
Chapter 10
Roles of Drug Transporters in Blood-
Retinal Barrier

Li Liu and Xiaodong Liu

Abstract Blood-retinal barrier (BRB) includes inner BRB (iBRB) and outer BRB
(oBRB), which are formed by retinal capillary endothelial (RCEC) cells and by
retinal pigment epithelial (RPE) cells in collaboration with Bruch’s membrane and
the choriocapillaris, respectively. Functions of the BRB are to regulate fluids and
molecular movement between the ocular vascular beds and retinal tissues and to
prevent leakage of macromolecules and other potentially harmful agents into the
retina, keeping the microenvironment of the retina and retinal neurons. These
functions are mainly attributed to absent fenestrations of RCECs, tight junctions,
expression of a great diversity of transporters, and coverage of pericytes and glial
cells. BRB existence also becomes a reason that systemic administration for some
drugs is not suitable for the treatment of retinal diseases. Some diseases (such as
diabetes and ischemia-reperfusion) impair BRB function via altering tight junctions,
RCEC death, and transporter expression. This chapter will illustrate function of
BRB, expressions and functions of these transporters, and their clinical
significances.

Keywords Blood-retinal barrier · Transporters · Retinal capillary endothelium ·
Retinal pigment epithelium · Diabetic retinopathy

10.1 General Introduction

The retina has a unique position in that blood-retinal barrier (BRB) separates the
retina from the circulating blood. The BRB regulates fluids and molecular movement
between the ocular vascular beds and retinal tissues, prevents leakage of macromol-
ecules and other potentially harmful agents into the retina, and keeps the microen-
vironment of the retina and retinal neurons. BBB existence is also a reason that
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systemic drug administration is not suitable for the treatment of retinal diseases. The
BRB includes inner BRB (iBRB) and outer BRB (oBRB), which are formed by
retinal capillary endothelial cells (RCECs) and by retinal pigment epithelial (RPE)
cells in collaboration with Bruch’s membrane and the choriocapillaris, respectively
(Fig. 10.1). It is well known that two third of the human retina is nourished by retinal
capillaries via the iBRB and the remainder is attributed to choriocapillaris via the
oBRB (Hosoya and Tomi 2005; Kur et al. 2012).

The paracellular and transcellular transport across BRB are generally involved in
the following five different mechanisms (Fig. 10.2) (Rizzolo et al. 2011):

1. Paracellular diffusion: Paracellular diffusion is mainly regulated by the tight
junction. Tight junctions, boundaries between the apical and basolateral plasma
membrane domains, are considered to be essential for the integrity of tissue
barrier and the maintenance of cell polarity, which restrict paracellular movement
of fluids and molecules between the blood and retina.

2. Facilitated diffusion: Transporters expressed in the plasma membrane allow the
passage of preferred solutes across the monolayer along with a concentration
gradient. An example is glucose transport via glucose transporter 1 (GLUT1).
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OPL outer plexiform, ONL outer nuclear layer, OLM outer limiting “membrane,” POS photorecep-
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3. Active transport: Transporters expressed in the plasma membrane consume ATP
to move solutes against a concentration gradient or establish electrochemical
gradients that drive vectorial transport through antiporters and cotransporters.

4. Transcytosis: Vesicles can invaginate and bud from the apical or basal membrane,
traverse the cell, and fuse with the opposite membrane to release their contents on
the opposite side of the cell. Normal BRB lacks transcytosis, which become a
reason limiting transcellular passage (Chow and Gu 2017).

5. Solute modification: During transport, solutes can be degraded or transformed
into something else. For example, in RPE, retinol enters the basal side of the RPE
by receptor-mediated endocytosis and is delivered to microsomes, where retinol
is transformed into cis-retinal. The cis-retinal transports across the monolayer and
is endocytosed by photoreceptors and bound to opsin. Another example is CO2.
CO2 is converted to HCO3

� as it is transported from the apical to the basal side of
the monolayer.

10.1.1 The Inner Blood-Retinal Barrier (iBRB) and Outer
Blood-Retinal Barrier (oBRB)

The iBRB is structurally similar to the blood-brain barrier (BBB). The RCECs
connected by tight junctions are covered with pericytes and glial cells (Muller
cells or astrocytes) (Cunha-Vaz et al. 2011). The iBRB is formed by the inner or
outer capillary beds. The inner capillary bed lies in the ganglion nerve cell layer, and
the iBRB function is induced by astrocytes. The outer capillary bed lies in the inner
and outer plexiform layers, where function of BRB is regulated by Müller cells
(Rizzolo et al. 2011).
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Fig. 10.2 Mechanisms for the transepithelial transport of solutes in the BRB
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The oBRB is established by RPE cells connected by tight junctions. RPE is a
monolayer of pigmented cells situated between the neuroretina and the choroids. The
apical membrane of RPE exhibiting long microvilli faces the light-sensitive outer
segments of the photoreceptors cells, while its basolateral membrane faces the Bruch’s
membrane, which separates the neural retina from the fenestrated endothelium of the
choriocapillaris. It is different from the epithelium of the choroid plexus and other
transporting epithelia that the apical membrane of RPE cells abuts a solid tissue rather
than a lumen. Moreover, the transepithelial electrical resistance of RPE shows large
species differences ranging from 135 to 600 Ω � cm2 (Rizzolo et al. 2011).

The main functions of the RPE (Kay et al. 2013; Simó et al. 2010; Willermain
et al. 2014a) are to (1) transport nutrients, ions, and water or waste products;
(2) absorb light and protect against photooxidation; (3) reisomerize all-trans-retinal
into 11-cis-retinal, which is a key element of the visual cycle; (4) phagocyte shed
photoreceptor membranes; (5) release K+ into the subretinal space to maintain
constant excitability of the photoreceptors; (6) secrete growth factors such as
pigmented epithelium-derived factor (PEDF) at the apical side and vascular endothe-
lial growth factor (VEGF) at the basolateral side for the structural integrity of the
retina; and (7) maintain the immune privilege of the eye due to its outer BRB function
but also by interfering with signaling pathways coordinating the immune system.

10.1.2 Tight Junctions in the BRB

Tight junctions consist of specialized proteins such as occludins, claudins, and
zonula occludens, which play an important role in maintaining the barrier function
via regulating the transport of solutes and molecules across RCEC or RPE cell
layers. Both the iBRB and the oBRB cells have tight junctions, but they differ in
their organization and composition. Tight junctions of the oBRB are more concen-
trated at the apical side of the cell, whereas tight junctions of the iBRB are more
dispersed between adherens junctions and gap junctions. The adherens junctions
consist of vascular endothelial-cadherin and its associated proteins, such as catenins
and plakoglobin, both of which are linked to the cytoskeleton (Dejana et al. 2008).
The cell–cell contacts also contain additional adhesion molecules, such as platelet
endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule
2 (ICAM2), endoglin, and other clusters (Dejana et al. 2008).

10.1.3 Astrocytes, Müller Cells, and Pericytes

Astrocytes, Müller cells, and pericytes, closely connected to blood vessels in the
retina, are considered to influence activities of the BRB via secreting regulatory
signal molecules such as glial cell line-derived neurotrophic factor (GDNF),
transforming growth factor beta 1 (TGF-β1), and VEGF (Igarashi et al. 2000;
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Abukawa et al. 2009; Le 2017; Wisniewska-Kruk et al. 2012). In immortalized rat
retinal capillary endothelial (TR-iBRB2), an in vitro model cell line of the iBRB, it
was found that incubation with conditioned medium of Müller (TR-MUL5) cells
increased alkaline phosphatase activity, induced expression of plasminogen activa-
tor inhibitor 1 (PAI-1) gene, and suppressed expression of an inhibitor of DNA
binding 2 gene. TGF-β1, secreted from TR-MUL5 cells, showed similar effects,
indicating that paracrine interactions occur between TR-iBRB2 and TR-MUL5 cells
via secreting TGF-β1 (Abukawa et al. 2009). Müller cells are also involved in the
regulation of retinal iron homeostasis. Loss of Müller cells was reported to break
down the BRB and increase iron levels throughout the neurosensory retina of mice
(Baumann et al. 2017). Müller cell loss or dysfunction often occurs in patients with
macular telangiectasia type 2 (MacTel2) and diabetic retinopathy, which may
explain the clinical findings that a patient with MacTel2 and a patient with diabetic
retinopathy had the increased iron levels in RPE or neurosensory retina (Baumann
et al. 2017). TGF-β was reported to impair function of BRB via simulating
metalloproteinases (MMPs) from Müller cells, later degrading tight junction protein
occludin (Behzadian et al. 2001). Moreover, interactions between endothelial cells
and pericytes or astrocytes also increase the BRB properties through enhancing
expression of tight junctions (Kim et al. 2009).

The pericytes play important roles in regulating vascular tone, secreting extracel-
lular material, and being phagocytic. The frequency of pericyte coverage on human
retinal capillaries was reported to be high up to 94.5%, substantially greater than that
of human choriocapillaris (11%) (Chan-Ling et al. 2011), demonstrating that retinal
microvasculature characterizes a uniquely high density of pericytes. The communi-
cation between pericytes and endothelial cells is mediated by diverse molecules such
as angiopoietin, TGF-β1, platelet-derived growth factor-β (PDGF-β), and sphingo-
sine-1-phosphate. In endothelial cells, genetic deletion of PDGF-β (Park et al. 2017)
or blocking PDGF receptor beta using antibody (Ogura et al. 2017) could lead to
severe vascular impairments such as vascular engorgement, leakage, severe hemor-
rhage, retinal detachment, and severely impaired pericyte coverage of the vessels.
Moreover, pericyte loss also promotes pathologic angiogenesis. In consistence,
pericyte dropout or loss in the retina is considered to be one of the earliest patho-
logical changes in diabetic retinopathy. Moreover, hyperglycemia, advanced
glycation end products, basement membrane thickening, and hypertension trigger
pericyte apoptosis and dropout, all of which become reasons leading to diabetic
retinopathy (Eshaq et al. 2017).

10.2 Major Drug Transporters in the Retina

Several transporters, including the solute carrier (SLC) family and the ATP-binding
cassette (ABC) family have been identified in the retina (Fig. 10.3). The SLC
transporters utilize facilitated diffusion, or they couple an ion or electrochemical
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gradient to transfer their substrates across the cell membrane. ABC transporters, on
the other hand, use ATP as the energy source to drive the transport.

In the retina, neuronal cells, including photoreceptor cells, require a large amount
of metabolic energy for phototransduction and neurotransduction metabolic sub-
strates, such as D-glucose, amino acids, vitamins, and nucleosides. These com-
pounds are hydrophilic, and their transport is often mediated by influx
transporters, belonging to SLC family. The identified influx transporters in the retina
include glucose transporter 1 (GLUT1), Na+-dependent multivitamin transporter
(SMVT), taurine transporter (TAUT), cationic amino acid transporter 1 (CAT1),
excitatory amino acid transporter 1 (EAAT1), L-type amino acid transporter
1 (LAT1), creatine transporter (CRT), nucleoside transporters, and monocarboxylate
transporters (MCTs). A series of influx transporters for drugs such as organic cation
transporters (OCTs), organic anion transporting polypeptides (OATPs), and organic
anion transporters (OATs) have been also identified in the retina.
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10.2.1 Influx Transporters

10.2.1.1 Glucose Transporter 1 (GLUT1/SLC2A1)

D-glucose is the main energy source for the retina, whose transport from the blood to
the retina is mainly mediated by GLUT1 (Tomi and Hosoya 2004). GLUT1 is
mainly localized at both luminal and abluminal membranes of the iBRB and the
oBRB, although the expression of GLUT1 at abluminal membrane of the iBRB is
approximately two- to threefold greater than that at its luminal membrane (Fernandes
et al. 2003). The asymmetrical distribution of GLUT1 at the iBRB suggests that
D-glucose transport is limited at the blood-to-luminal rather than the abluminal-to-
interstitial interface. GLUT1 is also expressed in Müller cells (Hosoya et al. 2008a).
In addition to hexoses, GLUT1 also transports dehydroascorbic acid from blood to
the retina, where dehydroascorbic acid is converted to ascorbic acid. The uptake of
dehydroascorbic acid by GLUT1 may be completely inhibited under diabetic con-
ditions due to high glucose concentration (Minamizono et al. 2006).

10.2.1.2 Taurine Transporter (TAUT/SLC6A6)

Taurine, functioning as osmolyte and antioxidant, is the most abundant free amino
acid in the retina, accounting for more than 50% of the free amino acid content in the
rat retina, which is considered to be essential for maintenance of retinal structure.
Taurine transport across BRB is mainly mediated by TAUT (Tomi et al. 2007).
TAUT, an Na+- and Cl�-dependent transporter, is mainly expressed in apical
membrane of RPE, ganglion cells, Müller cells (El-Sherbeny et al. 2004), and
RCECs (Tomi et al. 2007, 2008). Some TAUT inhibitors such as β-alanine and
hypotaurine may inhibit taurine transport across BRB. TAUT also mediates trans-
port of β-alanine and gamma-aminobutyric acid (GABA) (Tomi et al. 2008; Usui
et al. 2013). Hyperosmolar conditions could stimulate activity of TAUT, leading to
increase in Vmax of taurine without affecting Km (El-Sherbeny et al. 2004; Yahara
et al. 2010). Both in vivo and in vitro data demonstrated that taurine itself enhanced
expression of retinal TAUT (Zeng et al. 2010). High glucose was reported to
downregulate expression of retinal TAUT (Lee and Kang 2013; Stevens et al.
1999), which was attenuated by taurine treatment (Zeng et al. 2010). In consistence
with this issue, 8-week and 12-week diabetic rats demonstrated significantly lower
levels of retinal TAUT, and taurine treatment completely reversed the decreased
expression of retinal TAUT by diabetes (Zeng et al. 2010). Similarly, TAUT
deficiency was reported to lead to severe retinal degeneration in mice (Heller-Stilb
et al. 2002). All these results demonstrated important roles of retinal TAUT in
normal retinal development.
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10.2.1.3 Cationic Amino Acid Transporter 1 (CAT1/SLC7A1)

L-arginine is the precursor molecule for the synthesis of nitric oxide (NO) by nitric
oxide synthase (NOs). L-arginine transport from the blood to the retina across BRB
is mediated by CATs. CAT1 is highly expressed at both luminal and abluminal
membrane of RCECs, TR-iBRB2 cells, the basal membrane of PRE (Kubo et al.
2015; Tomi et al. 2009), and immortalized rat retinal pericyte cell line (TR-rPCT1
cells) (Zakoji et al. 2015). QT-PCR analysis showed that levels of CAT1 mRNA in
TR-iBRB2 and the isolated rat RCECs were 25.9- and 796-fold greater than that of
CAT3, respectively. CAT1-specific small interfering RNA, L-arginine, and L-lysine
inhibited [3H]L-arginine uptake in TR-iBRB2 cells (Tomi et al. 2009). Moreover,
high glucose exposure significantly inhibited L-arginine transport in TR-iBRB, and
simvastatin might reverse high glucose-induced-alterations via increasing expres-
sion of endothelial NOS mRNA and NO production (Tun and Kang 2017).

