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Chapter 26
Live Imaging of the Skin Immune 
Responses

Zachary Chow, Gyohei Egawa, and Kenji Kabashima

26.1  �Introduction

Amongst the various organs in the human body, the skin is particularly unique due 
to its diverse set of roles. From physical to immune protection, thermoregulation for 
homeostasis and sensory functions, the skin can do it all. This can, however, some-
times be a double-edged sword. Although skin immune cells can confer protection 
against invading pathogens, they can also become aberrant, leading to autoimmune 
diseases such as alopecia areata and vitiligo. Histology, flow cytometry and RNA 
sequencing have been useful tools in the analysis and understanding of immune cell 
function in the skin in normal and diseased states. These techniques are, however, 
unable to reveal the dynamics of immune cell migration and cellular interaction in 
these states in real-time. The technique most suitable for this is the in vivo imaging 
of the skin. In this chapter, we will cover some tools that are utilized for this, and 
examine key studies that have advanced our understanding of immune responses in 
the skin.
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26.2  �The Skin and Its Key Immune Cells

Histologically, the skin can be divided into two distinct sections, each with their 
own set of immune cells that function to keep the skin healthy. The upper layer, 
known as the epidermis, contains keratinocytes and Langerhans cells (LCs), whereas 
the dermis contains innate immune cells, including macrophages, neutrophils, mast 
cells, as well as cells for adaptive immune responses, such as dermal dendritic cells 
(DCs) and T cells (Fig. 26.1).

Fig. 26.1  A brief schematic of skin immune cells under steady state and inflammatory 
conditions
In the steady state, resident populations of LCs, dermal DCs, macrophages, mast cells and T cells 
exist within the skin. LCs are immobilized between keratinocytes in the epidermis whereas dermal 
DCs actively migrate around the dermis (Ng et al. 2008). Dermal macrophages are present through-
out the dermis as well as around the dermal vasculature where mast cells also typically reside. 
Resident CD4+ and CD8+ T cells are also present throughout the dermal regions (Carbone 2015; 
Clark et al. 2006) whereas Tregs preferentially localize around the hair follicles (Ali et al. 2017; 
Chow et al. 2013)
During inflammation, neutrophils are swiftly mobilized and recruited to the site of inflammation 
(Goh et al. 2015). T cells are also recruited to the inflamed site albeit at a slower rate. Perivascular 
macrophages induce the recruitment and formation of DC clusters around dermal vessels that also 
contain T cells for efficient antigen presentation and activation (Natsuaki et al. 2014)
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26.2.1  �Dendritic Cells

DCs are specialized antigen-presenting cells (APCs) that are key to the develop-
ment of immune responses. DCs are a heterogeneous population and, in steady-state 
skin, exist as LCs in the epidermis (Romani et al. 2010), and as dermal DCs in the 
dermis (Ginhoux et al. 2009). During inflammation, more DC subsets are recruited 
and can be found in the skin— these are the monocyte-derived DCs (Leon and 
Ardavin 2008) and plasmacytoid DCs (Nestle et al. 2009; Wollenberg et al. 2002). 
Emerging evidence in the field of LC biology highlights the similarities between LC 
and macrophage ontogeny, leading to the idea that LCs may be a specialized subset 
of tissue-resident macrophages with the capabilities of DCs (Doebel et al. 2017; 
Kaplan 2017).

26.2.2  �Neutrophils

Neutrophils are short-lived, multi-nucleated leukocytes whose key role is to engulf 
pathogens. In a human adult, approximately 1011 neutrophils are produced in the 
bone marrow daily, though only 1–2% of these cells are present within the blood 
circulation (Borregaard 2010; Dancey et al. 1976). A small population of neutro-
phils has been reported to actively survey uninflamed dermis, a phenomenon that 
possibly allows for an immediate response to tissue damage (Li and Ng 2012; Ng 
et  al. 2011). Upon initiation of cutaneous inflammation, neutrophils are rapidly 
recruited to the inflamed site (Phillipson and Kubes 2011). Upon entering the site of 
inflammation, neutrophils neutralize invading pathogens via phagocytosis and 
degranulation (Amulic et al. 2012).

