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Abstract Symmetric Boolean functions play a key role in stream ciphers.
Symmetric constructions provide core components in cryptographic applications. In
this chapter, four meta symmetric clustering schemes (combination, crossing, variant
and rotation) are organized in a hierarchy for n variables of 0–1 vectors in measuring
phase spaces. Local counting properties in a cluster and global counting properties
in a given level are formulated. From selected symmetric clusters, a number of vari-
ous symmetric Boolean functions are formulated. Counting properties on symmetric
clusters, vectors in selected clusters and special symmetric Boolean functions are
listed. Four sets of symmetric Boolean functions are compared. Properties of sym-
metric clusters and Boolean functions are discussed. Main results are expressed in
theorems and tables. Among four meta schemes, the variant scheme presents novel
properties approximately with O

(
n2/4

)
clusters on a 2D phase space different from

other schemes: combinatorial O (n), crossing O (n/2) and rotation O (2n/n) on 1D
measuring phase spaces, respectively. The variant pseudorandom number generator
is a similar approach on RC4 and HC128 stream ciphers using word-oriented 0–1
vectors. Further advanced researches and explorations on relevant optimal configu-
rations are required.
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1 Introduction

Symmetric Boolean functions [5] have being widely used as components of different
cryptosystems [25] (e.g. in stream ciphers, block ciphers or hash functions). In com-
binatorial mathematics [10], a symmetric Boolean function is a Boolean function
whose value does not depend on the permutation of its input bits [4], i.e. it depends
only on the number of ones in the input on n variables of 0–1 vectors [21]. A total of
2n vectors are composed of a vector space or a phase space for the construction [19].
For a specific symmetric Boolean function, it is necessary to have invariant properties
undertaken a special group of permutations [18]. For example, rotation symmetric
Boolean functions are invariant under the circular translation of indices. In addition
to rotation symmetric properties, multiple invariants (combination, crossing, reflec-
tion, translation) may be composed of various symmetric subgroups of permutations
[10, 22]. Various combinatorial counting schemes are explored [34–36].

1.1 Symmetric Functions—Combinatorial Invariant

From a combinatorial viewpoint, symmetric Boolean functions are a combinatorial
invariant that links to the number of one elements p, 0 ≤ p ≤ n in a vector [35]. In
combinatorics, this type of function has being linked to binomial coefficients, and
normally, there are n + 1 partitions to distinct the parameter of a measuring phase
space into various clusters [30]. Symmetric Boolean functions are characterized
[36] by the fact that their outputs only depend on the p numbers of their inputs.
The usefulness of symmetric functions in a cryptographic context has being widely
explored which possess good cryptographic properties [6, 7].

1.2 Crossing Number - Topological Invariant

A zero-crossing [23] describes a point where the sign of a mathematical function
changes (e.g. from positive to negative), represented by a crossing of the axis (zero
value) in the graph of the function. It is a commonly used term in electronics, math-
ematics, sound and image processing.

From a measuring viewpoint, a 0–1 vector with n bits can be expressed as a
circular ring that has a fixed crossing number q, 0 ≤ q ≤ � n

2 � distinguished a number
of derivative changes on either 0–1 or 1–0, respectively. This type of derivative
invariant is widely used in crypto-analysis for many years. In NIST random data
testing packages [1], binary derivative [3] and Runs tests [2] play an important role
to measure the randomness of a binary sequence formed by a pseudorandom number
generator for use in cipher systems. From an analytic viewpoint, this parameter is a
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topological invariant and different from a combinatorial invariant to provide another
type of partition capacities to organize a set of clusters in a measuring phase space.

1.3 Rotation Symmetric Functions - Geometric Invariant

In combinatorial mathematics, rotation symmetric properties are widely explored
from early stage of abstract group theories and symmetric group constructions [10,
22] as a geometric invariant. Filiol and Fontaine [12] were initially explored on
balanced Boolean functions with a good correlation immunity. Pieprzyk and Qu [26]
were applied in crypto-applications to use Rotation Symmetric Boolean Functions
(RSBF) as components in the rounds of a hashing algorithm.

