterior staphyloma; and traction 
exerted by retinal arterioles [188, 194, 195]. Not all patients with MTM require 
interventions [184, 196, 197]. There are numerous reported interventions for 
MTM. The principles of the treatment are: (1) to relieve traction, mainly achieved 
through pars plana vitrectomy (PPV) with or without ILM peeling; (2) to mini-
mize surgical damage to the weakened macula through technique modifications 
in order to prevent the formation of postoperative MH; and (3) in the presence 
of full-thickness MH, to maximize the chance of hole closure through the use of 
various surgical adjuncts.

1.10.1	 �Proposed Adjuncts to Improve Outcome of Macular Hole 
Surgery

Inverted Internal Limiting Membrane Flap  This technique involves leaving a 
hinge of ILM flap at the edge of MH during ILM peeling. This ILM flap is then 
inverted upside-down to cover or fill the MH [198].

Autologous Internal Limiting Membrane Transplantation  In eyes where ILM 
around the macula hole has already been removed, an appropriately sized ILM can 
be peeled off from a distant site and placed as a free flap onto the persistent MH 
[199, 200].

Autologous Blood  In order to prevent subretinal migration of dye and the resultant 
retinal toxicity associated with vital stains, it was proposed to use autologous blood 
to cover the MH before injection of brilliant blue dye. It has been demonstrated that 
compared to conventional method, the use of pre-staining autologous blood led to 
better visual acuity outcomes and continuity of ellipsoid zone at all post-operative 
time points [201].

Lens Capsular Flap Transplantation  Chen et al. demonstrated a 100% MH clo-
sure rate with anterior capsular transplantation among patients with refractory MH, 

1  Introduction and Overview on Myopia: A Clinical Perspective



12

whereas the complete closure rate of MH after posterior capsular transplantation 
was only 50% and with another 30% enjoyed partial MH closure [202].

Macular Buckle  Macular buckles have been used to shorten the axial length of 
myopic eyeballs in conditions such as macular hole retinal detachment (MHRD), 
myopic foveoschisis with or without foveal detachment, and MH with foveoschisis. 
There are many types of macular buckle, including scleral sponge, T-shaped or 
L-shaped buckle, Ando Plombe, wire-strengthened sponge exoplant, and even 
donor sclera and suprachoroidal injectable long-acting hyaluronic acid [203].

Autologous Neurosensory Retinal Transplantation  The technique involves 
bimanually harvesting a free flap of neurosensory retina superior to the superotem-
poral arcade, with the harvest site first secured by endolaser barricade and endodia-
thermy. The free flap was translocated in its correct orientation over the macular 
hole and perfluoro-n-octane heavy liquid (PFC) was instilled over it, followed by 
direct PFC–silicone oil exchange [204].

Figure 1.1 presents an overview of the management of myopia-related complica-
tions in adults.

1.11	 �Management and Control of Myopia in Children

Currently, there are many types of interventions to slow myopia progression in chil-
dren, including spectacle lenses, contact lenses, pharmaceuticals, and environmen-
tal or behavioral modification. However, none of these myopia control methods 
have been proven to stop the development or progression of myopia completely and 
each method has their own limitations.

Fig. 1.1  Summary of the clinical management of pathologic myopia in adults

C. W. Wong et al.
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Spectacle Lenses  Under-correction of myopia in clinical trials has shown con-
flicting results and small, clinically insignificant effect on slowing myopia pro-
gression [205–207]. In view of these conflicting results, there is no convincing 
evidence to indicate that under-correction should be used to slow myopia 
progression.

Bifocal or Multifocal Spectacles  Most studies showed that progressive addi-
tion lenses (PALs) have an insignificant effect on slowing myopia progression 
rate (less than 0.2 D per year) overall [48, 208–214]. In contrast, a randomized, 
controlled trial showed that executive bifocal lenses slowed myopia progression 
in Chinese-Canadian children aged 8–13 years by 39% and up to 51% with base-
in prisms incorporated over 3  years [215]. More recently, the Defocus 
Incorporated Multiple Segments (DIMS) spectacle lens enabled clear vision and 
myopic defocus simultaneously for the wearer [216]. Hong Kong Chinese chil-
dren aged 8–13 years wearing DIMS lenses had approximately 60% less myopia 
progression and axial elongation when compared with children wearing single 
vision spectacle lenses over 2  years. Moreover, about 20% of the DIMS lens 
wearers had no myopia progression during the study period.

