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Abstract Various random streams have different stationary properties. It is
necessary to use statistical probability and time series to evaluate quality of station-
ary randomness. In this chapter, a testing model is used on three maps for a random
sequence. Multiple segments are divided on the shifted sequence as three measuring
sets. For a map, the maxima are extracted and three maximal values are identified.
2D maps represent stationary randomness. Conditions of station random/stationary
sequences are investigated. Testing sets are collected from three types of six ran-
dom resources: AES, DES, AS, RC4, Australian National University (ANU), and
University of Science and Technology of China (USTC) (two block ciphers, two
stream ciphers, and two quantum ciphers). Six random sequences are selected. Mea-
surements of stationary randomness are compared. There are only 0.0034-4.27%
differences that are recognized. Using variation ratios, six samples are composed
of three variation categories on { AES, DES}, {AS, RC4}, and {ANU, USTC}, re-
spectively. From a measuring viewpoint, all six samples are showing distinguished
stationary randomness properties.
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1 Introduction

In modern cyberspace environment [1], network communication technologies play
the essential role to support advanced developments of science, technology, and social
daily life in every aspect. From a security viewpoint of network communication,
Communication Security (COMSEC) systems [2] are the most important part. Every
COMSEC system depends on block cipher/stream cipher/hash technologies, and
its core component is linked to a random number generator for any cryptographic
applications.

Quantum satellite [3] using Quantum Key Distribution (QKD) systems [4] in
cryptographic applications is the most advanced ICT development to establish ultra-
secure quantum communications. For a QKD system, a truly random number gen-
erator [5], quantum random number generator, plays a key role.

From a reliable viewpoint, it is necessary to test stationary randomness degrees
on shift operations in evaluations. In this section, a list of relevant schemes, pseudo-
random/truly random sequences, P_value, statistical probability distribution, optical
statistics, stationary/nonstationary properties, and variant maps, are discussed.

1.1 Pseudorandom Sequences from Linear Stream Ciphers

Traditional stream ciphers [6] on Linear Feedback Shift Register (LFSR) structure (in
military cryptography) are used as pseudorandom number generators, due to the ease
of implementation from simple hardware, long periods, and uniformly distributed
streams. The LFSR stream ciphers are the core in classical stream ciphers through
the mathematical theory of algebraic functions for system simulation and analysis.

However, an LFSR is a linear system leading to fairly easy cryptanalysis using
the Berlekamp—Massey algorithm. Important LFSR-based stream ciphers A5/1 &
A5/2 are used in GSM cell phones and EO is used in Bluetooth protocol. But from
cryptanalysis viewpoint, the A5/2 cipher has been broken and both A5/1 and EO have
serious weaknesses [7, 8].

1.2 Pseudorandom Sequences from Nonlinear Stream
Ciphers

The new generation of stream ciphers [9, 10] is widely used in advanced cyber
communications. Three general methods are applied to improve security weaknesses
in LFSR-based stream ciphers:

1. Nonlinear Functions: Nonlinear combination of several bits from the LFSR
state [11];
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2. Nonlinear Parts: Nonlinear combination of the output bits of two or more LFSRs
or using evolutionary algorithm for nonlinearity [12]; and

3. Clock Control: Irregular clocking of the LFSR, as in the alternating step gen-
erator [13].

With batch a series of nonlinear algorithms are emerged [14]: nonlinear equivalence
[15], evolutionary methods [12], AES cipher [16], RC4 [17], ZUC [11], cellular
automata [18], and nonlinear dynamic system [19].

The new generation of stream ciphers has being shifted from the traditional mode:
LFSR [6] to various nonlinear modes: NLFSR [20, 21], clock control [13], nonlinear
functions [11], etc.; it is essential for ciphers to be integrated and implemented
[22] to satisfy security models. However, different from LFSR with well-established
linear mathematical theories and simulation tools, it is extremely difficult to use
advanced nonlinear mathematical theories, recursive models, descriptive tools, and
implementing schemes [19] in nonlinear dynamic environments. How to evaluate
cryptographic sequences generated from the nonlinear stream ciphers is an urgent
problem for modern stream/block ciphers.

1.3 Truly Random Sequences from Hardware Devices

In addition to pseudorandom sequences generated by stream ciphers, high-quality
stochastic oscillators of truly random sequences are generated from special hardware
devices such as laser photonics [23], nonlinear optics [24], quantum optics [25],
quantum noises [26], thermal noise [27], and chaos and fractal nonlinear dynamics
[28].

Since various truly random sequences are created from specific physical models
with special principles and uncertain methodologies, it is extremely difficult for
cryptographic researchers to make proper measurements explore nonlinear dynamic
properties.