Extensive R&D activities on RSBF are continuous for last decades, a list of
advanced works explored, such as degree and non-linearity [6], optimal algebraic
immunity [7], bent and semi-bent functions [8, 33], non-linearity of resilient, non-
linear Boolean functions [20, 28], balanced Boolean functions [12, 16], non-linear
balanced Boolean functions [31], weights and non-linearity [11], immune combining
functions [32], count and cryptographic properties [13, 29], etc.

1.4 Trinomial Coefficients

It is a natural approach [10, 18, 19] to apply binomial coefficients to partition a
measuring phase space on 0–1 vector sets. However, when parameters increase more
than three, a generalization [34–36] using multinomial coefficients may not provide
a general solution on further refined partitions, if the processed phase space is com-
posed of 0–1 vectors. It is convenient for us to use a trinomial expression to show
this fact.

Let n = n1 + n2 + n3, 0 < n,

(
n

n1, n2, n3

)
= n!

n1!n2!n3! ,

collecting all possible trinomial coefficients, we have

∑

∀n1,n2,n3

(
n

n1, n2, n3

)
= 3n �= 2n. (1)

From Eq. 1, it is interesting to notice that trinomial coefficients provide further
segments to partition three-valued 0–2 vectors. Due to this reason, extensions using
multinomial coefficients may not be directly relevant to binary-valued 0–1 vector
sets. Refined identity equations of combinatorics are required [14, 15].
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1.5 Variant Symmetric Schemes - Variant Invariants

Various schemes to use multiple invariants to partition special phase spaces have
being explored in binary image analysis and processing for many years. In 1990s,
Zheng [39, 40] proposed conjugate classifications to apply seven invariants in a
hierarchy to partition the kernels of four regular plane lattices onn = {4, 5, 7, 9} cases
for 2D binary images. For n-tuple 0–1 vectors, variant logic frameworks [41, 42]
are proposed in 2010s, various applications are explored, such as 3D visual method
[37], variant Pseudorandom Number Generator (PRNG) [38, 43], computational
simulation on quantum interactions [44–47] and non-coding DNA analysis [48–50].

1.6 Organization of the Chapter

In this chapter, an algebraic equation of variant trinomial will be proposed as a kernel
structure to arrange a hierarchical phase space. This extension provides a general
framework of multiple symmetric operations to support three numeric numbers:
combinatorial, crossing and variant in a hierarchy. Three meta clusters of measuring
phase spaces are identified by the three invariants: {n, p, q} and their combinations.
Refined levels can be compared with the rotation symmetric scheme under n =
{1, 2, 3, 4, 5} conditions. Similarities and differences among the four schemes are
explored.

In Sect. 2, symbols and local counting properties of symmetric clusters in mea-
suring spaces are defined, algebraic equations are formulated and two important
projections are discussed. In Sect. 3, variant symmetric clusters and their elemen-
tary equation are proposed. In Sect. 4, four number sets of symmetric clusters are
explored fromaglobal viewpoint. In Sect. 5, symmetricBoolean functions of selected
clusters are constructed and both algebraic and approximate numeric properties are
discussed. In Sect. 6, cryptographic properties of symmetric Boolean functions in
a hierarchy are discussed and special properties on the variant scheme are stressed.
Section 7 is the conclusion of the chapter. Main results of the chapter are expressed
in a list of theorems and corollaries in Sects. 2–5, respectively.

2 Symmetric Clusters in Measuring Phase Spaces

In this section, basic symbols, primary definitions and algebraic formulas are defined
for different clusters in their measuring phase spaces.
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2.1 Basic Symbols

Main symbols in this chapter are listed in Table 1.