L-ornithine is a cationic amino acid produced in the urea cycle and ingested from
the diet. Clinical trials have suggested the beneficial effects of L-ornithine in the
body, but long-term treatment or high concentrations of L-ornithine in the blood
induce retinal toxicity, forming gyrate atrophy of the choroid and retina (Hayasaka
et al. 2011), an autosomal recessive disease due to the genetic defect of ornithine
aminotransferase. Both in vivo and in vitro data demonstrated that CAT1 mediates
transport of [3H]L-ornithine across the BRB (Kubo et al. 2015). In RPE cells, it was
reported that the basal-to-cell uptake of [3H]L-ornithine was greater than that of the
apical-to-cell uptake, and the basal-to-cell transport was inhibited by L-ornithine,
suggesting the involvement of CAT1 in the blood-to-cell transport of L-ornithine
across the basal membrane of the oBRB (Kubo et al. 2015). Moreover, in human
telomerase reverse transcriptase-RPE cells, CAT1 siRNA decreased both L-[14C]
ornithine uptake and L-ornithine cytotoxicity (Kaneko et al. 2007). All these results
indicate that reduction of the ornithine transport via inhibiting CAT1 may be a new
target for treatment of gyrate atrophy.

10.2.1.4 L-Type Amino Acid Transporter 1 (LAT1/SLC7A5)

L-type amino acid transporters (LATs) prefer branched-chain and aromatic amino
acids. LAT1 (SLC7A5) and LAT2 (SLC7A8) mRNAs were reported to be
expressed in cultured human RPE cell line (ARPE-19 cells), but the level of LAT1
mRNA was 42-fold higher than that of LAT2 (Yamamoto et al. 2010). LAT1, an
Na+-independent transporter, was also identified in TR-iBRB2, isolated rat RCECs,
and primary cultured human RCECs (Tomi et al. 2005; Usui et al. 2013; Yamamoto
et al. 2010), mediating blood-to-retina transport of large neutral amino acids includ-
ing L-leucine (Tomi et al. 2005), L-histidine (Usui et al. 2013), and L-phenylalanine
(Atluri et al. 2008). Some drugs such as L-dopa, melphalan, alpha-methyldopa, and
gabapentin are substrates of LAT1 and LAT2 (del Amo et al. 2008), indicating the
roles of LAT1 in retinal disposition of these drugs.
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10.2.1.5 Creatine Transporter (CRT/SLC6As)

Creatine and phosphocreatine are required to maintain ATP needed for normal
retinal function and development. Creatine is transported from the blood to the
retina against the creatine concentration gradient via creatine transporter (CRT), an
Na+- and Cl�-dependent transporter. The creatine transport from the blood to the
retina is considered to be a major pathway for supplying creatine to the retina
although local creatine is preferentially synthesized in the glial cells (Tachikawa
et al. 2007; Nakashima et al. 2005a). In the inner retina, CRT is expressed in cells of
intense metabolic activity, such as photoreceptors and selected cells, but not in glial
cells (de Souza et al. 2012). CRT is also expressed at both the luminal and abluminal
membranes of the iBRB (Nakashima et al. 2004). CRT expressed in the luminal
membrane would mediate creatine supply to the retina, and CRT in the abluminal
membrane may be involved in the metabolite uptake of creatine (Nakashima et al.
2004).

10.2.1.6 Monocarboxylate Transporters (MCTs/SLC16As)

The retina produces more L-lactic acid aerobically than any other tissues. In addition
to D-glucose, L-lactic acid appears to be required as an energy source in photore-
ceptors. Transports of L-lactic acid and other monocarboxylates (such as pyruvate
and the ketone bodies across cellular membranes) are facilitated by specific
monocarboxylate transporters (MCTs). Four MCTs (including MCT1, MCT2,
MCT3, and MCT4, encoded by SLC16A1, SLC16A7, SLC16A8, and SLC16A3,
respectively) have been identified in the retina (Bergersen et al. 1999; Gerhart et al.
1999; Philp et al. 1998). MCT1 is detected on four retinal cell types: RPE, photo-
receptor cells, Müller cells, and endothelial cells (Gerhart et al. 1999). MCT1 is
mainly located in the apical membrane of RPE and in both the luminal and abluminal
plasma membranes of RCECs (Bergersen et al. 1999; Gerhart et al. 1999). MCT2 is
only found to be abundantly expressed on the inner (basal) plasma membrane of
Müller cells and by glial cell processes surrounding retinal microvessels (Gerhart
et al. 1999). High expression of MCT4 is only detected in the RPE of younger
animals, but RPE of adult animals only show very weak expression (Bergersen et al.
1999). MCT3 is preferentially expressed in the basolateral membrane of the RPE
(Philp et al. 1998, 2001), forming a heteromeric complex with the accessory protein
CD147 (Philp et al. 2001). The absence ofMct3was reported to impair expression of
CD147 from the basolateral but not apical RPE of mice. Moreover, the amount of
L-lactate in retinal of Mct3�/� mice was approximately four times higher than that
from the wild-type retinas, accompanied by decreases in the magnitude of the light
suppressible photoreceptor current (Daniele et al. 2008). These results demonstrate
the pivotal roles of MCT3 in regulating the ionic composition of the outer retina.

MCTs also accept monocarboxylic acid drugs such as moxifloxacin (Barot et al.
2014) and nicotinate (Tachikawa et al. 2011) as their substrates, indicating that
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MCT-mediated transport at BRB is a possible route for delivery of monocarboxylic
acid drugs to the retina (Hosoya et al. 2001).

10.2.1.7 Nucleoside Transporters

Adenosine is an important intercellular signaling molecule, showing a number of
roles in retinal neurotransmission. Most of the adenosine in the retinal interstitial
fluid originates from the catabolism of adenosine monophosphate, which is localized
in the innermost process of Müller cells. Thus, almost all of the retinal adenosine is
distributed in the neighborhood of the innermost process of Müller cells in the
ganglion cell layer, inner plexiform layer, and inner nuclear layer. Adenosine in
the blood may penetrate the iBRB via adenosine transport systems. Four transporters
including two equilibrative nucleoside transporters (ENT1/(ENT2, SLC29A1/
SLC29A2) and two concentrative nucleoside transporters (CNT1/CNT2,
SLC28A1/SLC28A2) have been identified in the rat retina, although the expression
of ENT2 mRNA was reported to be 5.5-fold greater than that of ENT1 mRNA.
Among the four transporters, only CNT1 was not detected in TR-iBRB. Adenosine
uptake in TR-iBRB2 cells is predominantly mediated by ENT2, which is strongly
inhibited by adenosine, inosine, uridine, and thymidine, but neither
nitrobenzylmercaptopurine riboside (NBMRP) nor dipyridamole, characterizing
NBMPR- and dipyridamole-insensitive transport of adenosine. An in vivo study
suggested that [3H]adenosine transport from the blood to the retina was also signif-
icantly inhibited by adenosine and thymidine, demonstrating that ENT2 most likely
mediates adenosine transport at the iBRB (Nagase et al. 2006). ENT2 is also
expressed in Müller cells, contributing to transport of adenosine and its metabolite
hypoxanthine. ENT2 also mediates elimination of hypoxanthine from the retina
(Akanuma et al. 2013a). In addition, ENT2 accepts some antiviral or anticancer
nucleoside drugs, such as 30-azido-30-deoxythymidine, 2030-dideoxycytidine, 20 3-
0-dideoxyinosine, cladribine, cytarabine, fludarabine, gemcitabine, and capecitabine,
as preferred substrates (Baldwin et al. 2004; Yao et al. 2001), indicating that ENT2 at
the BRB could be a potential route for delivering nucleoside drugs from the
circulating blood to the retina.

10.2.1.8 Folate Transport Proteins

Folates, water-soluble vitamins, play an essential role as cofactors for one-carbon
metabolism in cells. Most of the folate in the plasma is in the reduced form,
methyltetrahydrofolate. Folate transport from blood to the retina across BRB is
mediated by some specific transport process. Three transport proteins, folate recep-
tor-α (FRα), reduced folate carrier 1 (RFC1/SLC19A1), and proton-coupled folate
transporter (PCFT/SLC46A1), have been described for folate uptake. FRα, a recep-
tor for folate, is expressed in basolateral membrane of PRE and in retinal Müller
cells, mediating the influx of its ligand into cells via receptor-mediated endocytosis

476 L. Liu and X. Liu



(Bozard et al. 2010; Chancy et al. 2000). RFC1, a pH-sensitive transporter, is
involved in folate�/OH�exchange. RFC1 is highly expressed in TR-iBRB2 cells,
isolated rat RCECs, normal mouse RPE, and in cultured human RPE cells (Chancy
et al. 2000; Hosoya et al. 2008b). Although both RFC1 and PCFT mRNA are
expressed in TR-iBRB2 cells and isolated rat RCECs, the expression level of
RFC1 mRNA was reported to be 83- and 49-fold greater than that of PCFT,
respectively, indicating that RFC1 probably predominates at the iBRB. In
TR-iBRB2 cells, transports of methotrexate, formyltetrahydrofolate and
methyltetrahydrofolate are meidiated by RFC1 (Hosoya et al. 2008b). RFC1 is
also expressed in RPE cells. Importantly, FRα and RFC1 are localized in the
basolateral and apical membrane of the RPE, respectively, demonstrating that the
two proteins work in a concerted manner to operate the vectorial transfer of folate
across RPE from choroidal blood to the retina. Diabetes might downregulate expres-
sion and activity of RFC1 in mouse PRE. In ARPE-19 cells, it was reported that 6 h
exposure of high glucose (45 mM) led to decreases in methyltetrahydrofolate uptake
by 35%, which was consistent with decreases in levels of RFC1 mRNA and protein
(Naggar et al. 2002). PCFT mRNA was detected in all tested retinal cells including
primary cultures of ganglion, Müller, and RPE cells of the mouse retina and their cell
lines (Umapathy et al. 2007), mediating H+-coupled transport of folate. In retinal
Müller cells, PCFT and FRα are expressed and colocalized in the endosomal
compartment, where the two proteins may work coordinately to mediate folate
uptake (Bozard et al. 2010).

10.2.1.9 Organic Anion-Transporting Polypeptides (OATPs)

Several OATPs (OATPs for human and Oatps for animal), such as Oatp1a4,
Oatp1c1, Oatp4a1, and Oatp1a5, have been detected in rat retina. Oatp1a4 and
Oatp1c1 mRNA are predominantly expressed in isolated rat RCECs (Tomi and
Hosoya 2004). Oatp1a4 proteins are detected on both the abluminal and luminal
membrane of rat RCECs and RPE, but Oatp1a4 protein is preferentially localized on
the abluminal membrane of the RCECs and the apical membrane of rat RPE
(Akanuma et al. 2013b; Ito et al. 2002). Oatp1c1 protein is expressed in both the
abluminal and luminal membrane of the RCECs and is preferentially expressed in
the basolateral membrane of rat RPE (Akanuma et al. 2013b; Ito et al. 2002).
Oatp1a5 protein is predominantly localized in optic nerve fibers, not in RPE (Gao
et al. 2002; Ito et al. 2002). Expressions of Oatp1a4 and Oatp1c1 on two side
membranes of BRB indicate their contributions to the transcellular transport of
amphipathic organic anions including digoxin and [3H]estradiol 17-β glucuronide
(E17βG) across the BRB in both the blood-to-retina and retina-to-blood directions. It
was found that elimination rate constant of [3H]- E17βG from the vitreous humor of
rats was 1.9-fold greater than that of [14C]D-mannitol. The efflux transport of E17βG
from rat retina was significantly inhibited by organic anions probenecid,
sulfobromophthalein, digoxin, and dehydroepiandrosterone sulfate (Katayama
et al. 2006). Oatp4a1 is also expressed in the RPE, inner and outer nuclear layers,
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ganglion cell layer, and nerve fiber layer of rat eyes. In the cultured rat RPE cells, it
was found that uptake of triiodothyronine, a known substrate of Oatp4a1, was
significantly inhibited by OATP inhibitor sulfobromophthalein, indicating roles of
OATPs in the transport of thyroid hormone in the retina (Ito et al. 2003).

Human OATP1A2 is expressed in photoreceptor bodies, somas of amacrine cells
and RPE, and mediates the cellular uptake of all-trans-retinol (Chan et al. 2015; Gao
et al. 2015), inferring roles of OATP1A2 in canonical visual cycle. The OATP1A2-
mediated uptake of all-trans-retinol may be inhibited by chloroquine and
hydroxychloroquine (Xu et al. 2016), which may provide novel insights into retinal
dysfunction induced by certain drugs. For instance, digoxin and antimalarial drugs
(chloroquine and hydroxychloroquine) have induced retinopathy (Kinoshita et al.
2014; Weleber and Shults 1981; Yaylali et al. 2013), which may be partly contrib-
uted to decrease in all-trans-retinol uptake into the retinal cells via inhibiting retinal
OATP1A2 function, resulting in dysfunction of the canonical visual cycle and toxic
accumulation of retinoids. Moreover, human OATP1A2 and OATP2B1 are abun-
dantly expressed in retina amacrine neurons containing substance P and vasoactive
intestinal peptide. The two peptides are also substrates of OATP1A2 and OATP2B1,
demonstrating roles of OATP1A2 and OATP2B1 in reuptake of these neuropeptides
released from retinal neurons and in the homeostasis of neuropeptides (Gao et al.
2015).

10.2.1.10 Organic Cation Transporters

Organic cation transporter 3 (Oct3) is detected in mouse RPE and in several cell
types of the neural retina, including photoreceptor, ganglion, amacrine, and hori-
zontal cells, where Oct3 participates in the clearance of dopamine, histamine, and
neurotoxin 1-methyl-4-phenyl pyridinium (MPP+) from the subretinal space (Rajan
et al. 2000). In cultured ARPE-19 cells, it was found that uptake of typical OCT3
substrate MPP+ was completely inhibited by several cationic drugs and monoamine
neurotransmitters (dopamine and histamine) (Rajan et al. 2000), although an organic
cation transporter, functionally similar to plasma membrane monoamine transporter
(SLC29A4), was reported to mediate retina-to-blood transport of MPP+ at BRB
(Kubo et al. 2017a).

L-carnitine is essential for the translocation of acylcarnitine esters into mitochon-
dria for β-oxidation of long-chain fatty acids and ATP generation. L-carnitine
transport in the retina is mainly mediated by organic cation/carnitine transporter
1/organic cation/carnitine transporter 2 (OCTN1/OCTN2 for human and Octn1/
Octn2 for animal). QT-PCR analysis showed that the expressions of Octn2 mRNA
in TR-iBRB2 and isolated rat RCECs were 27.3- and 45.9-fold greater than Octn1
mRNA, respectively, indicating that Octn2 predominantly accounts for the transport
of acetyl-L-carnitine from the blood to the retina across the iBRB (Tachikawa et al.
2010). In consistence, acetyl-L-[3H]carnitine uptake in rat retina was significantly
suppressed by L-carnitine and acetyl-L-carnitine. In TR-iBRB2 cells, OCTN sub-
strates and inhibitors (as L-carnitine, acetyl-L-carnitine, tetraethylammonium,
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quinidine, and betaine) remarkably decreased uptake of L-[3H]carnitine and acetyl-L-
[3H]carnitine (Tachikawa et al. 2010), further confirming roles of retina OCTNs in
transport of L-carnitine.