1.4 P_value Schemes—Statistical Tests on Cryptographic
Sequences

Randomness has being explored for many years [29] on a series of statistic testing
theories and methods. From a testing viewpoint, it is feasible to apply statistic testing
packages to measure randomness properties on a given cryptographic sequence. NIST
800-22 package is a typical representative to provide more than 15 testing schemes
for evaluation. Using the testing package, it is essential to check whether P_value
>0.01 for the sequence. Since such measuring scheme provides static property, it
is difficult to use only P_value parameter to express complex dynamic behaviors
intrinsically involved in cryptographic sequences.
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Since comprehensive behaviors in nonlinear dynamics may increase computa-
tional complexities tragically to involve complicated dynamic properties in the mul-
tivariate environment, those dynamic behaviors are completely ignored in P_value
schemes.

1.5 Multiple Statistical Probability Distributions

Measuring cryptographic sequences under segment conditions, multiple statistical
probability schemes are useful to create various distributions to illustrate complex
spatial relationships.

Multivariate normal probability distributions are the most important and power-
ful tool to test stochastic characteristics of a random data sequence [30] under the
framework of probability, stochastic process, and statistics [31] for nonlinear prob-
lems. In this kind of measuring models, when a data sequence is sufficiently long,
the high-dimensional probability distribution of the sequence [32] is converted into
a continuous Gaussian distribution.

A typical projection model is shown in Fig. 1a; the central part shows a Gaus-
sian surface with an unbalanced distribution in a 2D plane distributed as P (X, Y)
measures with pseudo-colors and two 1D projections shown in horizontal P (X)
and vertical P (Y) planes, respectively. In Fig. 1b, a standard Gaussian surface with

Fig. 1 Multivariate
Gaussian Probability
Distributions (a)—(c); a
Bivariate normal distribution
with two probability
projections; b A symmetric
bivariate normal surface with
pseudo-colors; ¢ A 2D
pseudo-color map of the
symmetric bivariate normal
surface
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symmetric shapes is illustrated and the 2D projection of its pseudo-color map is
shown in Fig. 1c with continuous distribution of color on the map.

From sample figures, the relationship between the projection curve and two 1D
Gaussian distributions are observed in the multivariate normal probability environ-
ment. Multivariate Gaussian probability distributions support various schemes to
analyze complex stochastic data set of measuring sequences in many applications in
continuous conditions.

1.6 Photon Statistic in Quantum Optics

Photon statistics is the theoretical and experimental approach on the statistical distri-
butions in photon counting experiments to analyze the statistical nature of photons
in a light source.

Three types of statistical distributions shown in Fig. 2 can be obtained by the light
source [33]: Poissonian, super-Poissonian, and sub-Poissonian. The variance and
average number of photon counts are identified for the corresponding distribution.
Both Poissonian and super-Poissonian light are described by a semi-classical theory
in which the light source is modeled as an electromagnetic wave and the atom is
modeled by quantum mechanics. In contrast, sub-Poissonian light requires the quan-
tization of the electromagnetic field for a proper description and is a direct measure
of the particle nature of light.

Fig. 2 Three-photon
statistical distributions
Sub-Poissonian
3
2
Poissonian
1
Super-Poissonian
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1.7 Stationary and Non-stationary Properties

In mathematics and statistics, a stationary process is a stochastic process [34] whose
joint probability distribution does not change when shift operations performed. Con-
sequently, parameters such as mean and variance, if they are present, also do not
change over time. Stationarity is an interesting property for many statistical proce-
dures in time series analysis.

In 1938, Kolmogorov established the basic theorems for smoothing and predicting
stationary stochastic processes [35, 36] that had major military applications during
the Cold War.

In applied mathematics, the Wiener—Khinchin theorem [37-39] states that the
Autocorrelation Function (ACF) of a wide-sense-stationary process has a spectral
decomposition given by the power spectrum of the process. One of the effective ways
identifying stationary times series is the ACF plot [40]. For a stationary time series,
the ACF will drop to zero relatively quickly, while the ACF of nonstationary data
decreases slowly [41].

1.8 Datastreams

1.8.1 Pseudorandom Number Resources

Four cryptographic sequences are selected: { AES,DES, AS, RC4}. For each cipher,
a cryptographic sequence of 100MB data streams is collected.

{AES, DES} are block ciphers [16] on OFB mode to transfer block cipher output
as a stream cipher stream.

A5/1 is a stream cipher [42] based around a combination of three LFSRs with
irregular clocking.

RC4 is a stream cipher [43] designed by Ron Rivest in 1987. The design of RC4
avoids the use of LFSRs, its structure is ideal for software implementation, and it
requires only byte manipulations.