2.2 Primary Definitions

Definition 1 (x an n-tuple vector on 0–1 variables) Let x be a 0–1 vector with n
length.

x = (xn−1, . . . , xi , . . . , x0), 0 ≤ i < n, xi ∈ {0, 1} = B2, x ∈ Bn
2 , (2)

e.g. x = 110010, n = 6.

Table 1 Basic symbols

Symbol Notes

n Number of 0–1 variables, 1 ≤ n

x 0–1 vector x = (xn−1, . . . , xi , . . . , x0), xi ∈ {0, 1} = B2, 0 ≤ i < n

I I (x) index for a vector x

Ω(n) Phase space of vector set {x}, Ω(n) = {∀x |0 ≤ I < 2n}
fΩ(n) Number of vectors in Ω(n)

R R(x, r) rotation operator

F F(x) reflection operator

p p(x) number of 1’s elements in x , 0 ≤ p ≤ n

q q(x) number of cyclic crossings either 0–1 or 1–0 in x

L(p, n) Combinatorial cluster of vectors in Ω(n), L(p, n) ⊂ Ω(n)

E(q, n) Crossing cluster of vectors in Ω(n), E(q, n) ⊂ Ω(n)

V (q, p, n) Variant cluster of vectors in Ω(n), V (q, p, n) ⊂ Ω(n)

G(m, n) m-th rotation symmetric cluster of vectors in Ω(n), G(m, n) ⊂ Ω(n)

fE (q, n) Crossing number of vectors in a cluster E(q, n)

fL (p, n) Combinatorial number of vectors in a cluster L(p, n)

f (q, p, n) fV (q, p, n) variant number of vectors in a cluster V (q, p, n)

fG(m, n) Rotation number of vectors in the m-th cluster G(m, n)

O(N ) Approximate number of N

CX (n) Approximate number of clusters in a set of {X (.)}, X ∈ {E, L , V, G}
fX (n) Approximate number of clusters in a set of {X (.)}, X ∈ {E, L , V, G}
SFX (n) Number of Symmetric Boolean Functions (SBF) in {X (.)}, X ∈ {E, L , V, G}
SFXb(n) Number of balanced SB FX in {X (.)}, X ∈ {L , V, G}, n = 0 mod 2

SFEb(n) Number of balanced SB FE in ∃q, {E(q, n)}, n = 0 mod 4
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Definition 2 (I index for a vector x) For a vector x , let I or I (x) be an index:

I = I (x) =
n−1∑

i=0

xi ∗ 2i , (3)

e.g. x = 110010, I (x) = 25 + 24 + 2 = 32 + 16 + 2 = 50.

Definition 3 (Ω(n) a full set of n-tuple 0–1 vectors) Let Ω(n) be a vector space or
a phase space of all n-tuple 0–1 vectors,

Ω(n) = {∀x |0 ≤ I < 2n, x ∈ Bn
2 } and Ω(n) = Bn

2 . (4)

Definition 4 Let fΩ(n) denote a number of vectors in Ω(n).

Lemma 1 fΩ(n) is equal to 2n.

Proof For a vector x ∈ Bn
2 from 0 . . . 0 to 1 . . . 1, its index I can cover a full region

of 0 ≤ I < 2n , so Ω(n) contains 2n distinct vectors and fΩ(n) = 2n .

Definition 5 (Measuring Phase Space) If a phase space can be organized by various
invariants, then it is a measuring phase space and its dimension is determined by a
number of active invariants.

Corollary 1 For any n > 0, Ω(n) is a measuring phase space in zero dimension.

Proof For any n > 0, Ω(n) is composed of one cluster of vectors as a single point.

Definition 6 (R rotation operator) Let R(x; r) be a rotation operator on a vector x
rotation −n < r < n positions:

R(x; r) = R(xn−1, . . . , xi , . . . , x0; r)

= (xn−1+r mod n, . . . , xi+r mod n, . . . , x0+r mod n), (5)

e.g. x = 110010, {R(x; r)}5r=0 = {110010, 100101, 001011, 010110, 101100, 011001}
with six distinct vectors.

