)

Check for
updates

A Generic Architecture to Detect Vulnerability
Leaks at Crowdsourced Tests

Zhonghao Sun, Zhejun Fang, Yueying He, and Jiangiang Li®
National Computer Network Emergency Response Technical
Team/Coordination Center of China, Beijing, China
{sunzhonghao, fzj, hyy,1jq}@cert. org. cn

Abstract. Nowadays, there is a fundamental imbalance between attackers and
defenders. Crowdsourced tests level the playing field. However, the concern
about vulnerability leaks severely limits the widespread of crowdsourced tests.
Existing crowdsourced test platforms have adopt various technical or manage-
ment approaches to protect applications or systems under test, but none of them
is able to remove the concerns about vulnerability leaks. This paper provides a
generic architecture to discover the white hat who finds a vulnerability but
conceals it. The architecture is not only valid for public vulnerabilities, but also
valid for unknown vulnerabilities. Finally, the proposed architecture is tested by
real vulnerabilities. The results show that, with proper rules, most of the con-
cealing behaviors can be detected.

Keywords: Crowdsourced test * Intrusion detection - White hat -
Vulnerability leak

1 Introduction

Nowadays, there is a fundamental imbalance between attackers and defenders, because
the system designers and developers cannot work as security experts at the same time.
Thus, to ensure the security of the system, professional test is necessary. However,
traditional security test is expensive and with limited coverage. Fortunately, the emer-
gence of crowdsourced test levels the playing field [10]. Crowdsourced test is a kind of
new service pattern, where companies can publish their test projects on the crowd-
sourced platform and hackers can attend the projects they interested. Hackers are paid by
the company if and only if they submit vulnerabilities. With this kind of pattern, both
companies and hackers obtain a benefit. At present, various crowdsourced test platforms
have arisen. In China, the mainstream platforms include Wooyun [16], VULBOX [15],
Testin [14], 360 [1], Sobug [13], CNVD [5] and ICS-CERT [8] etc. In foreign countries,
HackerOne [7] and BugCrowd [4] are widely accepted crowdsourced platforms.
Although crowdsourced tests have so many advantages, the concern about vulner-
ability leaks seriously limits the widespread of crowdsourced tests [17]. For some sys-
tems or applications, the security is mainly based on their privacy. So, exposing these
systems or applications under the crowdsourced tests scenario will raise the concerns of
the companies. For some hackers, concealing the vulnerabilities they find may bring
more benefits instead of submitting them to the companies. Therefore, how to avoid
vulnerability leaks is the primary issue that all crowdsourced platforms have to deal with.

© The Author(s) 2019
X. Yun et al. (Eds.): CNCERT 2018, CCIS 970, pp. 136-144, 2019.
https://doi.org/10.1007/978-981-13-6621-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6621-5_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6621-5_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6621-5_11&domain=pdf
https://doi.org/10.1007/978-981-13-6621-5_11

A Generic Architecture to Detect Vulnerability Leaks at Crowdsourced Tests 137

Existing crowdsourced test platforms have adopt various technical and management
approaches to avoid vulnerability leaks. The commonly used approaches can be sum-
marized as three aspects: legal approaches, management approaches and technical
approaches [11]. The legal approaches mainly include signing confidentiality agree-
ments, conducting legal training, declaring authorized test boundaries, and real name
certification etc. The management approaches include forming credible hacker teams,
setting test projects with different secret levels, allowing companies choose hackers they
trust etc. [18]. The technical approaches mainly include test traffic monitoring, VPN
based accessing control for application/system under test (A/SUTs), accessing control
for A/SUTs based on bastion host, test behavior auditing and screen recording etc. It is
no doubt that the above-mentioned approaches considerably reduce the concerns about
vulnerability leaks, but none of them is able to thoroughly remove the concerns.

Different from the indirect approaches above, this paper design a generic architec-
ture to detect from the test traffic whether the white hats have found a vulnerability. The
architecture do not need to install monitors on the various heterogeneous A/SUTs, thus
having good operability. In the architecture, the rule-matching method based on Snort
[3] is adopted to detect public vulnerabilities, and abnormal behavior monitoring
method based on deep learning is adopted to detect unknown vulnerabilities. Finaly, the
proposed architecture is applied to the ICS-CERT crowdsourced test platform [8]. The
results show that, with proper rules, most of the concealing behaviors can be detected.

2 The System Architecture

The system architecture is shown in Fig. 1. The architecture includes three parts: the
white hats, the A/SUT and the crowdsourced test platform. They are connected through
Internet. The dotted lines in the figure denote the data flow.