1.8.2 Two Quantum Random Number Resources

Reliable and unbiased random numbers are important in cryptographic applications.
Many algorithms can be used to generate pseudorandom numbers, but they can never
be perfectly random or indeterministic.

Quantum random numbers can be generated from a physical quantum source of a
coherent laser light to be splitting a beam of light into two beams and then measuring
the power in each beam. Due to the light intensity in each beam, it fluctuates about the
mean. Those fluctuations can be converted into a source of random numbers [44—46]
being a stationary Poisson distribution.
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Two quantum cryptographic resources are selected: {ANU, USTC}. For each
quantum cipher, a truly random sequence of 1GB data streams is collected.

USTC resource: In the Key Laboratory of Quantum Information, USTC, CAS, true
random number sequences are generated [45]. This type of true random sequences
supports advanced quantum communication devices of QKD systems [47, 48].

More than 20GB quantum random number sequences are provided by USTC for
randomness testing.

ANU resource: The ANU Quantum Random Numbers Server is an open website
[49] to offer true random numbers to anyone on the Internet. Such random numbers
are generated in real time by measuring the quantum fluctuations of the vacuum.
The electromagnetic field of the vacuum exhibits random fluctuations in phase and
amplitude at all frequencies. By carefully measuring these fluctuations, ultra-high
bandwidth random numbers can be generated. Relevant data streams are downloaded.

1.9 Variant Framework

The conjugate classification [50] is proposed to apply seven measures in a hierarchy
to partition the kernels of four regular plane lattices on n = {4, 5, 7, 9} cases for 2D
binary images. For 1D cellular automata sequences, global random behaviors [51]
are visualized in 2D maps.

Various schemes following the top-down strategy are explored to use multiple
measures to partition special phase spaces from a top state set to multiple bottom
states via multilevels of a hierarchy in combinatorial algorithms [52], image analysis,
and processing for many years.

For n-tuple bit vectors, the variant logic framework [53] is proposed, and various
applications are explored: 3D visual method on random number sequences [54], vari-
ant Pseudorandom Number Generator (PRNG) [55, 56], computational simulation
on quantum interactions [57, 58], noncoding DNA analysis [59], and bat echoloca-
tion [60].

1.10 Proposed Scheme

For the convenience of testing stationary randomness on six cryptographic sequences,
we propose a testing system for a stationary random sequence with length N ; multiple
segments M are divided from the sequence by a given length m; a 2-tuple pair of
measures can be extracted from a 0—1 segment that is the number of 1 element and
the number of 01 pattern in the segment. All paired measures are composed of a
sequence of M pairs of measures as an ordered measuring set with M elements.
The pairs of the measuring sequence are directly separated as two independent
measuring sequences to keep each parameter in the same order. A total of three
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sequences of distinct measures are constructed including two sequences on single
measures and one sequence on 2-tuple measures.

Following this approach, two sets of single measuring sequences are sorted as two
1D numeric arrays as statistical histograms corresponding to 1D maps, and the 2-
tuple measuring sequence is sorted as a 2D integer array as statistic histograms being
a 2D map. Under the controlling operations on the changes of shift displacement,
multiple results of the three measuring sequences are transformed into 1D statistic
histograms and 2D pseudo-color maps to show effective patterns from the generated
sequence under various positions and conditions on a list of shift operations.

1.11 Organization of the Chapter

This chapter describes a testing system for a stationary random sequence on diagrams
of the system architecture and the core modules with input/output and processing
functions in Sect. 2. In Sect. 3, the relationships among measuring sequences and the
three statistical distribution maps are analyzed. In Sect. 4, four random sequences
are generated from {AES, DES, A5, RC4} ciphers and two quantum cryptographic
sequences collected from the Key Laboratory of Quantum Information, USTC, CAS,
and ANU quantum number site. From the results of the visual maps in section IV,
numeric analysis and brief comparison are carried out in Sect. 5. And finally in Sect.
6, the main results are summarized.

2 Testing System

To describe the testing system, diagrams are shown in Fig. 3.

" nput | ' Output: |
! ! t Three
. A0l — ST — SM — CP — 1"
| Sequence } aps |

. Maximals

,,,,,,,,,,

Input: A 0-1 sequence

ST Shifted Transformation

SM Segment Measurement

CP Combinatorial Projection
Output: Three maps / Maximals

Fig. 3 The architecture of testing stationary random sequences
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2.1 System Architecture

This system is composed of five parts: Input, Shifted Transformation (ST), Segment
Measurement (SM), Combinatorial Projection (CP), and Output.