Several novel organic cation transporters have been identified. Transport of the
cationic drugs clonidine and diphenhydramine at the mouse BRB is mainly attributed
to a carrier-mediated system. The transporter for transporting clonidine is an Na+-
independent proton-antiporter and insensitive to the transmembrane potential. The
transporter also transports other cationic drugs such as nicotine, tramadol, diphenhy-
dramine, cocaine, verapamil, methadone, and oxycodone (Chapy et al. 2015). Trans-
port of [3H]verapamil across the iBRB is also mediated by a novel organic cation
transporter. In vivo data demonstrated that influx transport of verapamil across the
BRB was about fivefold higher than that across the BBB. Verapamil (3 mM) and
quinidine (10 mM), not pyrilamine (3 mM), slightly increased the retinal uptake of
[3H]verapamil. However, these compounds markedly increased brain uptake of [3H]
verapamil. Moreover, pyrilamine (40 mM) significantly reduced the retinal uptake
index to 72.9% but not for the brain uptake index. These in vivo results clearly
demonstrate that differently from the BBB, transport of verapamil across the BRB is
mediated by both influx transporters and efflux transporters (Kubo et al. 2013a).
Importantly, in P-GP-deficient rats, P-GP inhibitors (vinblastine and verapamil)
inhibited verapamil uptake by the retina but not the brain, which conformed that
[3H]verapamil is permeated across the BRB via influx transporters (Fujii et al. 2014).
In human RPE cell lines (RPE/Hu and ARPE-19), it was found that verapamil uptake
is active, pH-dependent, and independent of the membrane potential (Han et al. 2001),
but in TR-iBRB2 cells, verapamil uptake was independent of pH (Kubo et al. 2013a),
indicating that it has characteristics of influx transporter for verapamil in the iBRBwas
different from that in the oBRB. The verapamil uptake was inhibited by metabolic
inhibitors, quinidine, pyrilamine, diphenhydramine, diltiazem, timolol, propranolol,
and L-carnitine, but not by other known OCT/OCTN2 substrates nor inhibitors (such
as tetraethylammonium, cimetidine, decynium-22, and MPP+) (Han et al. 2001; Kubo
et al. 2013a). Similarly, [3H]pyrilamine uptake in TR-iBRB2 cells was also inhibited
by verapamil and some cation compounds (such as desipramine, imipramine, pro-
pranolol, memantine, quinidine, and nipradilol), not tetraethylammonium, serotonin,
choline, or choline. However, the transporter mediating pyrilamine uptake seemed not
to be identical to verapamil transport system, because they showed different sensitivity
to pH and L-carnitine. Moreover, kinetic analysis indicated that verapamil had no
competitive effect on the pyrilamine uptake although verapamil uptake exhibited a
competitive-like inhibition (Kubo et al. 2013a).

Transport of propranolol across iBRB is mediated by an influx carrier and was
reduced by several organic cations (Kubo et al. 2013b). Propranolol uptake in
TR-iBRB2 cells was also inhibited by some organic cations (such as pyrilamine,
verapamil, imipramine) but not substrates nor inhibitors of OCTs (MPP+,
tetraethylammonium, and cimetidine). The propranolol transport is pH dependent,
Na+ independent, and L-carnitine insensitive, which is different from verapamil
transport system (Kubo et al. 2013a, b). Blood-to-retina transport of nicotine across
the iBRB is driven by an outwardly directed H+ gradient, which was stimulated by
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an outwardly directed H+ gradient and significantly inhibited by organic cations
(pyrilamine and verapamil) but not OCT inhibitors (Kubo et al. 2014; Tega et al.
2015). These findings that substrate specificity of the cationic drug transport at the
BRB is different from those of well-characterized organic cation transporters OCTs,
OCTNs, and MATEs, suggesting the involvement of novel organic cation trans-
porters in the influx transport of these cationic drugs across the BRB (Chapy et al.
2015; Kubo et al. 2013a, b, 2014).

10.2.1.11 Other Transporters

Organic anion transporter 3 (OAT3) is expressed in RCECs and TR-iBRB cells. Rat
Oat3 is possibly located at the abluminal membrane of the RCECs, where it effluxes
its substrates such as p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine
from the vitreous humor/retina to the blood across the iBRB, limiting the retinal
distribution of these substrates (Hosoya et al. 2009). Unlikely BBB, androgen
receptor ligand dihydrotestosterone did not affect expression of Oat3 mRNA in
TR-iBRB cells (Ohtsuki et al. 2005). Anion transporter inhibitor probenecid also
inhibited transport of digoxin across BRB of rats, leading to significant increases in
uptake retina index by 1.6-fold of control, indicating roles of OATs in efflux of
digoxin across BRB (Toda et al. 2011).

Excitatory acid transporter 1 (EAAT1), an Na+-dependent high-affinity L-gluta-
mate transporter, is localized on the abluminal membrane of the RCECs and
mediates elimination of L-glutamate, a neuroexcitatory neurotransmitter, from the
retina across the iBRB (Sakurai et al. 2015). Multivitamin transporter (SMVT/
SLC5A6), an Na+-dependent transporter, was detected in TR-iBRB2 cells and
isolated rat RCECs, mediating the uptake of vitamins and some essential cofactors
such as biotin, pantothenic acid, and lipoic acid (Quick and Shi 2015). In vivo, [3H]
biotin uptake by the rat retina was significantly inhibited by biotin and pantothenic
acid. [3H]biotin uptake in TR-iBRB2 cells was also significantly inhibited by biotin,
pantothenic acid, lipoic acid, and desthiobiotin (Ohkura et al. 2010). SMVT mRNA
and protein were also detected in human RPE cells. Hypoxia induced expression and
function of SMVT in human RPE cells, indicating that hypoxia may alter disposition
of ophthalmic drugs (Vadlapatla et al. 2013). Riboflavin transport across blood-to-
retina is mediated by riboflavin transporter (SLC52A/RFVT), an Na+- and Cl�-
independent transporter. In TR-iBRB2 cells, two RFVTs RFVT2 (SLC52A2) and
RFVT3 (SLC52A3) were detected (Kubo et al. 2017b).

10.2.2 Efflux Transporters

Efflux transporters mainly belong to ABC family transporters. Several ABC trans-
porters, such as P-glycoprotein (P-GP/ABCB1), multidrug resistance proteins
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(MRPs/ABCCs for human and Mrps/ABccs for animal) (Asashima et al. 2006), and
breast cancer resistance protein (BCRP/ABCG2), were identified in the BRB.

10.2.2.1 P-Glycoprotein (P-GP/ABCB1)

P-GP is mainly expressed at the iBRB. However, reports on P-GP in the oBRB are
often contradictory, which may result from different tissues or cells from several
species or different detection methods. In mice, it was found that the oBRB showed
low or lack expression of P-GP (Chapy et al. 2016). In human fetal RPE and ARPE-
19, no P-GP protein was detected by LC-MS/MS (Pelkonen et al. 2017). But, in the
oBRB tissue of porcine, P-GP protein was measured to be 2.01 fmol/μg protein by
LC-MS/MS, although it was less than that of the iBRB (8.70 fmol/μg protein)
(Zhang et al. 2017a). Similarly, among three human RPE cell lines (ARPE-19,
D407 and h1RPE), only ARPE-19 cells do not express P-GP. D407 and h1RPE
cells express P-GP, but functional activity is demonstrable only in D407 cells
(Constable et al. 2006). Expression and function of P-GP were also detected in
both cultured human RPE and in D407 cells. Furthermore, P-GP immunoreactivity
is predominantly associated with localization to both apical and basolateral cell
membranes of human RPE (Kennedy and Mangini 2002). Importantly, expression
and function of P-GP are also demonstrated in the mitochondria of D407 cells and
upregulated by H2O2 (Zhang et al. 2017b). Expression and function of P-GP were
also clearly demonstrated in the oBRB tissue of porcine. Permeabilities of verapamil
and rhodamine in the retina-to-choroid direction were reported to be higher 5.5- and
2.6-fold than those in the opposite direction. Moreover, cellular calcein accumula-
tion in the presence of verapamil was twice as strong as control (Steuer et al. 2005).
PET data showed that P-GP inhibitor tariquidar significantly increased influx rate
constant k1 across the BRB and total retinal distribution volume of (R)-[11C]-
verapamil in human subjects, by 1.4-fold and 1.5-fold of baseline. In accordance
with this, retinal efflux rate constant k2 was significantly decreased by 2.8 in the
presences of P-GP inhibitor (Bauer et al. 2017).

It is worth noting that the impact of P-GP on BRB permeability to its substrates is
greatly lower than that on BBB permeability (Chapy et al. 2016; Fujii et al. 2014).
For example, uptake indexes of verapamil, quinidine, and digoxin in the retina of
Abcb1a1�/� rats were 1.6-, 1.07-, and 3.7-fold of wild-type rats, respectively. But,
the brain uptake parameters for verapamil, quinidine, and digoxin were high up to
8.3-, 12.3-, and 14.0-fold of wild-type rats, respectively. Quinidine, verapamil, and
digoxin are substrates of P-GP, but P-GP inhibitors only inhibited transport of
digoxin in the retina, which was different from the brain. These results indicate
that P-GP may play a substantial role in the retinal distribution of digoxin, but not
verapamil nor quinidine (Toda et al. 2011), which may partly be attributed to influx
transporters for these drugs. Similarly, transport of [3H]-verapamil at BRB of mice
was significantly increased by ~1.5-fold following P-GP inhibition using elacridar
(5 μM) or valspodar (5 μM) and by 1.3-fold in triple knockout (Abcb1a/Abcb1b�/�

and Abcg2�/�) mice compared with control wild-type mice, but extents of these
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alterations at the BRB were remarkably lower than those (5.6-fold for elacridar, 8.4-
fold for valspodar, and 10.3-fold for triple knockout) at the BBB (Chapy et al. 2016).

10.2.2.2 Breast Cancer Resistance Protein (BCRP/ABCG2)

Likely to P-GP, BCRP is mainly located at the luminal membrane of RCECs
(Asashima et al. 2006; Chapy et al. 2016), acting as the efflux transporter for
photosensitive toxins and drugs in retinal tissue. In TR-iBRB2 cells, BCRP mediates
cellular efflux of phototoxic compounds pheophorbide and protoporphyrin IX,
which is inhibited by ABCG2 inhibitor Ko143 (Asashima et al. 2006). BCRP is
often co-located with P-GP in the retina. In mice, P-GP and BCRP are uniformly
expressed in the physiologically developing retinal vasculature of the neonatal
mouse (Tagami et al. 2009). Expressions of P-GP and BCRP mRNA and proteins
were also detected in the retinal vascular endothelial cells from the adult mouse
retina (Tachikawa et al. 2008; Chapy et al. 2016).

Similarly to P-GP, the importance of BCRP efflux at the retina is less than that at
the BBB. Triple knockout (Abcb1a/Abcb1b�/�:Abcg2�/�) and coadministration of
BCRP inhibitor elacridar significantly increased the mitoxantrone entry rate to the
mouse brain, with 3.3-fold increases of control mice, but these increases did not
occur at the retina (Chapy et al. 2016).

Several reports have also demonstrated expression of BCRP in the oBRB,
although contradictory may be often contradictory. LC-MS/MS analysis demon-
strated no expression of BCRP in human fetal RPE and ARPE19 (Pelkonen et al.
2017), but high levels of BCRP protein were still detected in both the iBRR
(22.8 fmol/μg protein) and the oBRB (2.76 fmol/μg protein) of pig (Zhang et al.
2017a). Among the tested three human RPE cell lines (ARPE-19, D407, and
HRPEpiC) and bovine primary cells, BCRP was only detected in D407 cells
(Mannermaa et al. 2009). However, BCRP mRNA was also detected in the neural
retina, RPE eyecup, and primary mouse RPE cells. Immunoreactivity showed that
the expression of BCRP is almost exclusively restricted to the RPE cell layer, mainly
at the basolateral membrane of PRE (Gnana-Prakasam et al. 2011), indicating that
the function of BCRP in the oBRB is to efflux of heme from the retina to choroidal
blood, showing roles in retinal hemochromatosis. Iron overload downregulated
BCRP expression in PRE, whose defective function in RPE may lead to increases
in the cellular levels of phototoxin, thus contributing to oxidative stress and enhanc-
ing the progression of retinal diseases such as age-related macular degeneration
(Gnana-Prakasam et al. 2011).

10.2.2.3 Multidrug Resistance-Associated Proteins (MRPs/ABCCs)

MRPs seem to be mainly expressed in the oBRB, but different tissues or cells from
several species or detected methods often show different patterns of MRP expres-
sion. Mannermaa et al. (2009) investigated expressions of several MRPs in three
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human RPE cell lines (ARPE-19, D407 and HRPEpiC) and bovine primary RPE
cells. The results showed that expressions of MRP1, MRP4, and MRP5 proteins
were detected in the tested three human RPE cell lines. Unlike MRP1 and MRP4,
Mrp5 protein was not detected in bovine primary RPE cells. MRP2 protein was only
detected in the D407 cells (Mannermaa et al. 2009). Activities of MRP1 and MRP5
in ARPE-19 cells were also confirmed by the calcein-AM and CDCF efflux tests
(Mannermaa et al. 2009), respectively. In PRE of porcine, permeability of known
MRP substrate fluorescein in the retina-to-choroid direction across was reported to
be higher 11.3-folds than that in opposite direction. The transport of fluorescein in
the retina-to-choroid direction was blocked by probenecid, with the result that
permeability was equalized in both directions, which was in line with expression
of Mrps (Steuer et al. 2005).

LC-MS/LC-MS analysis demonstrated high expression of MRP1 in primary
human PER cells, ARPE-19 cells, and oBRB tissue of porcine. High levels of
MRP5 protein were only detected in primary human PER cells but not ARPE-19
cells nor oBRB tissue of porcine (Pelkonen et al. 2017; Zhang et al. 2017a). Mrp1
and Mrp4 were also detected in the basal membrane of the mouse RPE; in accor-
dance, the efflux of [3H]-zidovudine from the retina might be inhibited by MRP
inhibitor MK571 (Chapy et al. 2016). Moreover, Mrp4 was reported to be also
uniformly expressed in the physiologically developing retinal vasculature of the
neonatal mouse including the capillaries and large vessels (Tagami et al. 2009).
RCECs of the adult mouse also showed expression of Mrp3, Mrp4, and Mrp6
mRNA (Tachikawa et al. 2008).

Generally, MRPs efflux a wide variety of endogenous compounds and therapeu-
tic drugs. For example, MRP4 mediates cellular efflux of both cAMP and prosta-
glandin E2 (PGE2), indicating involvement of MRP4 in angiogenesis. In human
RCECs, VEGF was reported to dose-dependently decrease expression of MRP4
mRNA and protein. Abcc4 knockdown using RNAi enhanced cell migration and
attenuated serum starvation-induced cell apoptosis, assembled and aggregated into a
massive tube-like structure (Tagami et al. 2010). Similarly, Abcc4 deficiency did not
cause overt abnormalities in the development of the retinal vasculature of mice, but
retinal vascular development was suppressed in response to forskolin administration.
The forskolin-treated Abcc4�/� mice showed an increased number of Ki67-positive
and cleaved caspase 3-positive RCECs and significant decreases in the amount of
pericyte coverage and number of empty sleeves. Moreover, following exposure of
hyperoxia, the Abcc4�/� mice showed a significant increase in the unvascularized
retinal area. These results indicate that MRP4 may have its protective roles in the
retinal vascular development by regulating the intracellular cAMP level (Matsumiya
et al. 2012).