26.2.3  �Macrophages

Macrophages are important innate immune cells that are capable of a wide array of 
functions in response to the local microenvironment. Dermal macrophages are 
derived from blood-circulating monocytes that migrate into the skin (Geissmann 
et al. 2010; Jakubzick et al. 2013). In addition to phagocytosing invading pathogens, 
macrophages also play a role in the resolution of inflammation and subsequent 
wound repair (Lucas et al. 2010; Mirza et al. 2009). These differing abilities are 
observed with the different macrophage activation states, known as M1 and M2 
macrophages or the classically activated macrophage and alternatively activated 
macrophage, respectively (Sica and Mantovani 2012). During wound repair, the 
initial pro-inflammatory phase involves M1 macrophages scavenging for, and kill-
ing, invading pathogens in the inflamed tissue. The subsequent phase of tissue 
regeneration involves M2 macrophages producing anti-inflammatory cytokines and 
growth factors to activate epithelial cells and fibroblasts.
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26.2.4  �Mast Cells

Deriving from hematopoietic stem cells, mast cells only differentiate to maturity 
upon entering peripheral tissues (Galli et  al. 2005). Mast cells are long-lived 
immune cells that are particularly present in tissues exposed to the environment, 
enabling them to be first responders against environmental allergens and antigens 
(Galli and Tsai 2010). In the skin, mast cells localize around dermal blood vessels 
in an immotile state (Dudeck et al. 2011). With a spindle-like morphology in the 
steady state, inflammation results in mast cells taking on a more globular shape. 
During inflammation, mast cells secrete histamines to increase vascular permeabil-
ity and promote neutrophil and effector T cell infiltration into the inflamed tissue 
(Biedermann et al. 2000).

26.2.5  �T Cells

T cells are key players in the adaptive immune response, and can be classified into 
CD4- or CD8-expressing T cells, and natural killer (NK) T cells. CD4 T cells can be 
further subdivided into helper T cells (Th1, Th2, Th17) and regulatory T cells 
(Tregs). In a simplistic sense, helper T cells aid other immune cells in mounting an 
adaptable immune response to a wide variety of pathogens. Th1 cells protect against 
intracellular pathogens. Th2 cells promote the humoral immune response, stimulat-
ing B cells to produce antibodies. Th17 cells help with the recruitment of neutro-
phils. Tregs, as their name suggests, have a regulatory role and dampen inflammatory 
responses. CD8 T cells are also known as cytotoxic T cells for their ability to recog-
nize and kill infected host cells.

Normal human skin contains approximately one million T cells per square centi-
meter of skin, which extrapolates to around 20 billion T cells, close to double the 
amount present in the blood (Clark et al. 2006). The majority of these T cells express 
the T cell receptor α and β chains (αβ T cells), and preferentially home to skin with 
CCR4 and cutaneous lymphocyte antigen (CLA). Most skin-homing T cells consist 
of CD4 memory T cells, and reside in the dermis. The epidermis, on the other hand, 
contains a minor population of tissue-resident CD8 memory T cells (Trm) (Carbone 
2015). Resident Tregs in the skin preferentially localize around hair follicles (Chow 
et  al. 2013; Gratz et  al. 2013; Sanchez Rodriguez et  al. 2014), and it has been 
reported that Treg-expressed Jag1 facilitates the hair follicular stem cell function for 
hair follicle regeneration (Ali et al. 2017).

The skin houses a special minor population of T cells that expresses the T cell 
receptor γ and δ chains (γδ T cells). In mice, γδ T cells exist in abundant numbers 
and are termed dendritic epidermal T cells (DETCs) (Witherden and Havran 2011). 
The human epidermis, however, does not have γδ T cells such as DETCs, but does 
have resident γδ T cells in the dermis (Ebert et al. 2006). Unlike the diverse T cell 
receptor repertoire of αβ T cells, γδ T cells express tissue-specific invariant T cell 
receptors and possess innate-like functions.
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26.3  �Tools for In Vivo Imaging