The input of the testing system is a selected 0—1 sequence, and its output is
composed of three maps, two in 1D and one in 2D for visual distributions, and three
maximals to be processed by ST, SM, and CP modules, respectively.

2.2 Core Modules

The testing system consists of three modules: {ST, SM CP}.
Input: X N = m x M bit sequence; m segment length; M total segments; r shift
length;
Output: Three maps {1DP, 1DQ, 2DPQ}; Three maximals { 1DP,, 1DQ,, 2DPQ, }
Process: Shifting r position from X tobe ¥ = X (r) in ST. Making segment measur-
ing sequences in SM and then projecting three measuring sequences as three maps
and extracting three maximals in CP.

Let X, Y be 01 sequences with N elements, and the ST module takes the sequence
X as input, then shift  position on the whole sequence to be the shifted sequence
Y = X (r) (i.e., a cyclic shift right + or shift left —).

Y =X(r),Y[I]l=X[I£r],I £r(modN),
0<1I<N;X[I],Y[I]€{0,1} (1)

In the SM module, the shifted vector is inputted and will be divided from a long
sequence into M segments. For the i-th sub-vector, 0 < i < M on the j-th position
0 <j <m,denotedas Y, ;.

This sequence at the end of sub-vectors after the segmenting operation forms
an m x M matrix, m positions for the i-th complete row vector in the sequence
correspond to a pair of 2-tuple measures: (p;, g;)-

Y = () @

Yi = {Yvi,03 Yi,ly"' 9Yi,j7"' 7Yi,mfl} (3)
0<i<M,0<j<m

Yi > (pi,gi),0<i <M 4

(YoM = {(pi, a)hisy! (5)
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The pair of 2-tuple measures (p;, g;) is determined by the following formula:

Y, =Y[J1€{0,1}; J=i*xm+j,

0<i<M,0<j<m0<J<mxM (6)
m—1

pi= Y Y €{0,1,0 < p <m; (7)
j=0
m—1

gi =Y _[(Yij_1.Yij) == (0, D],
j=0
j = Lmod m),0 < g; < |m/2}; ®)

That is, X = 0011010010, N =10, M =2, m =5; (po =2,q0 = 1); (p1 = 2,
q1 =12).

The SM outputs the ordered M pairs of 2-tuple measures {p;, g;} l"i 6'.

The CP module consists of two units: Split and projection. The split adapts the
SM’s output as the input, and the 2-tuple measuring sequence {(p;, qi)}f.‘i 51 will
be splitted into two independent measuring sequences:{ p; }iﬂi 51, {g:} f‘i 61 to keep the
original order invariant.

Three measure sequences are {p;}"5", {gi}Ms" ((pir g)}M5 "

The projection unit consists of three steps: Project Array (PA), Color Map (CM),
and Get Maximal (GM). For three measuring sequences, two types of 1D and 2D
measures will be processed separately.

The PA processes measuring sequences to transform them into integer arrays and
the CM will organize them on either normalized histograms (1D measures) or color
maps (2D measures), respectively.

The 1D measures involve two measuring sequences: { pi}?i 61, {q,-}iﬁi 61. Let
Plm + 1], Q[lm/2] + 1] and NP[m + 1], NQ[|m/2] + 1] be two 1D (integer,
float) arrays to represent the corresponding elements.

The 1DP statistic histogram is generated from a sequence { pi}il'i 61, NP, P
two arrays (floating point, integer) with (m + 1) elements. For the j-th element
NP[j], P[j], 0 < j <m, and 1DP, the maximal element, the output can be ob-
tained by following procedure:

Initialization: VN P[j] = 0.0,
Plj1=0,0<j<m;
Calculation: for(i =0;i < M;i++)
{Plpil + +;}
Normalization: for(j =0; j <m; j ++)
{NP[jl=Pljl/M;}
Get Maximal: 1DP, = max{NP[j]|0 < j < m}

In the 1DP map, the PA corresponds to initialization and calculation; the MA
handles normalization and the GM identifies the maximal element of the map.
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The 1DQ statistic histogram is generated from a sequence {qi}iﬂi 61, NQ, Q two
arrays (floating point, integer) with (|m/2] 4 1) elements. For the j-th element
NQI[jl, Olj1,0 < j < |m/2], and 1DQ, the maximal element, the output can be
obtained from following procedure:

Initialization: YN Q[j] = 0.0,
0lj1=0,0<j < |m/2];
Calculation: for(i =0;i < M;i++)
{Olgil ++; )
Normalization: for(j =0; j < |m/2]; ]+ +)
{NQ[j]= Qljl/M;}
Get Maximal: 1DQ, = max{N Q[j]|0 < j < |m/2]}

Using P, NP, Q, N Q arrays, it is possible to generate corresponding 1D statis-
tical histograms as 1D maps.