Many kinds of drug transporters, such as OATPs, OATs, P-GP, BCRP, and
MRPs, are expressed at the BRB, mediating transport of therapeutic drugs across
the BRB. These transporters often overlap substrate specificity. Thus net effect is
attributed to their interplay. For example, the elimination of p-aminohippuric acid,
benzylpenicillin, and 6-Mercaptopurine from vitreous humor is mediated by several
transporters. P-aminohippuric acid, benzylpenicillin, and 6-Mercaptopurine are
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substrates of MRP4 (Uchida et al. 2007) and OAT3 (Hosoya et al. 2009), indicating
that OAT3 and MRP4 in common contribute to the efflux transport of PAH, PCG,
and 6-MP from the retina across the BRB. Another example is verapamil. Although
P-GP is also highly expressed at the iBRB, P-GP has little involvement in the retinal
uptake of verapamil, which is partly attributed to the existence of influx transporters
(Chapy et al. 2015; Fujii et al. 2014). Transport of E17βG and dehydroepiandros-
terone sulfate across BRB may be attributed to the combined effects of OATP1A4,
OAT3, and MRP4 (Hosoya et al. 2011).

10.3 Alterations in BRB Function Under Disease Status
and Clinic Significances

10.3.1 The BRB and Diabetic Retinopathy

Diabetic retinopathy, a complication of diabetes, is the leading cause of acquired
blindness, which is involved in functional and structural changes of the BRB.
Microvascular disorders are often diabetic retinopathy although other cells such as
RPE cells are affected by diabetes. The vascular changes are clearly linked to the loss
of visual acuity and clinical alterations in the retinal vasculature. Early vascular
changes include leukostasis, aggregation of platelets, alteration in blood flow,
degeneration of pericytes, and basement membrane thickening. The increased retinal
vascular permeability associated with diabetic retinopathy may result from alter-
ations in the tight junction and adherens junction complexes or from endothelial cell
death. Macular edema is closely associated with the loss of visual acuity in diabetic
retinopathy, which is attributed to the increased BRB permeability (Frey and
Antonetti 2011; Arden and Sivaprasad 2011).

10.3.1.1 Inflammation and Diabetic Retinopathy

Retinal inflammation plays a major role in the pathogenesis of diabetic retinopathy.
Hyperglycemia is considered as a pro-inflammatory environment via releasing some
inflammatory cytokines [such as tumor necrosis factor-α (TNF-α), interleukin -1β
(IL-1β), and interleukin-6 (IL-6)] and chemokine ligands (such as CCL2, CCL5, and
CCL12)].These cytokines and chemokines induce the disorganization and redistri-
bution of junctional proteins in microvasculature, leukocyte activation, release of
intercellular adhesion molecule-1 (ICAM-1), and other cell adhesion molecules, in
turn, increasing vascular permeability and further exacerbating the inflammatory
milieu of the retina. For example, TNF-α downregulated expression of tight junction
proteins (such as claudin-5 and ZO-1). Hyperglycemia upregulated levels of ICAM-
1 and high mobility group box-1 (HMGB-1), which was in line with increases in
leaky of Evans blue in rat retina (Ran et al. 2016). Streptozotocin (STZ)-induced
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diabetes significantly upregulated expression of retinal CCL2 and increased monocyte
trafficking in rats. In accordance with this, intraocular injection of the CCL2 into
nondiabetic rats also increased retinal monocyte trafficking, indicating the ability of
the chemokine to attract monocytes/macrophages into retinal tissue. High glucose
exposure was also reported to upregulate CCL2 expression in human RCECs. Con-
trarily, CCL2 deficiency prevented the increase in vascular permeability and monocyte
trafficking in the retinas of diabetic rats (Rangasamy et al. 2014). Moreover, diabetes
also significantly increased levels of retinal cathepsin D and CCL2, accompanied by
increases in vascular permeability to albumin in the retinas of mice. Patients with
diabetic macular edema also showed increases in levels of serum cathepsin D protein.
In human RCECs, cathepsin D was reported to disrupt endothelial junctional barrier
via increasing RhoA/ROCK cell contractility (Monickaraj et al. 2016). Significant
increases in expression of CXC chemokine platelet factor-4 (PF-4/ CXCL4) were also
found in both vitreous fluid from patients with proliferative diabetic retinopathy and
the retinas of diabetic rats. In human RCECs, it was found that PF-4/CXCL4, an
angiostatic chemokine, inhibited VEGF-induced signal transduction and inhibited cell
migration (Nawaz et al. 2013). Platelet factor-4 variant (PF-4var/CXCL4L1) was also
reported to inhibit VEGF-mediated hyperpermeability. In accordance, intravitreal
PF-4var/CXCL4L1 or bevacizumab attenuated diabetes-induced BRB breakdown in
rats, leading to decreases in vascular leakage by approximately 70% and 73%,
respectively, compared with phosphate buffer saline injection. These effects were
also associated with upregulation of occludin and vascular endothelial-cadherin and
downregulation of hypoxia-inducible factor (HIF)-1α, VEGF, TNF-α, receptor for
advanced glycation end products (RAGE), and caspase-3 (Abu El-Asrar et al. 2016).
Nuclear factor-κB (NF-κB) pathway is also involved in the pathogenesis of diabetic
retinopathy. It was reported that administration of NF-κB inhibitor
dehydroxymethylepoxyquinomicin suppressed retinal adherent leukocytes, expression
of inflammatory molecules (ICAM-1 and VEGF), and renin angiotensin system
(RAS)-related molecules such as angiotensinogen and angiotensin-II receptor
1 (AT1-R) induced by diabetes (Nagai et al. 2007).

10.3.1.2 Vascular Endothelial Growth Factor (VEGF) and Diabetic
Retinopathy

VEGF, a pro-angiogenic growth factor secreted preferentially from the basal surface
of the RPE and Müller cells, modulates and maintains the extracellular space in and
around the Bruch’s membrane and modulates the growth/density of endothelial cells
in the choriocapillaris (Kay et al. 2013; Le 2017). Diabetic retinopathy is often
associated with the increases in retinal VEGF levels (Kay et al. 2013; Lin et al. 2011;
Nawaz et al. 2013). Animal and clinical trials have demonstrated that diabetes-
induced increases in retinal VEGF levels are coincided with BRB breakdown
(Le 2017).VEGF is involved in the pathogenesis of diabetic retinopathy via inducing
retinal ICAM-1 expression, vascular permeability, leukostasis, BRB breakdown, or
vascular lesions (Le 2017). In normal rats, it was found that VEGF164/VEGF-A was
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at least twice as potent as VEGF120 at inducing ICAM-1-mediated retinal
leukostasis and BRB breakdown following intravitreous injections (Ishida et al.
2003). Moreover, blockade of endogenous VEGF-A with EYE001 significantly
suppressed diabetes-induced retinal leukostasis and BRB breakdown, indicating
that VEGF-A is an important isoform in the pathogenesis of diabetic retinopathy.
Roles of VGEF in pathogenesis of diabetic retinopathy were confirmed by condi-
tional VEGF knockout mice. It was found that conditional VEGF knockout signif-
icantly reduced leukostasis, expression of inflammatory biomarkers, depletion of
tight junction proteins, numbers of acellular capillaries, and vascular leakage in the
retina of diabetic mice (Wang et al. 2010). In general, VEGF shows its pathophys-
iologic effects in diabetic retinopathy in two ways (Deissler et al. 2014). One, VEGF
increases vascular permeability and causes fluid extravasation and retinal edema via
affecting endothelial tight junctions. Second, VEGF causes leukocyte aggregation in
the retinal microvasculature, resulting in local cytokine production and inflammatory
cell migration through the endothelium, both of which contribute to BRB break-
down. Anti-VEGF therapy with aflibercept, bevacizumab, or ranibizumab has been a
hallmark strategy to prevent diabetic retinopathy in the clinic (Virgili et al. 2017),
demonstrating efficiency of anti-VEGF drugs on the improvement of vision in
people with diabetic macular edema. Some drugs such as brimonidine, memantine
(Kusari et al. 2007, 2010), and corticosteroids (Edelman et al. 2005; Wang et al.
2008) also attenuate diabetic macular edema and retinopathy partly via affecting
expression of retinal VEGF expression or downstream signal proteins of the VEGF
receptor.

10.3.1.3 Hyperosmolar Stress and Diabetic Retinopathy

Diabetic retinopathy is associated with osmotic stress resulting from hyperglycemia
and intracellular sorbitol accumulation. In vitro, it was reported that high glucose
increased expression of the water channel aquaporin-1 (AQP1) and cyclooxygenase
(COX)-2, increased activity of the osmolarity-sensitive transcription factor tonicity
enhancer-binding protein (TonEBP), and enhanced endothelial migration and
tubulization. These alterations by high glucose were reversed by AQP1 and TonEBP
siRNA, indicating that high glucose-induced hyperosmolarity promotes angiogene-
sis and retinopathy via activating TonEBP (Madonna et al. 2016). It is generally
accepted that glucose is reduced to sorbitol by aldose reductase, and sorbitol is
eventually metabolized to fructose by sorbitol dehydrogenase. Intracellular sorbitol
accumulation induces osmotic damage of the retinal vascular cells and RPE cells,
loss of pericytes, basement membrane thickness, and oxidative stress, all of which
contribute to iBRB rupture during diabetic retinopathy (Lorenzi 2007). RPE cells
subjected to hyperosmolar stress also underwent osmoadaptative responses such as
shrinkage of RPE cells, alterations in AQP expression, increases in VEGF expres-
sion, placental growth factor, monocyte chemoattractant protein-1, and basic fibro-
blast growth factor (Willermain et al. 2018), further impairing RPE function.
Hyperosmolar conditions also increases activity and expression of TAUT in RPE
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cells, leading to increases in the uptake of taurine (El-Sherbeny et al. 2004).
Moreover, hyperosmolar condition also increased expression of aldose reductase
(Winges et al. 2016), in turn, further enhancing sorbitol accumulation.

10.3.1.4 Plasma Kallikrein-Kinin System (PKKs) and Diabetic
Retinopathy

Accumulating evidences have demonstrated contribution of plasma kallikrein-kinin
system (PKKs) to diabetic retinopathy. It was reported that levels of plasma
prekallikrein and plasma kallikrein in vitreous from subjects with diabetic macular
edema were increased to 2.0-fold and 11.0-fold, respectively, of those with a
macular hole (Kita et al. 2015). In normal rats, intraocular injection of bradykinin
dose-dependently might increase plasma extravasation, which was inhibited by
bradykinin receptor 2 antagonist Hoe140 (Abdouh et al. 2008; Phipps et al. 2009).
Similarly, the bradykinin receptor 2 agonist bradykinin might vasodilate retinal
vessels in a concentration-dependent manner, which was completely blocked by
Hoe140. But bradykinin receptor 1 agonist des-Arg9-bradykinin had no this effect.
However, in diabetic rats, des-Arg9-bradykinin could also produce a concentration-
dependent vasodilatation and was also inhibited by the bradykinin receptor 1 receptor
antagonist des-Arg10-Hoe140 (Abdouh et al. 2003), which may be explained by
these findings that the bradykinin receptor 1 in the retina is only minimally expressed
under physiological conditions, but diabetes significantly upregulated expression of
bradykinin receptor 1 without affecting bradykinin receptor 2 (Abdouh et al. 2008;
Kita et al. 2015; Pouliot et al. 2012). Animal experiments have been demonstrated
that diabetes-induced retinal vascular permeability is attenuated by plasma kallikrein
inhibitor or bradykinin receptor antagonists (Abdouh et al. 2008; Catanzaro et al.
2012; Clermont et al. 2011; Pouliot et al. 2012) or plasma prekallikrein-gene
deficiency (Kita et al. 2015). FOV-2304, a non-peptide selective bradykinin receptor
1 antagonist, also blocked retinal vascular permeability, inhibited leukocyte adhe-
sion, and abolished the retinal mRNA expression of several inflammatory mediators
in diabetic rats (Pruneau et al. 2010). These results indicate that the blockade of the
PKKs is a promising therapeutic strategy for diabetic retinopathy.

Interestingly, the response of plasma kallikrein following injection into vitreous of
diabetic rats was blocked by bradykinin receptor antagonist but not by bevacizumab.
In mice, administration of VEGF receptor 2 antibody DC101 did not affect
bradykinin-induced retinal thickening. Moreover, although increased VEGF levels
were also observed in diabetic macular edema vitreous, no correlation of plasma
kallikrein level and VEGF level was found. These results indicate that diabetic
macular edema induced by PKKs is VEGF-independent (Kita et al. 2015). However,
a report showed that plasma prekallikrein-gene deficiency partly decreased the
VEGF-induced retinal vascular permeability and retinal thickening or TNFα-induced
retinal thickening in mice. Systemic administration of plasma kallikrein inhibitor
VA999272 also reduced VEGF-induced retinal thickening in both mice and rats,
indicating that plasma kallikrein is required for the full effects of VEGF on retinal
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vascular permeability and retinal thickening (Clermont et al. 2016). Retinal hemor-
rhages also occur under diabetic condition. Intravitreal injection of autologous blood
was reported to induce retinal vascular permeability and retinal leukostasis, which
were ameliorated by plasma kallikrein inhibition. Intravitreal injections of exogenous
plasma kallikrein also induced retinal vascular permeability, leukostasis, and retinal
hemorrhage, indicating that retinal hemorrhage increases retinal vascular permeabil-
ity and leukostasis partly via plasma kallikrein (Liu et al. 2013).

Real mechanisms that PKKs induce retinal vascular permeability and retinal
thickening are not fully understood. Bradykinin was reported to evoke intracellular
Ca2+ transients in primary human RPE, which was enhanced by pretreatment with
TNF-α and/or IL-1β but inhibited by fasitibant chloride, a selective bradykinin
receptor 2 antagonist. TNF-α and/or IL-1β enhanced bradykinin-induced Ca2+

response via increasing expression of both bradykinin receptor 2 and COX-2, as
well as secretion of prostaglandin E1 and E2 into the extracellular medium (Catalioto
et al. 2015). Intravitreal injections of either plasma kallikrein or collagenase, but not
bradykinin, also induced retinal hemorrhage in rats. Proteomic analysis showed that
plasma kallikrein increased collagen degradation in pericyte-conditioned medium
and purified type IV collagen, indicating that plasma kallikrein leads to breakdown
of BRB due to its collagenase-like activity (Liu et al. 2013). However, intravitreal
injection of bradykinin also increased retinal vascular permeability, which might be
prevented by both vasoinhibins and Hoe-140. In ARPE-19, bradykinin also
increased permeability of the BRB and decreased endothelial monolayer resistance,
which was attributed to redistribution of actin cytoskeleton, subsequently reorgani-
zation of tight and adherens junctions. These effects were reversed by NO synthase
inhibitor L-NAME, vasoinhibins, and N-acetyl cysteine (Arredondo Zamarripa et al.
2014). Bradykinin could also inhibit TGF-β1-stimulated ARPE-19 cell proliferation,
collagen I, fibronectin, and MMP-2 secretion as well as Akt phosphorylation via
activating bradykinin receptor 2 (Cai et al. 2016). In normal rats, bradykinin-induced
vasodilatation was involved in intracellular Ca2+ mobilization and products of the
cyclooxygenase-2 (COX-2) pathway, but in STZ-diabetic rats, the vasodilatation in
response to des-Arg9-bradykinin was involved in both calcium influx and intracel-
lular calcium mobilization, which was blocked by GdCl3, 2,5-di-t-
butylhydroquinone, and cADP ribose (Abdouh et al. 2003).