Lemma 2 (Maximal cyclic structure) Initially from any vector x under a rotation
operator, at most n distinct vectors will be distinguished under the rotation operator.

Proof From any x , a set of {R(x; r)}n−1
r=0 with n vectors can be generated. If the listed

set of n vector sequences contains more than one cycle, then the number of distinct
vectors will be less than n.

For example, x = 110110, {R(x; r)}5r=0 = {110110, 101101, 011011, 110110,
101101, 011011}with only a set of three distinct vectors: {110110, 101101, 011011}.
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Definition 7 (F reflection operator) Let F(x) be a reflect operator,

F(x) = F(xn−1, . . . , xi , . . . , x0) = (x0, . . . , xi , . . . , xn−1), 0 ≤ i < n. (6)

Lemma 3 (A pair of reflections)For any vector x, only two results are distinguished
under F(x) operation: (1) F(x) = x; (2) F(x) �= x.

Proof (1) If F(x) = x , then the values of the vector x are distributed as a central
symmetric form; (2) if F(x) �= x , then the vector x does not have a symmetric
distribution.

For example, x = 110010, F(x) = 010011; y = 110011, F(y) = 110011.

Definition 8 (p number of one elements) Let p or p(x) be a number of one elements
in x ,

p = p(x) =
n−1∑

i=0

xi , 0 ≤ p ≤ n. (7)

For example, x = 110010, p(x) = 3; y = 110011, p(y) = 4.

Definition 9 (q number of cyclic crossings) Let q or q(x) be a number of cyclic
crossings either 0–1 or 1–0 in a vector x ,

q = q(x) =
∑

0≤i<n

(xi ≡ 0)&(xi+1 ≡ 1); xi , xi+1 ∈ B2, (i + 1) mod n;

=
∑

0≤i<n

(xi ≡ 0)&(xi−1 ≡ 1); xi , xi−1 ∈ B2, (i − 1) mod n;

0 ≤ q ≤ �n

2
�. (8)

For example, x = 110010, q(x) = 2; y = 110011, q(y) = 1.

2.3 Counting Properties on Rotation Clusters

Definition 10 (G(m, n) m-th rotation symmetric cluster) Let G(m, n) be an m-th
rotation symmetric cluster of vectors, G(m, n) = Ω(n|m) ⊂ Ω(n) in Ω(n), and let
a total number of rotation symmetric clusters be CG(n), 1 ≤ m ≤ CG(n),

Ω(n) =
CG (n)⋃

m=1

Ω(n|m) =
CG (n)⋃

m=1

G(m, n). (9)



74 J. Zheng

Corollary 2 A set of {G(m, n)}CG (n)
m=1 is composed of a measuring phase space in one

dimension.

Proof Using the parameter m, {G(m, n)}CG (n)
m=1 can be listed in a linear order.

Lemma 4 By Burnside’s lemma, φ being Euler’s phi-function,

CG(n) = 1

n

∑

k|n
φ(k)2

n
k . (10)

Proof A brief proof of this lemma can be found in [29].

Definition 11 Let fG(m, n) denote a number of vectors in the m-th cluster G(m, n).

Corollary 3 For any fG(m, n), 1 ≤ fG(m, n) ≤ n.

Proof Due to Lemma 2, each fG(m, n) ≤ n in general; for two special vectors in
{0 . . . 0, 1 . . . 1}, we have fG(m, n) = 1.

Corollary 4 Collecting all possible rotation clusters, the total number of vectors is
equal to fΩ(n)

CG (n)∑

m=1

fG(m, n) = 2n

= fΩ(n). (11)

Proof From Lemma 4 and Corollary 3, it contains a full set of 2n vectors in Ω(n).

Lemma 5 For a given n, CG(n) has an approximate number,

CG(n) ≈ O(
2n

n
). (12)

Proof Using Corollaries 3 and 4, each distinct cluster contains at most n vectors; it
is a natural to have such an approximate number in enumeration.