In the 1DQ map, the PA corresponds to initialization and calculation; the MA
handles normalization and the GM identifies the maximal element of the map.

The 2D measures specially processes one measuring sequence: {(p;, q,-)}f‘i 61. Let
PQ[m+1:|m/2] 4 1] be a 2D integer array.

2DPQ statistic histogram is generated from a sequence{(p;, q,-)}l.ﬂi 6], PQ a
2D integer array with (m + 1) % (lm/2] + 1) elements; For the i, j-th element
POli, j1,0<i <m,0 < j <|m/2], and 1DPQ, the maximal element, their val-
ues can be obtained by following procedure:

Initialization: VP Q[i, j] =0,

0<i=m0=j=<|m/2];
Calculation: for(i =0;i < M;i ++)

{POlpi.qil ++:}

Pseudo-color: Matching proper color for
VPOli, jl.0<i<m,0<j<|m/2]

Get Maximal: 1DPQ, = max{PQl[i, j]|I0 <i <m,
0<j=<Llm/2}

In the 2DPQ map, the PA corresponds to initialization and calculation; the MA
handles pseudo-color and the GM identifies the maximal element of the map.

Through the CP module, three measuring sequences are transformed into two
1D arrays and one 2D array with (m + 1), (m/2] + 1) and (m + 1) % (lm/2] + 1)
clusters.

The outputs of the testing system are three maps { 1DP, 1DQ, 2DPQ} and three
maximals { 1DP,, 1DQ,, 2DPQ, } as expected statistic distributions and representa-
tives of the input O—1 sequence, respectively.
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3 Association Analysis

It is a counting scheme to sort the {p;}; 01 measuring sequence as a 1D histogram.
When the measuring sequence meets ideal conditions, the 1D statistical distribution
is a binomial distribution.

Lemma 1 For an input 0-1 sequence, if the total number of segments is equal to
M = 2", and each segment of m bits appears only once in the sequence, then the
IDP array satisfies the binomial distribution

m
P[i]=<l,),0§i5m €))

Corollary 1 If the input sequence meets the conditions of Lemma 1, then the total
number of items in the 1DP array is equal to

doplil=2"=M (10)

Lemma 2 [f the input sequence meets the conditions of Lemma 1, then the IDQ
array satisfies following relation:

Q[l]—2< ) 0<i=<|m/2] (11

2i

Corollary 2 [f the input sequence meets the conditions of Lemma 1, then the total
number of items in the IDQ array is equal to

m/2

Y olil=2"=M (12)
i=0

Corollary 3 For any 0-1 sequence with N elements, a 2DPQ projection in two
directions is corresponding to either a 1DP array or a 1DQ array, respectively.

Proof A 2DPQ array is generated from a measuring sequence {p;, qi}f‘ial and
the 2DPQ array is sorted by {PQ[i, j1}/", ]Lm{yzj, from two directions P[i] =

Y PO, j1.0 < i < m; Q[j] = Yy PO, j1.0 < j < |m/2]. Sotwo pro-
jections are corresponding to an either 1DP or 1DQ array.

Corollary 4 For an arbitrary 01 input sequence, the total number of items in the

2DPQ array is equal to

m |m/2] m Lm/2]

> Y POl i=) Plil= )y Qljl=M (13)
i=0 =0

i=0 j=0
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In Corollaries 3 and 4, the total number of each component on three statistic arrays
is equal to the total number of segments M, and the 2DPQ array occupies a central
position in the projection to other two arrays.

Let {1DP,(r), 1DQ.(r), 2DPQ, (r)} denote three maximals on the selected se-
quence for 0 < r < m; three maximal sequences are {1DP, (r)}_,, {1DQ.(r)}/_,,
{2DPQ. (N},

For a 0-1 sequence with M segments, if each segment of m bits is composed of
a state and only one state is involved, then the sequence is a circular sequence.

Lemma 3 For a sequence 0 <r < m, the sequence is a circular sequence, iff
IDP,(r) = IDQ.(r) = 1 and 2DPQ, (r) = M.

Proof For a circular sequence, shift operations do not change the pair of measures,
only a single (p, ¢) value is possible.

Theorem 1 For a sequence with stationary random properties, it has
IDP,(0) >~ ---~IDP,(r) >~ ---~ IDP,(m) < 1,

IDQ,(0) >~ .- -~ IDQ,(r)~---~1IDQ,(m) K 1, or

2DPQ,.(0) >~ --- ~2DPQ.(r) >~ --- ~ 2DPQ,(m) < 1.