10.3.1.5 Renin Angiotensin System (RAS) and Diabetic Retinopathy

Clinical and experimental studies have demonstrated that abnormalities of the renin
angiotensin system (RAS) may play a significant role in the progression of the
diabetic retinopathy, presumably through local changes in the blood flow and the
production of angiotensin II (Ang II) (Ola et al. 2017; Phipps et al. 2012). Besides
circulating RAS, RAS locally exists in the retina. Animal experiments have demon-
strated that diabetes increases components of RAS including prorenin,
angiotensinogen, Ang II, angiotensin-converting enzyme (ACE), angiotensin-
converting enzyme 2 (ACE2), and Ang II receptor 1 (AT1R) in the retina (Ola
et al. 2017; Nagai et al. 2007; Verma et al. 2012). Several reports have shown that
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vitreous pool of proliferative diabetic retinopathy patients also exhibited an
increased level of Ang II and other RAS components compared to nondiabetic
subjects (Ola et al. 2017; Phipps et al. 2012). Rodent experiments have
aslo revealed that ACE inhibitors and AT1R blockers could reduce diabetes-induced
retinal microvascular damage with reductions in vascular leakage, decreased forma-
tion of acellular capillaries, and decreased expression of angiogenic factors such as
VEGF (Mori et al. 2002; Wilkinson-Berka et al. 2007; Zhang et al. 2007). ACE
inhibition or AT1R blockade also decreased diabetes-induced retinal leukostasis and
upregulation of adhesion molecules (Mori et al. 2002; Chen et al. 2006; Silva et al.
2007), but AT2R blockade did not show this effect (Nagai et al. 2007).

AT1R antagonist candesartan could decrease diabetes-induced or Ang
II-stimulated retinal vascular permeability without affecting retinal vascular perme-
ability in normal rats although candesartan decreased hypertension both in diabetic
and normal rats (Phipps et al. 2009). Ang II infusion also significantly increased
expression of plasma kallikrein in rat retina. Bradykinin receptor 2 antagonist
Hoe140 and plasma kallikrein inhibitor (ASP-440) might attenuate Ang II-induced
retinal vascular permeability, indicating that activation of AT1R increases retinal
vascular permeability partly via PKKs (Phipps et al. 2009). Clinical trial (Mauer
et al. 2009) demonstrated effects of ACE inhibitor enalapril and the AT1R inhibitor
losartan on progression of diabetic retinopathy to a similar extent, whose odds of
retinopathy progression were reduced by 65% with enalapril treatment and 70% with
treatment, respectively. Data from 5321 diabetic patients demonstrated that treat-
ment with candesartan significantly reduced the incidence of development of dia-
betic retinopathy in type 1 diabetics without affecting its progression (Chaturvedi
et al. 2008). But in type 2 diabetes, treatment with candesartan reduced the devel-
opment of retinopathy and even resulted in a 34% regression of retinopathy com-
pared with the control group (Sjølie et al. 2008). Taken together, these results
suggest that RAS blockade may be useful for slowing progression and decreasing
the severity of diabetic retinopathy.

ACE2 is expressed in the retina, which converts the vasoconstrictive and
pro-inflammatory peptide Ang II into the vasodilatory and anti-inflammatory peptide
angiotensin-(1-7) [Ang(1-7)], which exhibits its effects primarily through the recep-
tor Mas. A report showed that STZ-induced diabetes significantly increased mRNA
levels of the vasodeleterious axis of the RAS (angiotensinogen, renin, pro/renin
receptor, ACE, and AT1R) in the retina of eNOS�/� mice, leading to increases in
ratios of ACE/ACE2 and AT1R/Mas mRNA levels by approximately tenfolds and
threefolds, respectively (Verma et al. 2012). The increases in vascular permeability,
infiltrating CD45-positive macrophages, and activation of CD11b-positive
microglial cells as well as formation of acellular capillaries in the retina of diabetic
mice were attenuated by intraocular administration of adeno-associated virus-ACE2
or Ang-(1-7) vector (Verma et al. 2012). Intraocular administration of adeno-
associated virus-ACE2 vector was also reported to attenuate the increase of acellular
capillaries and leaky of macrophages/microglia in the retina of STZ-induced diabetic
mice (Dominguez et al. 2016). Similarly, in STZ-induced diabetic rat retinas, the
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increased numbers of acellular capillaries were almost completely prevented by gene
delivery of either ACE2 or Ang-(1-7) (Verma et al. 2012).

Diabetes is often associated with hypertension, and patients with hypertension are
at a greater risk of developing diabetic complications including retinopathy, inferring
that therapeutic effects of RAS blockade on diabetic retinopathy are also attributed to
the reduction in blood pressure. Clinical trials have demonstrated no different effects
on progression of retinopathy between captopril and atenolol treatments or between
enalapril and nisoldipine in type 2 diabetes (Phipps et al. 2012). In consistence,
diabetic spontaneously hypertensive rats (SHR) showed significantly higher number
of ED1/microglial-positive cells and the expression of ICAM-1 in the retina than in
control SHR. The SHR also possessed higher NF-κB p65 levels than Wistar Kyoto
(WKY) rats. These abnormalities in diabetic SHR rats were completely prevented by
losartan or complex of hydralazine+ reserpine +hydrochlorothiazide) (Silva et al.
2007). Similarly, SHR rats showed higher number of BrdU-positive retinal cells than
WKY rats. A significant reduction in cell replication was found only in diabetic
SHR, and this reduction was associated with enhanced p27Kip1, fibronectin, and
VEGF retinal expressions and greater blood-retinal barrier breakdown (Lopes et al.
2008). These results indicate contribution of concomitant diabetes and hypertension
to diabetic retinopathy. However, a rat experiment showed that ramipril, losartan,
and nifedipine showed similar antihypertensive efficiencies, but ramipril and
losartan showed stronger decreases in retinal leukostasis and expression of ICAM-
1 induced by diabetes than nifedipine, indicating that their effects seem to be partly
independent of blood pressure and to be associated with a decrease in ICAM-1 gene
expression (Chen et al. 2006), which need further investigation.

It is worth noting that systemic Ang II reduces RPE renin production via
stimulating AT1R and that systematic application of ACE inhibitors strongly acti-
vates local RAS in the retina, indicating that the systemic treatment with RAS
blockade for retinal degeneration and systemic disease may cause side effects
detrimental, or perhaps beneficial, to retinal disease (Strauß 2016) via affecting
retinal RAS.

10.3.1.6 Alterations in Transport under Diabetic Status

10.3.1.6.1 Alterations in Glucose Transport

The retina and RPE are highly metabolically active tissues with substantial demands
for glucose. In STZ-induced diabetic rats, Glut1 expression in retinal microvessels
but not in RPE was decreased by approximately 50%, without altering the retina
microvascular density, indicating that the fraction of the glucose entering the retina
of diabetes is likely to be greater across the RPE than across the retinal vasculature
(Badr et al. 2000). Decreases in expressions of Glut1 proteins not mRNA were also
found in the retinas of diabetic GK rats and alloxan-treated rabbits (Fernandes et al.
2004). In TR-iBRB cells, high glucose exposure also decreased expression of Glut1
protein. Moreover, higher content of high molecular weight ubiquitin conjugates
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was found in both membrane fractions of diabetic retinas and endothelial cells
treated with high glucose exposure, indicating that the decreased expression of
Glut1 protein may be associated with its increased degradation by a ubiquitin-
dependent mechanism (Fernandes et al. 2004). Importantly, although expressions
of Glut1 on the luminal plasma membrane of the RCECs and in homogenates of the
whole retina in diabetic rats were significantly decreased (about 55% and 36% of
control rats, respectively) (Tang et al. 2000), retinal glucose levels were significantly
elevated by fourfold to sixfold compared with the nondiabetic rats. It was also found
that glucose influx increased with increasing plasma glucose in both diabetic and
normal rats (Puchowicz et al. 2004). Dehydroascorbic acid transport across BRB is
mediated by GLUT1; it was consistent with the decreases in Glut1 expression that
[14C] dehydroascorbic acid transport across the BRB in STZ-induced diabetic rats
was less than 35% of normal rats, inferring that hyperglycemia reduces the supply of
vitamin C to the retina (Minamizono et al. 2006).

10.3.1.6.2 Alterations in H2O Transport

BRB maintains fluid homeostasis in the retina by removing fluid out of the retina via
the retinal vasculature. Besides the ionic and osmotic gradients, transport H2O across
BRB is mainly mediated by aquaporins (AQPs). Thirteen AQPs have been identified
in mammals, most of which are expressed in the retina. Diabetes significantly altered
the expression and distribution of retinal AQPs in the retina (Xia and Rizzolo 2017)
in a species-dependent manner. For example, diabetes upregulated AQP5, 9, 11, and
12 but downregulated AQP0 in the RPE of rats (Hollborn et al. 2011). Diabetic
retinopathy is often associated with cellular stressors (such as hypoxia and oxidative
stress). In primary cultures of human RPE, it was found that exposure of stressors
(chemical hypoxia, oxidative stress, VEGF, and high glucose) upregulated expres-
sion of AQP9 (Hollborn et al. 2012). AQP9, an aquaglyceroporin, is not only
permeable to water but also to non-charged solutes, such as lactate. AQP9 expres-
sion is considered to be required for L-lactate to maintain retinal neuronal survival
(Akashi et al. 2015), indicating that the upregulation of AQP9 in RPE cells may
prevent lactic acidosis and subretinal edema under ischemic and oxidative stress
conditions (Akashi et al. 2015; Hollborn et al. 2012). Hyperosmolarity could alter
AQP expression. It was reported that 10 min exposure to an osmolar stress (400 mM
sucrose or 200 mM NaCl) significantly decreased AQP4 expression in ARPE-19
cells (Willermain et al. 2014b). Under normal condition, expression of AQP1 in the
rat retina is at minimal levels, diabetes increased expression of AQP1, and hyper-
tension also enhanced expression of AQP4 under diabetic conditions, which were
reversed by valsartan and metoprolol (Qin et al. 2012). Furthermore, intravitreal
injection of VEGF also increased AQP4 expression in the retina of normal and
diabetic rats. TGN-020, a selective AQP4 inhibitor, suppressed VEGF-induced
enlargement of Müller cells and increases in intracellular levels of NO. Thus, the
authors gave a conclusion that VEGF induced Müller cell swelling through the
formation of NO and AQP4 channels (Kida et al. 2017). Importantly, although
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diabetes or administration of VEGF increased AQP4 expression in the retina of rats
(Cui et al. 2012; Kida et al. 2017), AQP4 downregulation exacerbated diabetic
retinopathy and aggravated inflammatory response (Cui et al. 2012). Thus, the
cellular mechanisms mediating expression of AQPs by diabetes and their clinic
significances need further investigation.

10.3.1.6.3 Alterations in Active Transport

Tight junctions maintain the ion gradients essential for transcellular transport mech-
anisms to function. Diabetes can directly decrease the ion gradients via decreasing
Na+/K+-ATPase activity, contributing to retinal edema (Xia and Rizzolo 2017).
Transport of L-lactic acid across the RPE is dependent on a pH gradient. Intracellular
pH is regulated by Na+/HCO3� cotransporters. The Na+-dependent movement of
HCO3

� is actively driven by the physiologic Na+ gradient established by the Na+/
K+-ATPase. Thus, inadequate activity of the Na+/K+-ATPase impaired transport of
L-lactic acid. Taurine is the most abundant free amino acid in the retina, which
functions as an antioxidant and may attenuate the spread of cell death in RPE cells.
Diabetes and high glucose downregulate expression and activity of retinal TAUT
(Zeng et al. 2010; Lee and Kang 2013) partly due to overexpression of aldose
reductase (Nakashima et al. 2005b; Stevens et al. 1999). Taurine deficiency can
lead to severe damage to photoreceptors (Ripps and Shen 2012). Thus, decreases in
transport of retinal taurine by diabetes and subsequent taurine depletion from the
retina could contribute to visual impairment.

10.3.1.6.4 Alterations in ABC Transporters

Some diseases may affect expression of retinal P-GP and BCRP. A report showed
that 24-week STZ-induced diabetic mice demonstrated lower expression of retinal
P-GP and BCRP, with the breakdown of the iBRB, which might be linked to the
pathogenesis of early diabetic retinopathy (Li et al. 2017). In D407 cells, it was
reported that high glucose exposure significantly decreased P-GP expression of both
mRNA and protein levels, attenuated P-GP activity, and increased expressions of
both mRNA and protein of inducible nitrate oxide synthase (iNOS). High glucose
exposure also decreased expression of pregnane X receptor (PXR) mRNA. These
alterations by high glucose were partially blocked by a selective iNOS inhibitor,
whose effects were antagonized with the addition of L-arginine, a substrate for NO
synthesis. These results demonstrate roles of iNOS induction in decreased P-GP
expression and function at the human oBRB under hyperglycemic conditions
(Zhang et al. 2012).

Diabetes is often associated with oxidative stress, which is a contributing factor to
RPE cell dysfunction in diabetic retinopathy and age-related macular degeneration.
In general, cellular antioxidants in RPE also play a critical role in combating
oxidative stress; among the cellular antioxidant constituents, reduced glutathione
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(GSH) plays a significant role in cellular defense against pro-oxidants. MRP1,
expressed in PRE, regulates levels of cellular GSH via efflux GSH. In ARPE-19
cells, it was found that MRP inhibitors (MK571 and sulfinpyrazone) significantly
decreased GSH efflux by 50%. MRP1 silencing using MRP1-specific siRNA also
caused a significant 60% reduction in GSH efflux. Moreover, the downregulation of
MRP1 developed to resistance to H2O2-induced cell death. Contrarily,
overexpression of MRP1 was susceptible to H2O2-induced cell death, which was
consistent with lower cellular GSH levels in MRP1 overexpressed cells (Sreekumar
et al. 2012). These results indicate that MRP1 shows its roles in oxidant-induced cell
death via efflux GSH and that MRP1 may be a potential therapeutic target in
pathological retinal degenerative disorders linked to oxidative stress.