26.3.1  �Microscopy

Previously, intravital imaging was limited to either the bright-field illumination of 
transparent tissues (Hickey et al. 1999), epifluorescence imaging of exposed dermal 
microvasculature (Hickey et al. 2002), or immune responses in the surface layer of 
the skin, the epidermis (Kissenpfennig et al. 2005). This was due to the poor pene-
trative ability of visible light. Technological advances led to the use of lasers, mak-
ing way for a form of microscopy known as multiphoton (MP) microscopy. Also 
known as two-photon excitation microscopy, this is a process whereby a fluorescent 
molecule simultaneously absorbs two photons from rapid laser pulses. The benefit 
of this over conventional single-photon excitation is the deeper penetration into the 
tissue coupled with the reduced photodamage due to the lower energy transfer. This 
allows for a greater imaging depth as well as the maintenance of tissue health and 
viability over long imaging periods. These developments enabled the examination 
of a variety of fluorescently labelled leukocytes in various tissues in four dimen-
sions (Devi et al. 2010; Gebhardt et al. 2011; Li et al. 2012; Mempel et al. 2006).

26.3.2  �Animal Systems and Fluorescent-Cell Labelling 
Techniques

When using MP microscopy on the skin, structures such as hair shafts and elastic 
fibers, and collagen fibers, can be visualized due to their intrinsic autofluorescence 
or second harmonic generation, respectively. The visualization of collagen fibers in 
the skin distinguishes the epidermal and dermal layers in the skin. The conjugation 
of quantum dots to antibodies against lymphatic vessel endothelial hyaluronan 
receptor 1 (LYVE-1) can be used to visualize the peripheral lymphatic vessels (Sen 
et al. 2010). To observe the skin vasculature in the dermis, fluorescently labelled 
dextran can be used as it is retained within blood vessels for several hours (Egawa 
et al. 2013). The disadvantage to using fluorescently labelled dextran, however, is 
leakage due to vascular permeability as a result of inflammation. To circumvent this, 
a fluorescently labelled antibody against the endothelial cell surface marker CD31 
(PECAM-1) can be used (Runnels et al. 2006). Runnels et al. demonstrated that a 
single administration of anti-CD31 antibody can stain the vasculature for 3–4 days 
after injection.

To visualize leukocytes endogenously, one can either fluorescently label leuko-
cytes in vitro and adoptively transfer them into the animal, or undertake it in situ via 
intravenous injections of fluorescently labelled cell surface markers (Abeynaike 
et al. 2014; Deane et al. 2012). An alternative, which is currently the gold standard 
and essential to intravital imaging, is the use of transgenic animals that express fluo-
rescent proteins in specific cells. In the field of immunology, there exists a variety 
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of transgenic fluorescent reporter mice (Table 26.1), and their use has contributed 
significantly to the knowledge of immune responses in the skin (Chow et al. 2013; 
Egawa et al. 2011; Gebhardt et al. 2011; Goh et al. 2015; Li et al. 2012; Ng et al. 
2008; Overstreet et  al. 2013). In addition, unique fluorescent proteins, such as 
KikGR and Kaede have the ability to change their fluorescence via photoconversion 
by ultraviolet irradiation. These proteins allow researchers to trace cell migration 
endogenously between peripheral tissues and lymphoid organs (Nowotschin and 
Hadjantonakis 2009; Tomura et al. 2010).

26.4  �In vivo Imaging of Skin Immune Responses

In the past decade, intravital MP microscopy has become a vital tool in understand-
ing the behavior of leukocytes in the development and resolution of various skin 
immune responses.

26.4.1  �Sterile Injury

Goh et al. recently employed intravital MP microscopy to investigate dermal DC 
migration in the skin. Their study was unique in that the transgenic mice they used 
had two fluorescent cell populations. These LysM-eGFP x CD11c-EYFP mice con-
tained LysM+ neutrophils expressing enhanced green fluorescent protein (eGFP), 
and CD11c+ DCs expressing enhanced yellow fluorescent protein (EYFP). This 
allowed Goh et al. to investigate the dynamic responses of the two cell types during 
sterile injury of the skin (Goh et  al. 2015). Their findings demonstrated that the 
onset of sterile injury to ear skin resulted in a transition in dermal DC motility from 
a random probing behavior to a highly directional one. This directional motility 
occurred towards the site of injury with an increase in cell velocity. This transition 
occurred over a span of 50 min, the outcome of which saw dermal DCs surrounding 