Proof In any random condition, it is necessary for pairs of {(p, g)} to have certain
states significantly different from a circular sequence in either < 1 or < M condi-
tion. Under the stationary random condition, all maximals satisfy only =~ relations
under shift operations.

For a G map, let G, be an average variation, AG, be a region of variations, and
Gf = AG, /G, be a variation ratio.

Theorem 2 Fortwo {i, j}-th G maps G and G/ on G; ~ G with variation ratios
GQR and G;’C‘R, if a variation ratio has a minimal value, then the relevant map has a
better stationary random property than the maximal one.

Proof Since GR = AG,/G, and G ~ G, it is a relative measure on
Vr(max{G,(r)} —min{G,()})/G, > 0. So min{AGi, AGl) < max{AGi,
AG?}, the minimal variation ratio indicates the better stationary random property.

Corollary 5 For different maps, it is better to compare various variation ratios
relevant to the same type of distributions.

Proof For various maps in the same type of distributions, relevant { G, } should satisfy
the similar—equal condition.

4 Testing Results

Four pseudorandom sequences are generated by { A5,RC4,DES, AES} ciphers, and
two quantum cryptographic sequences are selected from both ANU and USTC re-
sources.



146 J. Zheng et al.

AES 10P_mi28 ra2 252G mias ra2 AES_ 160 _m128_r32
14 -
|
a1z air
0|
18 o
»|
aos ose
[ " a6
ane 3| ™
am | oz
o 2 = ul 1 nsa
E w ® wm nmow ®w W ® om w w w W . 7 ] ) )
DES_JoP_miI8 32 DES_1d0_ml28 r32
au a1e |
) 10000
a1z a1z
|
10 w18
=)
™ nos
o ® ok
ane B aos
a0z | s
[ ' a4 - : — —
EEEEE L) I ) 3 Y w w0
A5 10¥ mi28 112 A8 S ek rd AS 18 w8 rxy
o) o
10006
)
[TH o
|
ool ol
|
nsel nse]
ose | noe]
a4l B 84
[t ol st
' nsel
% % & % ®© m = w1 R e W ® O ® & w ® W ® W W
RC4_10P_m128 112 RC4_20Pg m12e 32 T4 10Q mi28 12
m
]
ns0)
ozl
nse)
[0 L
oz
f N
— — T
ol
|
[T
|
o)
=)
nsel
wse i
24l L
Lt -
W % W ® ®© N & W 3 B
USTC 18 mize ex3 2832 3990
o 10000
)
oy
|
o1
=)
noe I
x|
o4
04 o .
.
o x|
1
7w e e e Ry ® oW B W W m m W

Fig. 4 Six cryptographic sequences on r = 32 1DP, 2DPQ, and 1DQ maps



Stationary Randomness of Three Types of Six Random Sequences on Variant Maps 147

AES 2dPQ_m128 r32 DES_2dPQ_m128 r32

m 10000 a5 1000t

a0 a0
é) 33 L}
< 30 30 (el

w»n
x L
0 n
1 15 1
20 30 40 50 60 70 80 90 100 0 100
s RC4_2dPQ_m128 r32 “ AS5_2dPQ_m128 r32
1000

45 10000 a5

a0 a0
<t = 35
O >
~ EN) N (9]

= L

L) 0

15 1 15 1

0 [ 0 80 100 120 0 [ 0 80 wa 120
- ml28r32_2dPQ 5 ml28r32_2dPQ
10000
10000

a5 45

a0 40
% 33 35
< u % w»n

H
» b @!
L]
0 20
15 1 15 1
0 30 40 50 6 70 80 90 100 30 30 0 S0 60 70 B0 90 100

Fig. 5 Six cryptographic sequences on r = 32 2DPQ maps

Typical results of testing stationary properties for six sequences on 18 maps of
{1DP, 2DPQ, 1DQ} are shown in Fig. 4. Each position contains nine shift values of
r = 32 selected. A total number of 18 maps are included. Six 2DPQ maps are shown
in Fig. 5 as enlarged maps. Each map has shift values of r = 32, respectively.