10.3.2 Ischemia-Reperfusion/Hypoxia and BRB Breakdown

Retinal ischemia-reperfusion injury is associated with many ocular diseases such as
acute retinal vein occlusion, diabetic retinopathy, and glaucoma. Oxidative injury is
one of the complications after retinal ischemia-reperfusion injuries, accompanied by
retinal swelling, neuronal cell death, and glial cell activation, due to oxidation stress
and release of inflammatory cytokines and chemokines (Kaur et al. 2008). Ischemia-
reperfusion was reported to significantly increase retinal mRNA expression of several
pro-inflammatory cytokines such as IL-1β (3.2-fold), IL-6 (4.2-folds), TNF-α (5.6-
fold), and CCL2 (116.9-folds) in the retinas, accompanied by significant increases in
leaky of Evans Blue (3.8-fold) and number of CD45-positive cells (Gonçalves et al.
2016). The roles of TNF-α in cytokine-induced BRB breakdown were demonstrated
in TNF-α-deficient mice. It was found that compared with wild-type mice, TNF-α
deficiency significantly reduced leukocyte accumulation in retinal vessels by 80%,
100%, and 100% after intravitreous injection of VEGF, IL-1β, and platelet-activating
factor (PAF), respectively. The absences of TNF-α significantly reduced retinal
vascular permeability induced by injection of PAF, but not VEGF nor IL-1β.
Moreover, TNF-α deficiency significantly reduced leukostasis and mild reduction
in vascular leakage, but did not affect hypoxia-induced retinal neovascularization
(Vinores et al. 2007). Ischemia-reperfusion was also reported to induce occludin
Ser490 phosphorylation and ubiquitination, distribution of specific tight junction
proteins, and activation and phosphorylation of VEGF receptor-2 (VEGFR-2) at
tyrosine 1175, all of which contribute to the increased vascular permeability.
Intravitreal injection of bevacizumab prevented VEGFR-2 activation, occludin phos-
phorylation, and vascular permeability induced by ischemia-reperfusion (Muthusamy
et al. 2014). Furthermore, ischemia-reperfusion also altered distribution of glial
fibrillary acidic protein (GFAP) and AQP4 in the retina. In normal rats, expression
of GFAP was confined to astrocytes in ganglion layer; ischemia-reperfusion mark-
edly increased expression of GFPA, whose expression was not just confined to the
ganglion layer but also found in the Muller cell processes. AQP4 staining is discon-
tinuous along the blood vessels and appeared weak in normal rats. AQP4
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immunoreactivity surrounding retinal vessels became more intense in the ischemia-
reperfusion retina (Li et al. 2011). The increased expression of AQP4 and alterations
in its distribution led to increases in transport of water from blood vessels to the
retinal tissues, contributing to edema formation in hypoxic conditions (Kaur et al.
2008; Li et al. 2011). Moreover, under normal conditions, Müller cells do not express
GFAP, but many insults including hypoxia to the retina lead to a rapid upregulation of
GFAP in these cells. Upregulation of GFAP in stressed Müller cells is often associ-
ated with an upregulation of heat shock proteins and alterations in cytoskeletal protein
synthesis, swelling of Müller/astrocytes cells, and vascular leakage in hypoxic con-
dition (Kaur et al. 2008). Caveolae-mediated vesicular transport is a system of
transcellular transport of macromolecules in the BRB. Caveolin-1 is a principal
structural component of caveolae. Under normal condition, expression of caveolin-
1 in the RCECs contributes to the integrity of the BRB. Hypoxia increased expres-
sions of caveolin-1 mRNA and protein and caveolin-1 siRNA significantly reduced
hypoxia-induced albumin leakage in the retinas and neovascularization, which was in
line with reduction of caveolin-1 mRNA and protein, indicating that overexpression
of caveolin-1 in the retina is associated with BRB breakdown and neovascularization
formation (Tian et al. 2012).

BRB breakdown by hypoxia is linked to induction of hypoxia-inducible factor
(HIF)-1 in Müller cells. In vitro, it was found that unlikely to wild-type mice,
hypoxia did not induce expression of abundance of VEGF in Müller cells from
conditional Hif-1α knockout mice, which was consistent with decreases in expres-
sion of HIF-1, indicating that HIF-1α in Müller cells is a major mediator of
ischemia-/hypoxia-induced VEGF overproduction in the retina. In vivo, hypoxia
induces expression of HIF-1, VEGF, ICAM-1, vascular leakage, and retinal
neovascularization in mice, which may be attenuated by conditional HIF-1α defi-
ciency. Moreover, HIF-1α deficiency also reverses the diabetes-induced inflamma-
tion, vascular leakage, and leucostasis (Lin et al. 2011), indicating that Müller cell-
derived HIF-1α is therefore a promising therapeutic target for diabetic retinopathy.

Acknowledgments The project was in part supported by the National Natural Science Foundation
of China (No. 81872930; 81573490) and “Double First-Class” University project
(No. CPU2018GY22).

References

Abdouh M, Khanjari A, Abdelazziz N, Ongali B, Couture R, Hasséssian HM (2003) Early
upregulation of kinin B1 receptors in retinal microvessels of the streptozotocin-diabetic rat.
Br J Pharmacol 140:33–40

Abdouh M, Talbot S, Couture R, Hasséssian HM (2008) Retinal plasma extravasation in
streptozotocin-diabetic rats mediated by kinin B(1) and B(2) receptors. Br J Pharmacol
154:136–143

494 L. Liu and X. Liu



Abu El-Asrar AM, Mohammad G, Nawaz MI, Abdelsaid M, Siddiquei MM, Alam K et al (2016)
Variant (PF-4var)/CXCL4L1 inhibits diabetes-induced blood-retinal barrier breakdown. Invest
Ophthalmol Vis Sci 56:1956–1964

Abukawa H, Tomi M, Kiyokawa J, Hori S, Kondo T, Terasaki T et al (2009) Modulation of retinal
capillary endothelial cells by Müller glial cell-derived factors. Mol Vis 15:451–457

Akanuma SI, Hirose S, Tachikawa M, Hosoya KI (2013a) Localization of organic anion
transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers
CNS 10:29

Akanuma S, Soutome T, Hisada E, Tachikawa M, Kubo Y, Hosoya K (2013b) Na+-independent
nucleoside transporters regulate adenosine and hypoxanthine levels in Müller cells and the inner
blood-retinal barrier. Invest Ophthalmol Vis Sci 54:1469–1477

Akashi A, Miki A, Kanamori A, Nakamura M (2015) Aquaporin 9 expression is required for
L-lactate to maintain retinal neuronal survival. Neurosci Lett 589:185–190

Arden GB, Sivaprasad S (2011) Hypoxia and oxidative stress in the causation of diabetic retinop-
athy. Curr Diabetes Rev 7:291–304

Arredondo Zamarripa D, Díaz-Lezama N, Meléndez García R, Chávez Balderas J, Adán N,
Ledesma-Colunga MG et al (2014) Vasoinhibins regulate the inner and outer blood-retinal
barrier and limit retinal oxidative stress. Front Cell Neurosci 8:333

Asashima T, Hori S, Ohtsuki S, Tachikawa M, Watanabe M, Mukai C et al (2006) ATP-binding
cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal
capillary endothelial cells. Pharm Res 23:1235–1242

Atluri H, Talluri RS, Mitra AK (2008) Functional activity of a large neutral amino acid transporter
(LAT) in rabbit retina: a study involving the in vivo retinal uptake and vitreal pharmacokinetics
of L-phenyl alanine. Int J Pharm 347:23–30

Badr GA, Tang J, Ismail-Beigi F, Kern TS (2000) Diabetes downregulates glut1 expression in the
retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes
49:1016–1021

Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside
transporter family, SLC29. Pflugers Arch 447:735–743

Barot M, Gokulgandhi MR, Agrahari V, Pal D, Mitra AK (2014) Monocarboxylate transporter
mediated uptake of moxifloxacin on human retinal pigmented epithelium cells. J Pharm
Pharmacol 66:574–583

Bauer M, Karch R, Tournier N, Cisternino S, Wadsak W, Hacker M et al (2017) Assessment of
P-glycoprotein transport activity at the human blood-retina barrier with (R)-11C-verapamil PET.
J Nucl Med 58:678–681

Baumann B, Sterling J, Song Y, Song D, Fruttiger M, Gillies M et al (2017) Conditional Müller cell
ablation leads to retinal iron accumulation. Invest Ophthalmol Vis Sci 58:4223–4234

Behzadian MA, Wang XL, Windsor LJ, Ghaly N, Caldwell RB (2001) TGF-beta increases retinal
endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial
barrier function. Invest Ophthalmol Vis Sci 42:853–859

Bergersen L, Jóhannsson E, Veruki ML, Nagelhus EA, Halestrap A, Sejersted OM et al (1999)
Cellular and subcellular expression of monocarboxylate transporters in the pigment epithelium
and retina of the rat. Neuroscience 90:319–331

Bozard BR, Ganapathy PS, Duplantier J, Mysona B, Ha Y, Roon P et al (2010) Molecular and
biochemical characterization of folate transport proteins in retinal Müller cells. Invest
Ophthalmol Vis Sci 51:3226–3235

Cai W, Wei Q, Liu Q, Ren C, Liu J, Zhang R et al (2016) Effect of bradykinin on TGF-β1-induced
retinal pigment epithelial cell proliferation and extracellular matrix secretion. BMC Ophthalmol
16:199

Catalioto RM, Valenti C, Maggi CA, Giuliani S (2015) Enhanced Ca(2+) response and stimulation
of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells
primed with proinflammatory cytokines. Biochem Pharmacol 97:189–202

10 Roles of Drug Transporters in Blood-Retinal Barrier 495



Catanzaro O, Labal E, Andornino A, Capponi JA, Di Martino I, Sirois P (2012) Blockade of early
and late retinal biochemical alterations associated with diabetes development by the selective
bradykinin B1 receptor antagonist R-954. Peptides 34:349–352

Chan T, Zhu L, Madigan MC, Wang K, Shen W, Gillies MC et al (2015) Human organic anion
transporting polypeptide 1A2 (OATP1A2) mediates cellular uptake of all-trans-retinol in human
retinal pigmented epithelial cells. Br J Pharmacol 172:2343–2353

Chancy CD, Kekuda R, HuangW, Prasad PD, Kuhnel JM, Sirotnak FM et al (2000) Expression and
differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in
mammalian retinal pigment epithelium. J Biol Chem 275:20676–20684

Chan-Ling T, Koina ME, McColm JR, Dahlstrom JE, Bean E, Adamson S et al (2011) Role of
CD44+ stem cells in mural cell formation in the human choroid: evidence of vascular instability
due to limited pericyte ensheathment. Invest Ophthalmol Vis Sci 52:399–410

Chapy H, André P, Declèves X, Scherrmann JM, Cisternino S (2015) A polyspecific drug/proton
antiporter mediates diphenhydramine and clonidine transport at the mouse blood-retinal barrier.
Br J Pharmacol 172:4714–47125

Chapy H, Saubaméa B, Tournier N, Bourasset F, Behar-Cohen F, Declèves X et al (2016) Blood-
brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of
P-glycoprotein on a novel verapamil influx carrier. Br J Pharmacol 173:497–510

Chaturvedi N, Porta M, Klein R, Orchard T, Fuller J, Parving HH et al (2008) Effect of candesartan
on prevention (DIRECT-prevent 1) and progression (DIRECT-protect 1) of retinopathy in type
1 diabetes: randomised, placebo-controlled trials. Lancet 372:1394–1402

Chen P, Scicli GM, Guo M, Fenstermacher JD, Dahl D, Edwards PA et al (2006) Role of
angiotensin II in retinal leukostasis in the diabetic rat. Exp Eye Res 83:1041–1051

Chow BW, Gu C (2017) Gradual suppression of transcytosis governs functional blood-retinal
barrier formation. Neuron 93:1325–1333

Clermont A, Chilcote TJ, Kita T, Liu J, Riva P, Sinha S et al (2011) Plasma kallikrein mediates
retinal vascular dysfunction and induces retinal thickening in diabetic rats. Diabetes
60:1590–1598

Clermont A, Murugesan N, Zhou Q, Kita T, Robson PA, Rushbrooke LJ et al (2016) Plasma
kallikrein mediates vascular endothelial growth factor–induced retinal dysfunction and thick-
ening. Invest Ophthalmol Vis Sci 57:2390–2399

Constable PA, Lawrenson JG, Dolman DE, Arden GB, Abbott NJ (2006) P-glycoprotein expres-
sion in human retinal pigment epithelium cell lines. Exp Eye Res 83:24–30

Cui B, Sun JH, Xiang FF, Liu L, Li WJ (2012) Aquaporin 4 knockdown exacerbates streptozotocin-
induced diabetic retinopathy through aggravating inflammatory response. Exp Eye Res
98:37–43

Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(Suppl 6):S3–
S9

Daniele LL, Sauer B, Gallagher SM, Pugh EN Jr, Philp NJ (2008) Altered visual function in
monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol 295:C451–
C457

de Souza CF, Kalloniatis M, Christie DL, Polkinghorne PJ, McGhee CN, Acosta ML (2012)
Creatine transporter immunolocalization in aged human and detached retinas. Invest
Ophthalmol Vis Sci 53:1936–1945

Deissler HL, Lang GK, Lang GE (2014) Capacity of aflibercept to counteract VEGF-stimulated
abnormal behavior of retinal microvascular endothelial cells. Exp Eye Res 122:20–31

Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in
the control of vascular permeability. J Cell Sci 121:2115–2122

del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters
LAT1 and LAT2. Eur J Pharm Sci 35:161–174

Dominguez JM, Hu P, Caballero S, Moldovan L, Verma A, Oudit GY et al (2016) Adeno-
associated virus overexpression of angiotensin-converting enzyme-2 reverses diabetic retinop-
athy in type 1 diabetes in mice. Am J Pathol 186:1688–1700

496 L. Liu and X. Liu



Edelman JL, Lutz D, Castro MR (2005) Corticosteroids inhibit GF-induced vascular leakage in a
rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res 80:249–258

El-Sherbeny A, Naggar H, Miyauchi S, Ola MS, Maddox DM, Martin PM, Ganapathy V et al
(2004) Osmoregulation of taurine transporter function and expression in retinal pigment epi-
thelial, ganglion, and Müller cells. Invest Ophthalmol Vis Sci 45:694–701

Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR (2017) Diabetic retinopathy: breaking the
barrier. Pathophysiology 24:229–241

Fernandes R, Suzuki K, Kumagai AK (2003) Inner blood-retinal barrier GLUT1 in long-term
diabetic rats: an immunogold electron microscopic study. Invest Ophthalmol Vis Sci
44:3150–3154

Fernandes A, Carvalho AL, Kumagai A, Seica R, Hosoya KI, Terasaki T et al (2004)
Downregulation of retinal GLUT1 in diabetes by ubiquitinylation. Mol Vis 10:618–628

Frey T, Antonetti DA (2011) Alterations to the blood-retinal barrier in diabetes: cytokines and
reactive oxygen species. Antioxid Redox Signal 15:1271–1284

Fujii S, Setoguchi C, Kawazu K, Hosoya K (2014) Impact of P-glycoprotein on blood-retinal barrier
permeability: comparison of blood-aqueous humor and blood-brain barrier using mdr1a knock-
out rats. Invest Ophthalmol Vis Sci 55:4650–4658

Gao B, Wenzel A, Grimm C, Vavricka SR, Benke D, Meier PJ et al (2002) Localization of organic
anion transport protein 2 in the apical region of rat retinal pigment epithelium. Invest
Ophthalmol Vis Sci 43:510–514

Gao B, Vavricka SR, Meier PJ, Stieger B (2015) Differential cellular expression of organic anion
transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for
carrier-mediated transport of neuropeptides and neurosteroids in the CNS. Pflugers Arch
467:1481–1493

Gerhart DZ, Leino RL, Drewes LR (1999) Distribution of monocarboxylate transporters MCT1 and
MCT2 in rat retina. Neuroscience 92:367–375

Gnana-Prakasam JP, Reddy SK, Veeranan-Karmegam R, Smith SB, Martin PM, Ganapathy V
(2011) Polarized distribution of heme transporters in retinal pigment epithelium and their
regulation in the iron-overload disease hemochromatosis. Invest Ophthalmol Vis Sci
52:9279–9286

Gonçalves A, Lin CM, Muthusamy A, Fontes-Ribeiro C, Ambróosio AF, Abcouwer SF et al (2016)
Protective effect of a GLP-1 analog on ischemia/reperfusion induced blood–retinal barrier
breakdown and inflammation. Invest Ophthalmol Vis Sci 57:2584–2592

Han YH, Sweet DH, Hu DN, Pritchard JB (2001) Characterization of a novel cationic drug
transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther 296:450–457