It is convenient to list defined rotation parameters in Table 2 for n = 4 condition.

2.4 Counting Properties on Measuring Phase Spaces

For any vector x ∈ Ω(n), three measuring parameters {n, p, q} are represented as
three invariants. Three measurements transfer a phase space into a set of measuring
phase spaces in a hierarchy.
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Table 2 Six rotation clusters, various vectors in {G(m, 4)}
(m, n) G(m, n) fG(m, n)

(1, 4) {0000} 1

(2, 4) {0001, 0010, 0100, 1000} 4

(3, 4) {0011, 0110, 1100, 1001} 4

(4, 4) {0101, 1010} 2

(5, 4) {0111, 1110, 1101, 1011} 4

(6, 4) {1111} 1

CG(4) = 6 fΩ(n) = 16

Definition 12 (L(p, n) combinatorial cluster) Let L(p, n) be a combinatorial clus-
ter of vectors in Ω(n), L(p, n) = Ω(n|p) ⊂ Ω(n). Two parameters {n, p} partition
the phase spaceΩ(n) to form a set of clusters {L(p, n)} in a measuring phase space.

Ω(n|p) = L(p, n) = {∀x |0 ≤ p ≤ n, x ∈ Ω(n)}. (13)

Corollary 5 A set of {L(p, n)}n
p=0 is composed of a measuring phase space in one

dimension.

Proof The parameter p is the active invariant to arrange the phase space in a linear
order.

Definition 13 Let CL(n) be a number of clusters in ∀p, {L(p, n)}.
Lemma 6 For a given n,

CL(n) = n + 1. (14)

Proof Using Definition 12, 0 ≤ p ≤ n and for any p, L(p, n) �= ∅, the parameter p
partitions the whole set Ω(n) into n + 1 distinct subsets as clusters.

Definition 14 ( fL(p, n) combinatorial number) Let fL(p, n) be a combinatorial
number of vectors in a cluster L(p, n).

Lemma 7 For a pair of {n, p} parameters,

fL(p, n) =
(

n

p

)
(15)

Proof Using Definition 12, this number is equal to a binomial coefficient selected p
elements from n positions.

It is convenient to list definedmeasuring parameters inTable 3 forn = 4 condition.
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Table 3 Five clusters, various vectors in {L(p, 4)}
(p, n) L(p, n) fL (p, n)

(0, 4) {0000} 1

(1, 4) {0001, 0010, 0100, 1000} 4

(2, 4) {0011, 0110, 1100, 1001, 0101, 1010} 6

(3, 4) {0111, 1110, 1101, 1011} 4

(4, 4) {1111} 1

CL (4) = 5 fΩ(4) = 16

Definition 15 (E(q, n) crossing cluster of vectors) Let E(q, n) be a crossing cluster
of vectors in Ω(n), E(q, n) = Ω(n|q) ⊂ Ω(n). Two parameters {n, q} partition the
phase space Ω(n) to form a set of clusters {E(q, n)} in a measuring phase space.

Ω(n|q) = E(q, n) = {∀x |0 ≤ q ≤ �n

2
�, x ∈ Ω(n)} (16)

Corollary 6 A set of {E(q, n)}�n/2�
q=0 is composed of a measuring phase space in one

dimension.

Proof The parameter q is the active invariant to arrange the phase space in a linear
order.

Definition 16 Let CE (n) be a number of crossing clusters in ∀q, {E(q, n)}.
Lemma 8 For a given n > 0,

CE (n) = �n

2
� + 1. (17)

Proof According to Definition 15 and each E(q, n) �= ∅, 0 ≤ q ≤ � n
2 �, the param-

eter q partitions the whole set Ω(n) into � n
2 � + 1 distinct subsets as clusters.

Definition 17 ( fE (q, n) number of vectors) Let fE (q, n) be a number of vectors in
a cluster E(q, n).