2.1 The Crowdsourced Test Platform Architecture

The crowdsourced test platform acts as a bridge between A/SUTs and white hats.
White hats apply for test projects on the platform and companies publish test projects
on the platform. In order to achieve the monitor ability, the platform have to contain the
web portal module, the VPN module and the monitor module at least.

(1) The web portal module provides access to the platform, where white hats can
apply for test projects and companies can publish test projects.

(2) The VPN module provides white hats the only access to the A/SUT. In other
words, without the VPN, white hats will not able to access the A/SUT.

(3) The monitor module gets the test traffic of VPN servers from the switch’s monitor
port. The traffic-based monitor software is deployed on the monitor servers. The
architecture of the software will be given in the next section.

138 Z. Sun et al.

< M

3 ---M------- - am e
A/SUT Firewall = T Ve cecece =% White hats

Monitor VPN ‘Web portal

Fig. 1. The hardware architecture and data flow (Colopr figure online)

2.2 The A/SUT Configuration

To make sure that all the test traffic is under surveillance, we require the VPN to be the
unique access to the A/SUT. So, a firewall is placed before the A/SUT and only the IP
address of VPN is allowed to access the A/SUT. As shown in Fig. 1, the A/SUT part
should contain two modules at least: the A/SUT itself and the firewall. The A/SUT is
connected to Internet through the firewall.

Obviously, the crowdsourced test platform can be connected with more than one
A/SUT. But every A/SUT should keep this kind of configuration.

2.3 The Data Flow

The dotted lines in the Fig. 1 denote the data flows. The red line denotes the white hats’
access path to the web portal. It is obviously that the web portal can be accessed
directly without the VPN. The green line denotes the white hats’ access path to the
A/SUT. If white hats want to test a A/SUT, they have to get through the VPN servers,
because the firewall before the A/SUT only allows the access from the VPN servers.
The yellow line denotes the data flow between the VPN servers and the monitor
servers. All the test traffic flow through the VPN servers is completely copied to the
monitor servers.

A Generic Architecture to Detect Vulnerability Leaks at Crowdsourced Tests 139

| Data Display Module l Alarm Display I Log Display I Evidence Display l
‘ Data Storage Module | Alarm storage | Log storage [Evidence storage l
a0 JC
Rule Matching
Snort | Rule Parsi R TensorFlow = |RNN
Snor ule Parsing | Base ensorFlow | —
Rule List Generating
JC 0
‘ {Dam preprocessing Module | Protocol decoding| Message frag ting Port d i ‘ ‘

it
(Test traffic sniffer

Fig. 2. The software architecture

3 The Software Architecture

The vulnerability detection software is deployed on the monitor servers shown in
Fig. 1. In the software, the rule-matching method based on Snort [3] is adopted to
detect public vulnerabilities, and Recurrent Neural Network (RNN) model based on
TensorFlow [2] is adopted to detect unknown vulnerabilities. The detailed software
architecture is shown in Fig. 2.

The software mainly includes three layers: the test traffic collection layer (the
bottom layer), the vulnerability monitor layer (the middle layer) and the result display
layer (the top layer).

(1) In the bottom layer, the main module is the traffic sniffer which collects the test
traffic from the mirror port of switch.

(2) In the middle layer, the data preprocessing module is mainly responsible for the
protocol decoding, message fragmenting and port scanning etc. After the pre-
processing, the raw test traffic is converted to the format that the monitor algo-
rithms can recognize.

Above the data preprocessing module is the test behavior monitor module. This
module contains two algorithms: the rule-matching method based on Snort to detect
public vulnerabilities, and RNN model based on TensorFlow to detect unknown vul-
nerabilities. The key technology of the rule-matching method is the rule base. In this
paper, we obtain the rule base from EVERSEC [9]. The rule base is a kind long-term
accumulated knowledge, which is important in engineering but plain in theory. So we
do not illustrate the rule base in this paper. What we want to tell readers is that the rule
matching based method is really effective in the detecting of concealing behaviors.
The RNN model is trained with normal traffic of the A/SUT, and learned the normal
behavior of the A/SUT. Then we use the test traffic as the input of the trained RNN
model. If there is abnormal behaviors that the model cannot identify and no rule is
matched, then we think a unknown vulnerability is detected.