Table 26.1  List of transgenic mice utilized in in vivo imaging

Target cell Promoter Reporter References

Neutrophils Lysozyme M eGFP Goh et al. (2015)
Langerhans cells, Langerin+ 
dermal DCs

Langerin GFP Kissenpfennig et al. (2005)

DCs CD11c eYFP Goh et al. (2015) and Ng et al. (2008)
Tregs Foxp3 GFP Chow et al. (2013)
T cells T cell-specific 

enhancer
eGFP Bauer et al. (2014), Manjunath et al. 

(1999), and Mempel et al. (2006)DsRed
Mast cells Mcpt5 eYFP Dudeck et al. (2011)
Ubiquitous 
(Photoconvertible)

CAG Kaede Tomura et al. (2010)
KikGR Nowotschin and Hadjantonakis (2009)
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the periphery of the injury and a cessation in motility upon arrival. Conversely, 
neutrophils responded much quicker, arriving at the site of injury within 20 min and 
infiltrating to the core.

26.4.2  �Contact Hypersensitivity

Contact hypersensitivity (CHS) is a commonly used mouse model of contact der-
matitis, involving a type IV delayed-type hypersensitivity response. CHS is induced 
by small chemical compounds known as haptens that, upon binding to self-proteins, 
form immunogenic structures (Kaplan et al. 2012). CHS is a biphasic response, with 
the initial sensitization phase composed of these new immunogens activating innate 
immune cells, such as mast cells, macrophages, and keratinocytes. These innate 
cells secrete inflammatory mediators that activate resident DCs to capture the hap-
tenated proteins. Following antigen uptake, skin DCs transiently increase their 
motility (Sawada et al. 2015; Sen et al. 2010) and migrate to the draining lymph 
nodes for presentation to, and activation of, T cells. Some skin DCs however remain, 
forming clusters after hapten introduction (Natsuaki et  al. 2014). A subsequent 
exposure to the hapten initiates the second phase of CHS, which is the elicitation 
phase. Similar to the sensitization phase, innate immune cells are activated and skin 
DCs take up haptenated proteins. The presence of antigen-specific T cells in the skin 
generated during the sensitization phase, however, brings about a more robust 
inflammatory response in the skin.

Using MP microscopy, Natsuaki et al. highlighted the importance of dermal DC 
clusters for efficient T cell activation in the skin (Natsuaki et al. 2014). Their study 
showed that dermal DCs localize around perivascular macrophages that are situated 
on post-capillary venules. Following this, recruited T cells accumulate around these 
clusters, allowing for activation by proximal antigen-bearing dermal DCs. As these 
clusters only appear during inflammation, they have been termed “inducible skin-
associated lymphoid tissues (iSALT)” (Ono and Kabashima 2015).

MP microscopy in conjunction with the CHS model has also been used to study 
T cell dynamics in cutaneous inflammation. Honda et al. demonstrated that effector 
T cells become sessile and form stable contacts with DCs within 10 min of antigen 
recognition (Honda et  al. 2014). These effector T cells successively regain their 
motility within 6–8 h. Interestingly, Honda et al. discovered an inverse correlation 
between cytokine production and cell motility whereby these effector T cells only 
produce cytokines while immobile. Another study by Chow et al. investigated the 
dynamics of skin regulatory T cells (Tregs) during a CHS response via MP micros-
copy (Chow et al. 2013). They reported that, unlike the high motility of effector 
CD4+ T cells, most Tregs were sessile in steady state skin. During the elicitation 
phase of CHS, however, approximately 40% of Tregs increased their motility. It is 
possible that migratory Tregs are either increasing their area of regulatory influence 
via cytokine secretion (Vignali et al. 2008), or are in the process of migrating to 
draining lymph nodes (Tomura et al. 2010). Sessile Tregs on the other hand, could 
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be interacting with DC-effector T cell clusters to exert their regulatory control 
(Onishi et al. 2008).