Lemma 9 For a pair of {n, q} parameters,

fE (q, n) = 2 ∗
(

n

2q

)
, 0 ≤ q ≤ �n

2
�. (18)

Proof Two cases can be distinguished: Case 1: q = 0; Case 2: 1 ≤ q ≤ � n
2 �.

Case 1: All n values are either 1 or 0, 2 ∗ (n
0

) = 2.
Case 2: For a given q, 2q crossing positions are composed of a pair of a 0–1 crossing
then a 1–0 crossing repeatedly for q times in a vector and this configuration has a
total of

( n
2q

)
vectors included, and the same pair of positions can be exchanged as a
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Table 4 Three clusters, vectors in {E(q, 4)} cases
(q, n) E(q, n) fE (q, n)

(0, 4) {0000, 1111} 2

(1, 4) {0001, 0010, 0100, 1000, 0011, 0110,
1100, 1001, 0111, 1110, 1101, 1011}

12

(2, 4) {0101, 1010} 2

CE (4) = 3 fΩ(4) = 16

pair of 1–0 and 0–1 crossings with the same number of different vectors, so a total
of 2 ∗ ( n

2q

)
vectors are involved in each q selection.

It is convenient to list above defined measuring parameters in Table 4 for n = 4
condition.

3 Variant Symmetric Clusters

Definition 18 (V (q, p, n) variant cluster) Let V (q, p, n) be a variant cluster of
vectors in Ω(n), V (q, p, n) = Ω(n|p, q) ⊂ Ω(n). Three parameters {n, p, q} par-
tition the phase space Ω(n) to form a set of clusters {V (q, p, n)} in a measuring
phase space.

Ω(n|p, q) = V (q, p, n) = {∀x |0 ≤ p ≤ n, 0 ≤ q ≤ �n

2
�, x ∈ Ω(n)} (19)

Corollary 7 A set of {V (q, p, n)}∀q,p is composed of a measuring phase space on
two dimensions.

Proof Both invariants q and p are two active invariants to arrange the phase space
on a 2D plane lattice.

Lemma 10 Both {L(p, n)} combinatorial clusters and {E(q, n)} crossing clusters
can be generated from special subsets of {V (q, p, n)} variant clusters.

Proof For a given p, L(p, n) can be determined by

L(p, n) =
� n
2 �⋃

q=0

V (q, p, n).

For a given q, E(q, n) can be determined by

E(q, n) =
n⋃

p=0

V (q, p, n).
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Table 5 Three sets of variant clusters for n = 4 in {V (q, p, n)} condition

Applying this set of partitions, three sets of relevant clusters can be identified.
For example, n = 4, all 16 vectors in the vector space, three sets of clusters can

be distinguished as six clusters {V (q, p, n)}, five clusters for {L(p, n)} and three
clusters for {E(q, n)} shown in Table 5, respectively.

Definition 19 Let CV (n) be a number of non-trivial variant clusters in ∀q, p,

{V (q, p, n)}.
In general condition for any given n > 1, three sets of variant clusters could be

shown in Fig. 1.

Theorem 1 For a given n, CV (n) satisfies Eq. 20

CV (n) =
{

n2/4 + 2; n ≡ 0 mod 2

(n2 − 1)/4 + 2; n ≡ 1 mod 2.
(20)

Proof From Fig. 1 for a given n, a triangular shape for non-trivial variant clusters
is composed of two parts: a triangular area and two q = 0 points. The triangular

Fig. 1 Three sets of variant clusters {V (q, p, n)}, {E(q, n)}, {L(p, n)} for n > 1
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area has (n − 1) length and �n/2� high. If n ≡ 0 mod 2, the triangular area is a
regular triangle contained n2/4 clusters, so the total number of this triangular shape
contains n2/4 + 2 clusters. For an odd valued n, a triangular area has additional
�n/2� clusters side on a regular triangle with �n/2�2 clusters, so the total number of
clusters is �n/2�2 + �n/2� + 2 = (n2 − 1)/4 + 2.