Peripheral Myopic Defocus Glasses  In 2010, Sankaridurg et al. published their 
results of three novel peripheral defocus spectacle lens. Unfortunately, there was no 
significant effect on myopic progression with all three designs [217]. In a recent 
randomized controlled trial (RCT) conducted in Japanese children with peripheral 
defocus lenses, no difference in myopia reduction was found [218].

Rigid Gas Permeable Contact Lenses  Two randomized clinical trials [219, 220] 
showed that rigid gas permeable (RGP) contact lenses did not retard axial eye growth. 
However, Walline et al. [219] reported significant slower myopia progression in the 
group of RGP lenses compared with soft contact lenses, despite that no differences 
were found in axial elongation between the groups. The proposed reason for a treat-
ment effect on refraction may be due to the changes in corneal curvature.

Orthokeratology  Orthokeratology (Ortho-K) lenses are specially designed RGP 
contact lenses that are worn overnight to reshape the cornea and thereby temporarily 
correct low-to-moderate myopia. Various clinical studies have demonstrated the 
effectiveness of inhibiting myopic progression with Ortho-K. Individual studies and 
meta-analyses have shown a 32–63% reduction in the rate of axial elongation in 
East Asian children initially aged from 7 to 16 years and followed for up to 5 years 
[221–227]. Efficacy may decrease over time [224, 228], with a potential “rebound” 
after discontinuation, especially in children under 14 years [229]. There is also a 
potential non-response rate of 7–12% [223]. Interestingly, a recent study in Japan 
[230] showed that the combination of Ortho-K and low-concentration atropine 
(0.01%) eyedrops was more effective in slowing axial elongation over 12 months 
than Ortho-K treatment alone in myopic children. The risk of infective keratitis 
remains [231].
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Soft Bifocal and Multifocal Contact Lenses  These lenses are worn during the 
daytime. Compared to spectacles, contact lenses are more cosmetically acceptable, 
more easily handled, and are more convenient for daily activities of some children, 
especially during sports [232, 233]. For most of eye-care practitioners, the fitting 
procedures of soft bifocal contact lenses are relatively simpler than Ortho-K. Overall, 
soft bifocal and multifocal contact lenses slow the progression of myopia in chil-
dren by an amount comparable to that of Ortho-K lenses. Studies exploring the 
effect of these bifocal soft contact lenses indicate slowing of myopia progression by 
25–50% and axial length by 27–32% in children aged 8–16 of various ethnicities 
over a period of 24 months [234, 235].

Atropine  The initial high doses of atropine (i.e., 0.5% or 1.0%) slowed myopia pro-
gression by more than 70% in Asian children aged 6–13 years over 1–2 years [229, 
236–238]. However, lower doses (0.1% or less) can also slow refractive progression by 
30–60% with less side effects (pupil dilation, glare, or blur) [238]. The Atropine 
Treatment of Myopia (ATOM) studies showed that there was a myopic rebound if 
atropine was stopped suddenly, especially at higher doses and in younger children 
[239, 240].

Time Spent Outdoors  In the Sydney Myopia Study, exposure to more than 2 h of 
outdoor activity per day decreased the odds of myopia and countered the effects of 
near work [65]. Interventions involving increasing time outdoors appeared to reduce 
the onset of myopia and also its progression in myopic children [71]. A meta-
analysis has suggested a 2% reduced odds of myopia per additional hour of time 
spent outdoors per week [70].

Environmental Interventions  Based on new evidence, the advice has shifted 
from spending at least 2 h per day outdoors in addition to avoiding excessive near 
work. This has changed health and school messaging in many East Asian coun-
tries [71].

Higher Light Intensities and Dopamine  Potential reasons why time outdoors 
may be protective include higher light intensities [241], differences in chromatic 
composition [242], the reduction in dioptric accommodative focus and psychomet-
ric influences encountered outdoors [243]. The role of chromaticity (red and blue) 
and ultraviolet (UV) light is still uncertain [244], while that of higher vitamin D 
levels has been debunked [88].

Figure 1.2 presents an overview of the management and prevention of myopia 
in children.

C. W. Wong et al.
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