Hayasaka S, Kodama T, Ohira A (2011) Retinal risks of high-dose ornithine supplements: a review.
Br J Nutr 106:801–811

Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW et al (2002)
Disruption of the taurine transporter gene (TauT) leads to retinal degeneration in mice.
FASEB J 16:231–233

Hollborn M, Dukic-Stefanovic S, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P et al
(2011) Expression of aquaporins in the retina of diabetic rats. Curr Eye Res 36:850–856

Hollborn M, Rehak M, Iandiev I, Pannicke T, Ulbricht E, Reichenbach A et al (2012) Transcrip-
tional regulation of aquaporins in the ischemic rat retina: upregulation of aquaporin-9. Curr Eye
Res 37:524–531

Hosoya KI, Tomi M (2005) Advances in the cell biology of transport via the inner blood-retinal
barrier: establishment of cell lines and transport functions. Biol Pharm Bull 28:1–8

Hosoya K, Kondo T, Tomi M, Takanaga H, Ohtsuki S, Terasaki T (2001) MCT1-mediated
transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of
monocarboxylic acid drugs to the retina. Pharm Res 18:1669–1676

Hosoya K, Nakamura G, Akanuma S, Tomi M, Tachikawa M (2008a) Dehydroascorbic acid uptake
and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
Neurochem Int 52:1351–1357

10 Roles of Drug Transporters in Blood-Retinal Barrier 497



Hosoya KI, Fujita K, Tachikawa M (2008b) Involvement of reduced folate carrier 1 in the inner
blood-retinal barrier transport of methyltetrahydrofolate. Drug Metab Pharmacokinet
23:285–292

Hosoya K, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, Terasaki T et al (2009) Roles of inner
blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport
of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther
329:87–93

Hosoya KI, Tomi M, Tachikawa M (2011) Strategies for therapy of retinal diseases using systemic
drug delivery: relevance of transporters at the blood–retinal barrier. Expert Opin Drug Deliv
8:1571–1587

Igarashi Y, Chiba H, Utsumi H, Miyajima H, Ishizaki T, Gotoh T et al (2000) Expression of
receptors for glial cell line-derived neurotrophic factor (GDNF) and neurturin in the inner blood-
retinal barrier of rats. Cell Struct Funct 25:237–241

Ishida S, Usui T, Yamashiro K, Kaji Y, Ahmed E, Carrasquillo KG et al (2003) VEGF164 is
proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci 44:2155–2162

Ito A, Yamaguchi K, Onogawa T, Unno M, Suzuki T, Nishio T et al (2002) Distribution of organic
anion-transporting polypeptide 2 (oatp2) and oatp3 in the rat retina. Invest Ophthalmol Vis Sci
43:858–863

Ito A, Yamaguchi K, Tomita H, Suzuki T, Onogawa T, Sato T et al (2003) Distribution of rat
organic anion transporting polypeptide-E (oatp-E) in the rat eye. Invest Ophthalmol Vis Sci
44:4877–4884

Kaneko S, Ando A, Okuda-Ashitaka E, Maeda M, Furuta K, Suzuki M et al (2007) Ornithine
transport via cationic amino acid transporter-1 is involved in ornithine cytotoxicity in retinal
pigment epithelial cells. Invest Ophthalmol Vis Sci 48:464–471

Katayama K, Ohshima Y, Tomi M, Hosoya K (2006) Application of microdialysis to evaluate the
efflux transport of estradiol 17-β glucuronide across the rat blood-retinal barrier. J Neurosci
Methods 156:249–256

Kaur C, Foulds W, Ling EA (2008) Blood–retinal barrier in hypoxic ischaemic conditions: basic
concepts, clinical features and management. Prog Retin Eye Res 27:622–647

Kay P, Yang YC, Paraoan L (2013) Directional protein secretion by the retinal pigment epithelium:
roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med
17:833–843

Kennedy BG, Mangini NJ (2002) P-glycoprotein expression in human retinal pigment epithelium.
Mol Vis 8:422–430

Kida T, Oku H, Horie T, Fukumoto M, Okuda Y, Morishita S et al (2017) Implication of VEGF and
aquaporin 4 mediating Müller cell swelling to diabetic retinal edema. Graefes Arch Clin Exp
Ophthalmol 255:1149–1157

Kim JH, Kim JH, Yu YS, Kim DH, Kim KW (2009) Recruitment of pericytes and astrocytes is
closely related to the formation of tight junction in developing retinal vessels. J Neurosci Res
87:653–659

Kinoshita J, Iwata N, Kimotsuki T, Yasuda M (2014) Digoxin-induced reversible dysfunction of the
cone photoreceptors in monkeys. Invest Ophthalmol Vis Sci 55:881–892

Kita T, Clermont AC, Murugesan N, Zhou Q, Fujisawa K, Ishibashi T et al (2015) Plasma
kallikrein-kinin system as a VEGF-independent mediator of diabetic macular edema. Diabetes
64:3588–3599

Kubo Y, Kusagawa Y, Tachikawa M, Akanuma S, Hosoya K (2013a) Involvement of a novel
organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm
Res 30:847–856

Kubo Y, Shimizu Y, Kusagawa Y, Akanuma S, Hosoya K (2013b) Propranolol transport across the
inner blood-retinal barrier: potential involvement of a novel organic cation transporter. J Pharm
Sci 102:3332–3342

Kubo Y, Tsuchiyama A, Shimizu Y, Akanuma S, Hosoya K (2014) Involvement of carrier-
mediated transport in the retinal uptake of clonidine at the inner blood-retinal barrier. Mol
Pharm 11:3747–3753

498 L. Liu and X. Liu



Kubo Y, Obata A, Akanuma S, Hosoya K (2015) Impact of cationic amino acid transporter 1 on
blood-retinal barrier transport of L-ornithine. Invest Ophthalmol Vis Sci 56:5925–5932

Kubo Y, Yamamoto M, Matsunaga K, Usui T, Akanuma SI, Hosoya KI (2017a) Retina-to-blood
transport of 1-methyl-4-phenylpyridinium involves carrier-mediated process at the blood-retinal
barrier. J Pharm Sci 106:2583–2591

Kubo Y, Yahata S, Miki S, Akanuma SI, Hosoya KI (2017b) Blood-to-retina transport of riboflavin
via RFVTs at the inner blood-retinal barrier. Drug Metab Pharmacokinet 32:92–99

Kur J, Newman EA, Chan-Ling T (2012) Cellular and physiological mechanisms underlying blood
flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res 31:377–406

Kusari J, Zhou S, Padillo E, Clarke KG, Gil DW (2007) Effect of memantine on neuroretinal
function and retinal vascular changes of streptozotocin-induced diabetic rats. Invest Ophthalmol
Vis Sci 48:5152–5159

Kusari J, Zhou SX, Padillo E, Clarke KG, Gil DW (2010) Inhibition of vitreoretinal VEGF
elevation and blood-retinal barrier breakdown in streptozotocin-induced diabetic rats by
brimonidine. Invest Ophthalmol Vis Sci 51:1044–1051

Le YZ (2017) VEGF production and signaling in Müller glia are critical to modulating vascular
function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vis
Res 139:108–114

Lee NY, Kang YS (2013) The effects of bisphosphonates on taurine transport in retinal capillary
endothelial cells under high glucose conditions. Adv Exp Med Biol 776:59–66

Li SY, Yang D, Yeung CM, Yu WY, Chang RCC, So KF et al (2011) Lycium barbarum poly-
saccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in
retinal ischemia/reperfusion injury. PLoS One 6:e16380

Li MS, Xin M, Guo CL, Lin GM, Li J, Wu XG (2017) Differential expression of breast cancer-
resistance protein, lung resistance protein, and multidrug resistance protein 1 in retinas of
streptozotocin-induced diabetic mice. Int J Ophthalmol 10:515–523

Lin M, Chen Y, Jin J, Hu Y, Zhou KK, Zhu M et al (2011) Ischaemia-induced retinal
neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-
inducible factor-1 in retinal Müller cells. Diabetologia 54:1554–1566

Liu J, Clermont AC, Gao BB, Feener EP (2013) Intraocular hemorrhage causes retinal vascular
dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci 54:1086–1094

Lopes de Faria JM, Silva KC, Boer PA, Cavalcanti TC, Rosales MA, Ferrari AL et al (2008) A
decrease in retinal progenitor cells is associated with early features of diabetic retinopathy in a
model that combines diabetes and hypertension. Mol Vis 14:1680–1691

Lorenzi M (2007) The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive,
and resilient. Exp Diabetes Res 2007:61038

Madonna R, Giovannelli G, Confalone P, Renna FV, Geng YJ, De Caterina R (2016) High glucose-
induced hyperosmolarity contributes to COX-2 expression and angiogenesis: implications for
diabetic retinopathy. Cardiovasc Diabetol 15:18

Mannermaa E, Vellonen KS, Ryhänen T, Kokkonen K, Ranta VP, Kaarniranta K et al (2009) Efflux
protein expression in human retinal pigment epithelium cell lines. Pharm Res 26:1785–1791

Matsumiya W, Kusuhara S, Hayashibe K, Maruyama K, Kusuhara H, Tagami M et al (2012)
Forskolin modifies retinal vascular development in Mrp4-knockout mice. Invest Ophthalmol
Vis Sci 53:8029–8035

Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T et al (2009) Renal and retinal
effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361:40–51

Minamizono A, Tomi M, Hosoya K (2006) Inhibition of dehydroascorbic acid transport across the
rat blood-retinal and -brain barriers in experimental diabetes. Biol Pharm Bull 29:2148–2150

Monickaraj F, McGuire PG, Nitta CF, Ghosh K, Das A (2016) Cathepsin D: an Mϕ-derived factor
mediating increased endothelial cell permeability with implications for alteration of the blood-
retinal barrier in diabetic retinopathy. FASEB J 30:1670–1682

Mori F, Hikichi T, Nagaoka T, Takahashi J, Kitaya N, Yoshida A (2002) Inhibitory effect of
losartan, an AT1 angiotensin II receptor antagonist, on increased leucocyte entrapment in retinal
microcirculation of diabetic rats. Bt J Ophthalmol 86:1172–1174

10 Roles of Drug Transporters in Blood-Retinal Barrier 499



Muthusamy A, Lin CM, Shanmugam S, Lindner HM, Abcouwer SF, Antonetti DA (2014)
Ischemia–reperfusion injury induces occludin phosphorylation/ubiquitination and retinal vas-
cular permeability in a VEGFR-2-dependent manner. J Cereb Blood Flow Metab 34:522–531

Nagai N, Izumi-Nagai K, Oike Y, Koto T, Satofuka S, Ozawa YK et al (2007) Suppression of
diabetes-induced retinal inflammation by blocking the angiotensin ii type 1 receptor or its
downstream nuclear factor-β pathway. Invest Ophthalmol Vis Sci 48:4342–4350

Nagase K, Tomi M, Tachikawa M, Hosoya K (2006) Functional and molecular characterization of
adenosine transport at the rat inner blood-retinal barrier. Biochim Biophys Acta 1758:13–19

Naggar H, Ola MS, Moore P, Huang W, Bridges CC, Ganapathy V et al (2002) Downregulation of
reduced-folate transporter by glucose in cultured RPE cells and in RPE of diabetic mice. Invest
Ophthalmol Vis Sci 43:556–563

Nakashima T, Tomi M, Katayama K, TachikawaM,Watanabe M, Terasaki T et al (2004) Blood-to-
retina transport of creatine via creatine transporter (CRT) at the rat inner blood–retinal barrier. J
Neurochem 89:1454–1461

Nakashima T, Tomi M, Tachikawa M, Watanabe M, Terasaki T, Hosoya K (2005a) Evidence for
creatine biosynthesis in Müller glia. Glia 52:47–52

Nakashima E, Pop-Busui R, Towns R, Thomas TP, Hosaka Y, Nakamura J et al (2005b) Regulation
of the human taurine transporter by oxidative stress in retinal pigment epithelial cells stably
transformed to overexpress aldose reductase. Antioxid Redox Signal 7:1530–1542

Nawaz MI, Van Raemdonck K, Mohammad G, Kangave D, Van Damme J, Abu El-Asrar AM et al
(2013) Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and
are enhanced in diabetic retinopathy. Exp Eye Res 109:67–76

Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y et al (2017) Sustained
inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI
Insight 2:e90905

Ohkura Y, Akanuma S, Tachikawa M, Hosoya K (2010) Blood-to-retina transport of biotin via Na
(+)-dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Exp Eye Res
91:387–392

Ohtsuki S, Tomi M, Hata T, Nagai Y, Hori S, Mori S et al (2005) Dominant expression of androgen
receptors and their functional regulation of organic anion transporter 3 in rat brain capillary
endothelial cells; comparison of gene expression between the blood-brain and -retinal barriers. J
Cell Physiol 204:896–900

Ola MS, Alhomida AS, Ferrario CM, Ahmad S (2017) Role of tissue renin-angiotensin system and
the chymase/angiotensin-(1-12) axis in the pathogenesis of diabetic retinopathy. Curr Med
Chem 24:3104–3114

Park DY, Lee J, Kim J, Kim K, Hong S, Han S et al (2017) Plastic roles of pericytes in the blood-
retinal barrier. Nat Commun 8:15296

Pelkonen L, Sato K, Reinisalo M, Kidron H, Tachikawa M, Watanabe M et al (2017) LC-MS/MS
based quantitation of ABC and SLC transporter proteins in plasma membranes of cultured
primary human retinal pigment epithelium cells and immortalized ARPE19 cell line. Mol Pharm
14:605–613

Philp NJ, Yoon H, Grollman EF (1998) Monocarboxylate transporter MCT1 is located in the apical
membrane and MCT3 in the basal membrane of rat RPE. Am J Phys 274:R1824–R1828

Philp NJ, Yoon H, Lombardi L (2001) Mouse MCT3 gene is expressed preferentially in retinal
pigment and choroid plexus epithelia. Am J Physiol Cell Physiol 280:C1319–C1326

Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP (2009) Plasma kallikrein
mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension
53:175–181

Phipps JA, Jobling AI, Greferath U, Fletcher EL, Vessey KA (2012) Alternative pathways in the
development of diabetic retinopathy: the renin-angiotensin and kallikrein-kinin systems. Clin
Exp Optom 95:282–289

Pouliot M, Talbot S, Sénécal J, Dotigny F, Vaucher E, Couture R (2012) Ocular application of the
kinin B1 receptor antagonist LF22-0542 inhibits retinal inflammation and oxidative stress in
streptozotocin-diabetic rats. PLoS One 7:e33864

500 L. Liu and X. Liu



Pruneau D, Bélichard P, Sahel JA, Combal JP (2010) Targeting the kallikrein-kinin system as a new
therapeutic approach to diabetic retinopathy. Curr Opin Investig Drugs 11:507–514

Puchowicz MA, Xu K, Magness D, Miller C, Lust WD, Kern TS et al (2004) Comparison of
glucose influx and blood flow in retina and brain of diabetic rats. J Cereb Blood Flow Metab
24:449–457

Qin Y, Ren H, Hoffman MR, Fan J, Zhang M, Xu G (2012) Aquaporin changes during diabetic
retinopathy in rats are accelerated by systemic hypertension and are linked to the renin-
angiotensin system. Invest Ophthalmol Vis Sci 53:3047–3053