Three variation measures {G, AG,, G®} for maps {1DP, 2DPQ, 1DQ } of six
sequences are shown in Table 1, and their sorted orders are listed in Table 2. Twenty-
four 2D maps of maximal curves for » = 0 — 128 are shown in Table 3. Three left
columns contain 18 enlarged variation maps of {1DQ, 1DP, 2DPQ} and the last
column contains six variation regions of 1DQ + 1DP + 2DPQ in six 2D maps. Six
enlarged 2D maps are shown in Table 4 and six larger 2D maps are shown in Table 5.
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In Table 6, 49 pairs of differences for variation ratios are listed in three 7 x 7
tables to illustrate refined quantity measures on three levels. There are seven entries
on diagonals with seven trivial O values. For other 42 nontrivial values, let dG f%
denote differences of G f % based on the basic variation ratios in Table 1, and various
differences of variation ratios among six samples are listed. Differences of three
variation ratios {d Q%%, dPR%,dP QR %, } on seven items {&, AES, DES, AS5,
RC4, ANU, USTC} are illustrated.

5 Result Analysis

Eighteen maps in Fig. 4 are composed of three groups. Six 1DP maps have similar
distributions in bell shapes to illustrate Poissonian distributions. Six 2DPQ maps are

Table 1 Comparisons on
three variation measures for
six samples

IDQ: (0% AQ.% OFf%

AES: [14.05 042 3.0
DES: [14.05 0.36 2.55
AS: 13.953 0.19725 1.4136
RC4: (14.210 0.21985 1.5471
ANU: |13.961 0.17761 1.2722
USTC:[13.944 0.19664 1.4102

IDP: |P% AP% PR%

AES: (7.07 0.42 3.96
DES: |7.05 0.25 3.5

A5: [7.02650 0.17665 2.51409
RC4: |7.19459 0.16223 2.25498
ANU: |7.0352 0.15472 2.1992
USTC:|7.0289 0.13542 1.9265

2DPQ:(PQ,.% APQ% PQR%

AES: (1.0 0.09 9.02
DES: (1.0 0.08 8.21
A5: ]0.98690 0.05508 5.5818
RC4: [1.02754 0.05106 4.96913
ANU: [0.99245 0.04791 4.8276
USTC:{0.98675 0.04691 4.7544
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Table 2 Possible sorted orders of three types of variation measures; (a) G, %, (b) AG, %, (c) G f %
G % | min max | min - max sorted | min-max range

1DQ: |USTC RC4|USTC-A5-ANU-AES-DES-RC4| 13.944 < 0, % < 14.21
1DP: | A5 RC4|A5-USTC-ANU-DES-AES-RC4| 7.0289 < P.% < 7.19459
2DPQ:|USTC RC4|USTC-A5-ANU-DES-AES-RC4|0.98675 < PO, % < 1.02754
@

AG%| min max]| min - max sorted | min-max range
1DQ: | ANU AES|ANU-USTC-A5-RC4-DES-AES| 0.17761 < AQ % < 0.42
1DP: |USTC AES|USTC-ANU-RC4-A5-DES-AES| 0.13542 < AP.% < 0.42

2DPQ:|USTC AES|USTC-ANU-RC4-A5-DES-AES|0.04691 < APQ,% < 0.09

(b)
GR% | min max| min - max sorted | min-max range
1DQ: | ANU AES|ANU-USTC-AS5-RC4-DES-AES| 1.2722 < Q%% < 3.0
IDP: |USTC AES|USTC-ANU-RC4-A5-DES-AES| 1.9265 < PR% < 3.96
2DPQ:|USTC AES|USTC-ANU-RC4-AS5-DES-AES |4.7544 < PQR% < 9.02
(©

2D distributions. They have a symmetry on left/right directions and have a broken
symmetry on up/down directions. Pseudo-color pixels on six maps indicate relevant
3D shapes. Compared with six 1DP maps, six 1DQ maps have similar distributions
and more narrow bell shapes to illustrate sub-Poissonian distributions. It is possible
to illustrate different maps on shift » = 32 for each map.

In Table 1, three pairs of maximal and minimal variation ratios are identified
and three full orders are sorted in Table 2. Compared with G, sorted orders, both
{AG,, GR} variation ratios, six samples keep the same sorted orders as two groups:
IDQ and {1DP, 2DPQ} for their min-max variation ratios. Six enlarged 2DPQ
maps on shift » = 32 are shown in Fig. 5 to form three pairs { AES:DES, RC4:AS,
ANU:USTC}. Three pairs of six maps have similar visual distributions.

Twenty-four variation maps are shown in Table 3 as four groups. Each group
contains six 2D maps. For three groups of { 1DQ, 1DP, 2DPQ }variation distributions,
eighteen enlarged 2D maps are shown in significant waveforms. For the group of
1DQ + 1DP + 2DPQ distributions, six maps are shown in three average variations
satisfying 1DQ, > 1DP, > 2DP Q,, respectively. The fourth group of variation
measures combines three variations of 1DQ + 1DP + 2DPQ in one unified 2D maps.
From the six 2D maps, their stationary randomness of global variations are clearly
illustrated.