26.4.3  �Infection

Using intravital MP microscopy, Ng et al. investigated the behavior of dermal DCs 
in ear skin in response to Leishmania major injection (Ng et al. 2008). Their study 
revealed that dermal DCs continuously surveyed the dermis in a highly motile, and 
G protein-coupled receptor-dependent manner under homeostatic conditions. Upon 
the introduction of L. major parasites to the dermis, local dermal DCs became 
immotile, initiating parasite uptake into cytosolic vacuoles. These changes in migra-
tion suggest that dermal DCs are constantly probing the microenvironment for for-
eign antigens, and may undergo arrest to process and present these antigens to cells.

Gebhardt et al. utilized MP microscopy to demonstrate the localization and dis-
tinct migratory behavior of herpes virus-specific CD4+ (gDT-II) and CD8+ (gBT-I) 
effector memory T (TEM) cells in mouse skin following resolution of a cutaneous 
herpes simplex virus (HSV) infection (Gebhardt et al. 2011). Their study describes 
a slow-moving population of CD8+ TEM cells during the memory phase (30 days 
post-infection) that were resident in the epidermis, and in close proximity to the site 
of HSV infection. On the other hand, CD4+ TEM cells were observed to be migrating 
extensively in a recirculating pattern that was limited to the dermis.

26.4.4  �Cancer

Of clinical importance is the role of Tregs in tumor immunology. With the potential 
to restrict the hosts’ anti-tumor immune response, a copious amount of Tregs sur-
rounding the tumor can be a negative prognostic indicator (Tanaka and Sakaguchi 
2017). To understand the actions of Tregs in the tumor microenvironment, studies 
have been conducted using MP microscopy to observe Treg behavior in vivo.

Using a mouse model in which influenza HA-expressing tumors were implanted 
under the flank skin, Bauer et al. documented the interactions of CD8+ T cells and 
Tregs via MP microscopy (Bauer et al. 2014). By adoptively transferring HA-specific 
Tregs, tumor-infiltrating CD8+ T cells transitioned to a state resembling T cell 
exhaustion. Further analysis using MP microscopy revealed that Tregs in the tumor 
microenvironment were migratory, which was in stark contrast to the surrounding 
CD8+ T cells. Interestingly, the migratory behavior of the Tregs included moments 
of arrests to form unstable contacts with CD11c+ APCs. These interacting APCs had 
a marked reduction in their expression of costimulatory molecules CD80/86, and 
CD8+ T cell activation by these incapacitated APCs resulted in the expression of 
inhibitory receptors programmed cell death protein 1 (PD-1) and T cell immuno-
globulin- and mucin-domain-containing-3 (TIM-3) on CD8+ T cells. These findings 
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emphasize the capability of MP microscopy in revealing the mechanism by which 
Tregs can promote tumor survival.

26.5  �Concluding Remarks – Looking Ahead to the Future

Over the last two decades, intravital imaging has proved to be a useful tool in 
expanding our knowledge on cellular behavior in their native environment. Although 
techniques such as flow cytometry, immunohistochemistry and RNA sequencing 
are able to provide insight into cellular function, they are but snapshots. The way in 
which an immune cell changes shape, moves, and interacts with neighboring cells 
during various types of immune responses can only be visualized via intravital 
imaging. Together, these techniques complement each other to not only help us 
build upon our current understanding of skin immunology, but also potentially dis-
cover new facets of leukocyte behavior in the skin.

Currently, MP microscopy is heavily utilized in animal studies, but not in human 
studies. One key limitation is the thickness of human skin compared to mouse skin, 
which reduces the penetrative ability of the laser. MP microscopy has been used on 
humans to evaluate skin tumors, skin aging, and epidermal cells in skin diseases 
(Klemp et al. 2016; Koehler et al. 2011; Murata et al. 2013; Tsai et al. 2009). For 
further use on humans, advancements in MP microscopy are necessary. Until then, 
the development of better cell-labelling systems, novel transgenic mouse systems 
and optical microscopic systems will drive our continual discovery of skin 
immunology.
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