3.1 Variant Trinomial Coefficients – Elementary Equation

Definition 20 Let fV (q, p, n) or f (q, p, n) 0 ≤ p ≤ n, 0 ≤ q ≤ � n
2 � denote an

enumeration function for a number of 0–1 vectors in a variant cluster.

It is convenient to list relevant measuring parameters in Table 6 for n = 4 condi-
tions.

Definition 21 For two initial and end clusters p = {0, n}, q = 0, let two cases be
f (0, 0, n) = f (0, n, n) = 1. For other cases, each cluster 0 < p < n, 0 < q ≤ � n

2 �
contains a subgroup of vectors under a given condition.Avariant trinomial coefficient
for a number of vectors in a cluster is defined as an elementary equation in Equation
21,

f (q, p, n) = n

n − p

(
n − p

q

)(
p − 1

q − 1

)
. (21)

Applying variant trinomial coefficients in Eq. 21, there is no difficult to process
more complicated cases in enumeration. Global arrangements on their triangular
shapes are convenient to be arranged by p measures in vertical direction. Two cases
n = {4, 5} are shown in Table 7.

In a general condition for any given n > 1, three sets of various numbers can be
shown in Fig. 2.

Table 6 Six clusters, vectors in {V (q, p, 4)}
(q, p, n) V (q, p, 4) f (q, p, 4)

(0, 0, 4) {0000} 1

(0, 4, 4) {1111} 1

(1, 1, 4) {0001, 0010, 0100, 1000} 4

(1, 2, 4) {0011, 0110, 1100, 1001} 4

(1, 3, 4) {0111, 1110, 1101, 1011} 4

(2, 2, 4) {0101, 1010} 2

CV (4) = 6 fΩ(4) = 16
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Table 7 Three sets of vector numbers { f (q, p, n)}, { fE (q, n)}, { fL (p, n)};(a) n = 4;(b) n = 5

Fig. 2 Three sets of { f (q, p, n)}, { fE (q, n)}, { f (p, n)} variant numbers for n > 1

3.2 Combinatorial Projection on Variant Clusters

From an algebraic viewpoint, the following theorems and corollaries are established
for a general condition to meet any n ≥ 1 cases.

Lemma 11 If fL(p, n) = ∑p
q=1 f (q, p, n), 0 < p < n, then the projection func-

tion fL(p, n) is a binomial coefficient and

fL(p, n) =
(

n

p

)
. (22)

Proof For a fixed p, 0 < p < n, all possible { f (q, p, n)} are collected to form the
following combinatorial identities: [14, 15, 21],
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fL(p, n) =
p∑

q=1

f (q, p, n)

=
p∑

q=1

n

n − p

(
n − p

q

)(
p − 1

q − 1

)

= n

n − p

p∑

q=1

(
n − p

q

)(
p − 1

q − 1

)

= n

n − p

p∑

q=1

(
n − p

q

)(
p − 1

p − q

)
;

(
N

k

)
=

(
N

N − k

)

= n

n − p

(
n − 1

p

)
;

(
x + y

N

)
=

N∑

k=0

(
x

k

)(
y

N − k

)

= n

(n − p)

(n − 1)!
(n − p − 1)!p!

= n!
(n − p)!p!

=
(

n

p

)
.

For a complete sequence of binomial coefficients, it is necessary to include both
initial and end clusters. Further Theorem 2 can be established.

Theorem 2 For any given n > 0, a set of projection function { fL(p, n)}n
p=0 is com-

posed of the same sequence of binomial coefficients

fL(p, n) =
(

n

p

)
. (23)

Proof For 0 < p < n condition, the equation has been determined by Lemma 11
and two end clusters p = {0, n}, (n

0

) = (n
n

) = 1 are determined by Definition 21.