140 Z. Sun et al.

POC1:http://47.94.131.119/index.php?option=com_fields&view=fields&layout=modal&list[fullor
dering]=updatexml(0x23,concat(1,user()),1)
POC2:http://47.94.131.119/index.php?option=com_fields&view=fields&layout=modal&list[fullor
dering]=updatexml(0x23,concat(1,database()),1)
POC3:http://47.94.131.119/index.php?option=com_fields&view=fields&layout=modal&list[fullor
dering]=updatexml(0x23,concat(1,select datse();),1)
POC4:http://47.94.131.119/index.php?option=com_fields&view=fields&layout=modal&list[fullor
dering]=updatexml(0x23,(select group_concat(table_name) from information_schema.tables
where table_schema=database()),1)

Fig. 3. The four POCs for SQL injection

Above the test behavior monitor module is the storage module. This module stores
the processing result of test behavior monitor module. The stored content include
alarms, logs and evidence.

(3) In the result display layer, the display module read the result data from the storage
module and shows to administrators.

4 The Evaluation

The proposed architecture has been realized in the ICS-CERT crowdsourced test
platform. To evaluate the effectiveness of the architecture, we test it with SQL injection
vulnerability, XSS vulnerability, file upload vulnerability, file inclusion vulnerabilities
and command execution vulnerability. For the space limitation, we just illustrate the
detailed test of SQL injection and XSS.

4.1 SQL Injection Vulnerability

We use CVE-2017-8917 [6] and Joomla 3.7 as the test case. We configure a A/SUT
with the vulnerabilities and the access address of the A/SUT is http://47.94.131.119/
index.php. Four POCs shown in Fig. 3 are used to evaluate the effectiveness. Except
the POC3, the other three POCs are valid.

The results show that all the four POCs are successfully detected. The detection
result for POC1 is shown in Fig. 4. Especially, for POC3 shown in Fig. 5, we identify
that it is a invalid SQL injection. For the space limitation, we do not show the detection
results of the other POCs in the paper.

4.2 XSS Vulnerability

We configure a A/SUT with XSS vulnerabilities and the accessing address is: http://
104.225.151.194/cshajx/xss/easyxss/.

The two payloads we used are shown in Fig. 6. The Payload1l will trigger an alarm
window, as shown in Fig. 7. The detection result of Payload!l is shown in Fig. 8. For
the space limitation, we do not show the running screenshot of Payload2.

http://47.94.131.119/index.php
http://47.94.131.119/index.php
http://104.225.151.194/cshajx/xss/easyxss/
http://104.225.151.194/cshajx/xss/easyxss/

A Generic Architecture to Detect Vulnerability Leaks at Crowdsourced Tests 141

Joomla3.7 SOLENIRH - CVE-2017-8917 - HATRRIH GET /index php?option=com_fieldsaview=fieldslay

out=modallistifullordering]=updatexmi(0x23,concat(
1,user(), 1) HTTP/1.1

192.168.205.201 HITP_——> 47.94.131.119 GET /index.php?0pf

HTTP/1.1 500 Internal Server Error (texthtmi)

3:4:00:€2)
168.205.201)
ck: 664, Len: 210

Fig. 4. The detection result for POC1

Fig. 5. The detection result for POC3

Payload1:http://104.225.151.194/cshajx/xss/easyxss/?input=<script>alert(/xss/)</script>
Payload2: http://104.225.151.194/cshajx/xss/easyxss/?input=<script>alert(xss)</script>

Fig. 6. The two XSS payloads used in the evaluation

The results show that reflective XSS vulnerabilities such as Payloadl can be suc-
cessfully detected. For invalid XSS vulnerabilities such as Payload2, we can identify
that it is a failed XSS attack.

4.3 Command Execution Vulnerabilities

For the command execution vulnerabilities, we use the ShellShock vulnerability [12] to
test the detection ability. The result shows that we can identity that whether the vul-
nerability is successfully exploited.

4.4 Some Unknown Vulnerabilities

For the space limitation, we do not show the running screenshots for the tests of
unknown vulnerabilities, but give the test results here directly. For an unknown vul-
nerability, we cannot find a rule that matches the vulnerability. So we can only detect it
by the RNN model.

142 Z. Sun et al.

@ Load URL http://104.225.151.194/cshajx/xss/easyxss/?input=<script>alert(/xss/) </script>
% split URL
»

Execute

Enable Post data Enable Referrer

HE

Fig. 7. The running screenshot of Payload1

(180709701 RSIEXSS — PUTRIN

Fig. 8. The detection result for Payload1

For some unknown vulnerabilities that can cause file upload behaviors, though it is
difficult to distinguish whether the file is harmful, but if the white hats try to connect or
execute the file, we can successfully detect the connection and execution behaviors.