Quick M, Shi L (2015) The sodium/multivitamin transporter: a multipotent system with therapeutic
implications. Vitam Horm 98:63–100

Rajan PD, Kekuda R, Chancy CD, Huang W, Ganapathy V, Smith SB (2000) Expression of the
extraneuronal monoamine transporter in RPE and neural retina. Curr Eye Res 20:195–204

Ran RJ, Zheng XY, Du LP, Zhang XD, Chen XL, Zhu SY (2016) Upregulated inflammatory
associated factors and blood-retinal barrier changes in the retina of type 2 diabetes mellitus
model. Int J Ophthalmol 9:1591–1597

Rangasamy S, McGuire PG, Franco Nitta C, Monickaraj F, Oruganti SR, Das A (2014) Chemokine
mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-
retinal barrier in diabetic retinopathy. PLoS One 9:e108508

Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686
Rizzolo LJ, Peng S, Luo Y, Xiao W (2011) Integration of tight junctions and claudins with the

barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 30:296–323
Sakurai T, Akanuma S, Usui T, Kubo Y, Tachikawa M, Hosoya K (2015) Excitatory amino acid

transporter 1-mediated l-glutamate transport at the inner blood-retinal barrier: possible role in
L-glutamate elimination from the retina. Biol Pharm Bull 38:1087–1091

Silva KC, Pinto CC, Biswas SK, Souza DS, de Faria JB, de Faria JM (2007) Prevention of
hypertension abrogates early inflammatory events in the retina of diabetic hypertensive rats.
Exp Eye Res 85:123–129

Simó R, Villarroel M, Corraliza L, Hernández C, Garcia-Ramírez M (2010) The retinal pigment
epithelium: something more than a constituent of the blood-retinal barrier—implications for the
pathogenesis of diabetic retinopathy. J Biomed Biotechnol 2010:190724

Sjølie AK, Klein R, Porta M, Orchard T, Fuller J, Parving HH et al (2008) Effect of candesartan on
progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised
placebo-controlled trial. Lancet 372:1385–1393

Sreekumar PG, Spee C, Ryan SJ, Cole SP, Kannan R, Hinton DR (2012) Mechanism of RPE cell
death in α-crystallin deficient mice: a novel and critical role for MRP1-mediated GSH efflux.
PLoS One 7:e33420

Steuer H, Jaworski A, Elger B, Kaussmann M, Keldenich J, Schneider H et al (2005) Functional
characterization and comparison of the outer blood-retina barrier and the blood-brain barrier.
Invest Ophthalmol Vis Sci 46:1047–1053

Stevens MJ, Hosaka Y, Masterson JA, Jones SM, Thomas TP, Larkin DD (1999) Downregulation
of the human taurine transporter by glucose in cultured retinal pigment epithelial cells. Am J
Phys 277(4 Pt 1):E760–E771

Strauß O (2016) Pharmacology of the retinal pigment epithelium, the interface between retina and
body system. Eur J Pharmacol 787:84–93

Tachikawa M, Hosoya K, Ohtsuki S, Terasaki T (2007) A novel relationship between creatine
transport at the blood-brain and blood-retinal barriers, creatine biosynthesis, and its use for brain
and retinal energy homeostasis. Subcell Biochem 46:83–98

Tachikawa M, Toki H, Tomi M, Hosoya K (2008) Gene expression profiles of ATP-binding
cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells. Microvasc
Res 75:68–72

Tachikawa M, Takeda Y, Tomi M, Hosoya K (2010) Involvement of OCTN2 in the transport of
acetyl-L-carnitine across the inner blood-retinal barrier. Invest Ophthalmol Vis Sci 51:430–436

10 Roles of Drug Transporters in Blood-Retinal Barrier 501



Tachikawa M, Murakami K, Martin PM, Hosoya K, Ganapathy V (2011) Retinal transfer of
nicotinate by H+-monocarboxylate transporter at the inner blood-retinal barrier. Microvasc
Res 82:385–390

Tagami M, Kusuhara S, Honda S, Tsukahara Y, Negi A (2009) Expression of ATP-binding cassette
transporters at the inner blood-retinal barrier in a neonatal mouse model of oxygen-induced
retinopathy. Brain Res 1283:186–193

Tagami M, Kusuhara S, Imai H, Uemura A, Honda S, Tsukahara Y et al (2010) MRP4 knockdown
enhances migration, suppresses apoptosis, and produces aggregated morphology in human
retinal vascular endothelial cells. Biochem Biophys Res Commun 400:593–598

Tang J, Zhu XW, Lust WD, Kern TS (2000) Retina accumulates more glucose than does the
embryologically similar cerebral cortex in diabetic rats. Diabetologia 43:1417–1423

Tega Y, Kubo Y, Yuzurihara C, Akanuma S, Hosoya K (2015) Carrier-mediated transport of
nicotine across the inner blood-retinal barrier: involvement of a novel organic cation transporter
driven by an outward H(+) gradient. J Pharm Sci 104:3069–3075

Tian XF, Xia XB, Xu HZ, Xiong SQ, Jiang J (2012) Caveolin-1 expression regulates blood–retinal
barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin Exp
Ophthalmol 40:e58–e66

Toda R, Kawazu K, Oyabu M, Miyazaki T, Kiuchi Y (2011) Comparison of drug permeabilities
across the blood–retinal barrier, blood–aqueous humor barrier, and blood–brain barrier. J Pharm
Sci 100:3904–3911

Tomi M, Hosoya K (2004) Application of magnetically isolated rat retinal vascular endothelial cells
for the determination of transporter gene expression levels at the inner blood-retinal barrier. J
Neurochem 91:1244–1248

Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K (2005) L-type amino acid
transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol
Vis Sci 46:2522–2530

Tomi M, Terayama T, Isobe T, Egami F, Morito A, Kurachi M et al (2007) Function and regulation
of taurine transport at the inner blood-retinal barrier. Microvasc Res 73:100–106

Tomi M, Tajima A, Tachikawa M, Hosoya K (2008) Function of taurine transporter (Slc6a6/TauT)
as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary
endothelial cells. Biochim Biophys Acta 1778:2138–2142

Tomi M, Kitade N, Hirose S, Yokota N, Akanuma S, Tachikawa M et al (2009) Cationic amino acid
transporter 1-mediated L-arginine transport at the inner blood-retinal barrier. J Neurochem
111:716–725

Tun T, Kang YS (2017) Effects of simvastatin on CAT-1-mediated arginine transport and NO level
under high glucose conditions in conditionally immortalized rat inner blood-retinal barrier cell
lines (TR-iBRB). Microvasc Res 111:60–66

Uchida Y, Kamiie J, Ohtsuki S, Terasaki T (2007) Multichannel liquid chromatography-tandem
mass spectrometry cocktail method for comprehensive substrate characterization of multidrug
resistance-associated protein 4 transporter. Pharm Res 24:2281–2296

Umapathy NS, Gnana-Prakasam JP, Martin PM, Mysona B, Dun Y, Smith SB et al (2007) Cloning
and functional characterization of the proton-coupled electrogenic folate transporter and anal-
ysis of its expression in retinal cell types. Invest Ophthalmol Vis Sci 48:5299–5305

Usui T, Kubo Y, Akanuma S, Hosoya K (2013) Β-alanine and l-histidine transport across the inner
blood-retinal barrier: potential involvement in L-carnosine supply. Exp Eye Res 113:135–142

Vadlapatla RK, Vadlapudi AD, Ponnaluri VK, Pal D, Mukherji M, Mitra AK (2013) Molecular
expression and functional activity of efflux and influx transporters in hypoxia induced retinal
pigment epithelial cells. Int J Pharm 454:444–452

Verma A, Shan Z, Lei B, Yuan L, Liu X, Nakagawa T et al (2012) ACE2 and Ang-(1-7) confer
protection against development of diabetic retinopathy. Mol Ther 20:28–36

Vinores SA, Xiao WH, Shen J, Campochiaro PA (2007) TNF-α is critical for ischemia-induced
leukostasis, but not retinal neovascularization nor VEGF-induced leakage. J Neuroimmunol
182:73–79

502 L. Liu and X. Liu



Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E (2017) Anti-vascular endothelial
growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst
Rev 6:CD007419

Wang K, Wang Y, Gao L, Li X, Li M, Guo J (2008) Dexamethasone inhibits leukocyte accumu-
lation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing
vascular endothelial growth factor and intercellular adhesion molecule-1 expression. Biol Pharm
Bull 31:1541–1546

Wang J, Xu X, Elliott MH, Zhu M, Le YZ (2010) Müller cell-derived VEGF is essential for
diabetes-induced retinal inflammation and vascular leakage. Diabetes 59:2297–2305

Weleber RG, Shults WT (1981) Digoxin retinal toxicity. Clinical and electrophysiological evalu-
ation of a cone dysfunction syndrome. Arch Ophthalmol 99:1568–1572

Wilkinson-Berka JL, Tan G, Jaworski K, Ninkovic S (2007) Valsartan but not atenolol improves
vascular pathology in diabetic Ren-2 rat retina. Am J Hypertens 20:423–430

Willermain F, Libert S, Motulsky E, Salik D, Caspers L, Perret J et al (2014a) Origins and
consequences of hyperosmolar stress in retinal pigmented epithelial cells. Front Physiol 5:199

Willermain F, Janssens S, Arsenijevic T, Piens I, Bolaky N, Caspers L et al (2014b) Osmotic stress
decreases aquaporin-4 expression in the human retinal pigment epithelial cell line, ARPE-19. Int
J Mol Med 34:533–538

Willermain F, Scifo L, Weber C, Caspers L, Perret J, Delporte C (2018) Potential interplay between
hyperosmolarity and inflammation on retinal pigmented epithelium in pathogenesis of diabetic
retinopathy. Int J Mol Sci 19:1056

Winges A, Garcia TB, Prager P, Wiedemann P, Kohen L, Bringmann A et al (2016) Osmotic
expression of aldose reductase in retinal pigment epithelial cells: involvement of NFAT5.
Graefes Arch Clin Exp Ophthalmol 254:2387–2400

Wisniewska-Kruk J, Hoeben KA, Vogels IM, Gaillard PJ, Van Noorden CJ, Schlingemann RO et al
(2012) A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial
cells, pericytes and astrocytes. Exp Eye Res 96:181–190

Xia T, Rizzolo LJ (2017) Effects of diabetic retinopathy on the barrier functions of the retinal
pigment epithelium. Vis Res 139:72–81

Xu C, Zhu L, Chan T, Lu X, Shen W, Madigan MC et al (2016) Chloroquine and
hydroxychloroquine are novel inhibitors of human organic anion transporting polypeptide
1A2. J Pharm Sci 105:884–890

Yahara T, Tachikawa M, Akanuma S, Hosoya K (2010) Hypertonicity enhances GABA uptake by
cultured rat retinal capillary endothelial cells. Drug Metab Pharmacokinet 25:611–615

Yamamoto A, Akanuma S, Tachikawa M, Hosoya K (2010) Involvement of LAT1 and LAT2 in the
high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19
cells). J Pharm Sci 99:2475–2482

Yao SY, Ng AM, Sundaram M, Cass CE, Baldwin SA, Young JD (2001) Transport of antiviral
30-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine
(NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes.
Mol Membr Biol 18:161–167

Yaylali SA, Sadigov F, Erbil H, Ekinci A, Akcakaya AA (2013) Chloroquine and
hydroxychloroquine retinopathy-related risk factors in a Turkish cohort. Int Ophthalmol
33:627–634

Zakoji N, Akanuma S, Tachikawa M, Hosoya K (2015) Involvement of cationic amino acid
transporter 1 in L-arginine transport in rat retinal pericytes. Biol Pharm Bull 38:257–262

Zeng K, Xu H, Mi M, Chen K, Zhu J, Yi L et al (2010) Effects of taurine on glial cells apoptosis and
taurine transporter expression in retina under diabetic conditions. Neurochem Res
35:1566–1574

Zhang JZ, Xi X, Gao L, Kern TS (2007) Captopril inhibits capillary degeneration in the early stages
of diabetic retinopathy. Curr Eye Res 32:883–889

10 Roles of Drug Transporters in Blood-Retinal Barrier 503



Zhang Y, Li C, Sun X, Kuang X, Ruan X (2012) High glucose decreases expression and activity of
p-glycoprotein in cultured human retinal pigment epithelium possibly through iNOS induction.
PLoS One 7:e31631

Zhang Z, Uchida Y, Hirano S, Ando D, Kubo Y, Auriola S et al (2017a) Inner blood-retinal barrier
dominantly expresses breast cancer resistance protein: comparative quantitative targeted abso-
lute proteomics study of CNS barriers in pig. Mol Pharm 14:3729–3738

Zhang YH, Li J, Yang WZ, Xian ZH, Feng QT, Ruan XC (2017b) Mitochondrial expression and
activity of P-glycoprotein under oxidative stress in outer blood-retinal barrier. Int J Ophthalmol
10:1055–1063

504 L. Liu and X. Liu


	Chapter 10: Roles of Drug Transporters in Blood-Retinal Barrier
	10.1 General Introduction
	10.1.1 The Inner Blood-Retinal Barrier (iBRB) and Outer Blood-Retinal Barrier (oBRB)
	10.1.2 Tight Junctions in the BRB
	10.1.3 Astrocytes, Müller Cells, and Pericytes

	10.2 Major Drug Transporters in the Retina
	10.2.1 Influx Transporters
	10.2.1.1 Glucose Transporter 1 (GLUT1/SLC2A1)
	10.2.1.2 Taurine Transporter (TAUT/SLC6A6)
	10.2.1.3 Cationic Amino Acid Transporter 1 (CAT1/SLC7A1)
	10.2.1.4 L-Type Amino Acid Transporter 1 (LAT1/SLC7A5)
	10.2.1.5 Creatine Transporter (CRT/SLC6As)
	10.2.1.6 Monocarboxylate Transporters (MCTs/SLC16As)
	10.2.1.7 Nucleoside Transporters
	10.2.1.8 Folate Transport Proteins
	10.2.1.9 Organic Anion-Transporting Polypeptides (OATPs)
	10.2.1.10 Organic Cation Transporters
	10.2.1.11 Other Transporters

	10.2.2 Efflux Transporters
	10.2.2.1 P-Glycoprotein (P-GP/ABCB1)
	10.2.2.2 Breast Cancer Resistance Protein (BCRP/ABCG2)
	10.2.2.3 Multidrug Resistance-Associated Proteins (MRPs/ABCCs)


	10.3 Alterations in BRB Function Under Disease Status and Clinic Significances
	10.3.1 The BRB and Diabetic Retinopathy
	10.3.1.1 Inflammation and Diabetic Retinopathy
	10.3.1.2 Vascular Endothelial Growth Factor (VEGF) and Diabetic Retinopathy
	10.3.1.3 Hyperosmolar Stress and Diabetic Retinopathy
	10.3.1.4 Plasma Kallikrein-Kinin System (PKKs) and Diabetic Retinopathy
	10.3.1.5 Renin Angiotensin System (RAS) and Diabetic Retinopathy
	10.3.1.6 Alterations in Transport under Diabetic Status
	10.3.1.6.1 Alterations in Glucose Transport
	10.3.1.6.2 Alterations in H2O Transport
	10.3.1.6.3 Alterations in Active Transport
	10.3.1.6.4 Alterations in ABC Transporters


	10.3.2 Ischemia-Reperfusion/Hypoxia and BRB Breakdown

	References