In Table 4, AES and DES map may have high frequent waves, and other enlarged
2D maps have stationary properties. In Table 5, larger waves appear and more details
could be identified. Although significant variations are appeared in different 2D
maps, it is difficult to make classification depending on their variation behaviors.
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Table 3 Variation distributions of six samples
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In Table 6, three variation ratios of differences are bounded in 0.0034 < |d Q f %| <
1.73,0.056 < |d PR %| < 3.96,and0.073 < |d P QR%| < 4.27,respectively. In gen-
eral, three groups of variation ranges on differences meet {d Q%%} C {dPR%} C
{d P QR %}. From a stationary testing viewpoint, 2DPQ shows the strongest distinct
property, 1DQ has the weakest numeric property, and 1DP provides the middle iden-
tifying property.
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Table 4 Six variations on 2D maps

AES_maximum_of_each_step DES_maximum_of_each_step
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Since three groups can be identified by { AES, DES} block ciphers, {AS, RC4}
stream ciphers, and { ANU, USTC} quantum ciphers, stationary randomness quanti-
ties can be classified as three { AES, DES}-highest, { A5, RC4}-middle, and { ANU,
USTC}-lowest categories to provide distinct variation measures in the testing. Three
quantity categories may correspond to distinguish artificial, semi-artificial, and nat-
ural designs for various generating mechanisms of cryptographic resources.
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Considering all differences of variation ratios on six samples listed in Table 6,
there are only 0.0034—4.27% differences (thirty-four in one million to four percent)
are recognized. From a measuring viewpoint, all six samples are showing distinct

stationary randomness properties.

Table 5 Larger six variations on 2D maps
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Table 6 Differences of variation ratios among three maximals of six samples

doR% %) AES DES AS RC4 ANU USTC
@ 0 3.0 2.55  -1.4136 -1.5471 -1.2722 -1.4102
AES 3.0 0 045 15864 1.4529 1.7278 1.5808
DES 2.55 | -0.45 0 1.1364 1.0029 1.2778 1.1398
A5 1.4136 | -1.5864 -1.1364 0 -0.1335 0.1414 -0.0034
RC4  1.5471|-1.4529 -1.0029 0.1335 0 0.2749 0.1369
ANU: 1.2722(-1.7278 -2.2778 -0.1414 -02749 0  -0.138
USTC: 1.4102|-1.5898 -1.1398 -0.0034 -0.1369 0.138 0

dPR9% %] AES  LFSR A5 RC4 ANU USTC
@ 0 -3.96 -3.5  -2.51409 -2.25498 -2.1992 -1.9265
AES 3.96 0 0.46  1.44591 -0.54996 1.7608 2.0335
DES 3.5 -0.46 0  0.98591 1.24502 1.3008 1.5735
A5 2.51409|-1.44591 -0.98591 0  0.25911 0.31489 0.58759
RC4  2.25498(0.54996 -1.24502 -0.25911 0  0.05578 0.32848
ANU: 2.1992 | -1.7608 -1.3008 -0.31498 -0.05578 0  0.2727
USTC: 1.9265|-2.0335 -1.5735 -0.58759 -0.32848 -0.2727 0

dPQR% @ AES  DES A5 RC4 ANU USTC
@ 0 9.02  -821 -5.5818 -4.96913 -4.8276 -4.7544
AES 9.02 0 0.81  3.4382 4.05087 4.1924 4.2656
DES 821 | -0.81 0 2.6282 3.24087 3.3824 3.4556
A5 5.5818 | -3.4382 -2.6282 0  0.61267 0.7542 0.8274
RC4  4.96913|-4.05087 -3.24087 -0.61267 0  0.14153 0.21473
ANU:  4.8276 | -4.1924 -3.3824 -0.7542 -0.14153 0  0.0732
USTC: 4.7544 | -4.2656 -3.4556 -0.8274 -0.21473 -0.0732 0

6 Conclusion

153

It is feasible to evaluate stationary properties for a random sequence using the test-
ing system. Using three maps {1DP, 1DQ, 2DPQ}, a series of variation measures
and their ratios are illustrated. Extracting maximal measures is identified for shift
r : 0 — m. For each sample, three 2D maps of variation curves provide refined char-
acteristics to evaluate stationary randomness properties in global. Sample varia-
tion maps are shown in exactly similar—equal relationships among the same group
of average variations. Further explorations and applications are required to check
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the testing system on other applications of cryptographic streams. Three quantity
categories of artificial, semi-artificial, and natural designs may be explored to get
intrinsic stationary randomness information from refined testing and future explo-
rations.
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