For some unknown vulnerabilities that can cause the file inclusion attacks, though
we cannot identify the category of the vulnerability, but we can give alarms success-
fully once the vulnerability is exploited.

5 Conclusion

This paper proposes a generic architecture for crowdsourced test platforms to detect
whether the white hats have found a vulnerability. In the architecture, the rule-matching
method based on Snort is adopted to detect public vulnerabilities, and RNN model
based on TensorFlow is adopted to detect unknown vulnerabilities. The proposed
architecture is applied to the ICS-CERT crowdsourced test platform. We test it with
SQL injection vulnerability, file upload vulnerability, file inclusion vulnerabilities,

A Generic Architecture to Detect Vulnerability Leaks at Crowdsourced Tests 143

command execution vulnerability and XSS vulnerability. The results shows that, for
most of vulnerabilities, the architecture can detect them successfully. With the tech-
nology, we can remove companies’ concerns about vulnerability leaks, thus acceler-
ating the application of crowdsourced test.

References

e}

10.

11.

12.

13.
14.
15.
16.
17.

18.

. 360 Crowdsourced Test, August 2018. http://zhongce.360.cn
. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning (2016)
. Beale, J., Foster, J.C., Posluns, J., Caswell, B.: Snort 2.0: Intrusion Detection. Syngress

Publishing, Amsterdam (2003)

. Bugcrowd Crowdsourced Test, July 2018. https://www.bugcrowd.com/
. CNVD Crowdsourced Test, July 2018. http://zc.cnvd.org.cn/
. CVE-2017-8917, June 2017. http://cve.mitre.org/cgi-bin/cvename.cgi’name=CVE-2017-

8917

. Hackerone Crowdsourced Test, June 2018. https://www.hackerone.com/
. ICS-CERT Crowdsourced Test, July 2018. https://test.ics-cert.org.cn/
. IDC/ISP Information Security Management System, August 2018. http://eversec.com.cn/idc-

security/

Leicht, N., Blohm, 1., Leimeister, J.M.: Leveraging the power of the crowd for software
testing. IEEE Softw. 34(2), 62-69 (2017)

Mao, K., Capra, L., Harman, M., Jia, Y.: A survey of the use of crowdsourcing in software
engineering. J. Syst. Softw. 126, 57-84 (2016)

Shetty, R., Choo, K.-K.R., Kaufman, R.: Shellshock vulnerability exploitation and
mitigation: a demonstration. In: Abawajy, J., Choo, K.-K.R., Islam, R. (eds.) ATCI 2017.
AISC, vol. 580, pp. 338-350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
67071-3_40

Sobug Crowdsourced Test, July 2018. http://www.sobug.com

Testin Crowdsourced Test, August 2018. http://www.testin.cn

Vulbox Crowdsourced Test, August 2018. https://www.vulbox.com

Wooyun Crowdsourced Test, May 2016. http://www.wooyun.org

Zogaj, S., Bretschneider, U., Leimeister, J.M.: Managing crowdsourced software testing: a
case study based insight on the challenges of a crowdsourcing intermediary. J. Bus. Econ. 84
(3), 375-405 (2014)

Zogaj, S., Leicht, N., Blohm, I., Bretschneider, U., Leimeister, J.M.: Towards successful
crowdsourcing projects: evaluating the implementation of governance mechanisms. In:
Governance of Cowdsourcing Systems. Social Science Electronic Publishing, New York
(2015)

http://zhongce.360.cn
https://www.bugcrowd.com/
http://zc.cnvd.org.cn/
http://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2017-8917
http://cve.mitre.org/cgi-bin/cvename.cgi%3fname%3dCVE-2017-8917
https://www.hackerone.com/
https://test.ics-cert.org.cn/
http://eversec.com.cn/idc-security/
http://eversec.com.cn/idc-security/
http://dx.doi.org/10.1007/978-3-319-67071-3_40
http://dx.doi.org/10.1007/978-3-319-67071-3_40
http://www.sobug.com
http://www.testin.cn
https://www.vulbox.com
http://www.wooyun.org

144 Z. Sun et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Generic Architecture to Detect Vulnerability Leaks at Crowdsourced Tests
	Abstract
	1 Introduction
	2 The System Architecture
	2.1 The Crowdsourced Test Platform Architecture
	2.2 The A/SUT Configuration
	2.3 The Data Flow

	3 The Software Architecture
	4 The Evaluation
	4.1 SQL Injection Vulnerability
	4.2 XSS Vulnerability
	4.3 Command Execution Vulnerabilities
	4.4 Some Unknown Vulnerabilities

	5 Conclusion
	References