Corollary 8 The sum of all possible { fL(p, n)}n
p=0 is equal to fΩ(n),

n∑

p=0

fL(p, n) = fΩ(n) = 2n. (24)

Proof Collecting all possible numbers in Theorem 2, we have



82 J. Zheng

n∑

p=0

fL(p, n) =
n∑

p=0

(
n

p

)

= (1 + 1)n

= 2n

= fΩ(n).

3.3 Crossing Projection on Variant Clusters

Lemma 12 If fE (q, N ) = ∑n−q
p=q f (q, p, n), 1 ≤ q ≤ � n

2 �, then the enumeration
function fE (q, n) is a double of a binomial coefficient

fE (q, n) = 2

(
n

2q

)
. (25)

Proof For a fixed q, collecting all possible { f (q, p, n)}n−q
p=q , the following combina-

torial identities [14, 15, 21] are deduced:

fE (q, n) =
n−q∑

p=q

f (q, p, n)

=
n−p∑

p=q

n

n − p

(
n − p

q

)(
p − 1

q − 1

)

=
n−p∑

p=q

n

q

(
n − p − 1

q − 1

)(
p − 1

q − 1

)
; N

q

(
N − p − 1

q − 1

)
= N

N − p

(
N − p

q

)

= n

q

n−p∑

p=q

(
n − p − 1

q − 1

)(
p − 1

q − 1

)
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= n

q

(
n − 1

2q − 1

)
;

(
N + 1

r + s + 1

)
=

N−s∑

k=r

(
k

r

)(
N − k

s

)

= 2
n

2q

(n − 1)!
(n − 2q)!(2q − 1)!

= 2
n!

(2q)!(n − 2q)!
= 2

(
n

2q

)
.

Theorem 3 For any given n > 0 under the listed condition, a set of projection func-
tion { fE (q, n)}0≤q≤� n

2 � are composed of the subsequence of binomial coefficients,

fE (q, n) = 2

(
n

2q

)
. (26)

Proof For 1 ≤ q ≤ �n/2� condition, equations are determined by Lemma 12 and
for the initial subgroup, we have q = 0, fE (0, n) = (n

0

) + (n
n

) = 2
(n
0

)
.

Corollary 9 For n ≡ 0 mod 2, 0 ≤ q ≤ n/2, there are a pair of symmetric func-
tions

fE (q, n) = fE (n/2 − q, n). (27)

Proof Under n ≡ 0 mod 2 condition,

fE (q, n) = 2

(
n

2q

)

= 2

(
n

n − 2q

)
= 2

(
n

2(n/2 − q)

)

= fE (n/2 − q, n).

Corollary 10 For n ≡ 0 mod 4, q = n/4, fE (n/4, n) has the maximal value

fE (n/4, n) > fE (q, n), q �= n/4. (28)

Proof Under n ≡ 0 mod 4 condition,

fE (q, n) = 2

(
n

2q

)
< 2

(
n

n/2

)
= 2

(
n

2n/4

)
= fE (n/4, n).
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Corollary 11 The sum of all possible { fE (q, n)}0≤q≤� n
2 � is equal to fΩ(n),

� n
2 �∑

q=0

fE (q, n) = fΩ(n) = 2n. (29)

Proof Collecting all possible numbers, we have the following equations:

� n
2 �∑

q=0

fE (q, n) =
� n
2 �∑

q=0

2

(
n

2q

)

= 2

� n
2 �∑

q=0

(
n

2q

)
,

∑

k≥0

(
n

2k

)
=

∑

k≥0

(
n

2k + 1

)
= 2n−1

= 2 × 2n−1

= 2n

= fΩ(n).

3.4 Relationships of Four Symmetric Clusters

Theorem 4 For any n > 0, the sum of all possible functions on { f (q, p, n}∀p,∀q

or { fE (q, n)}0≤q≤� n
2 � or { fL(p, n)}n

p=0 or { fG(m, n)}, 1 ≤ m ≤ CG(n) is equal to
fΩ(n)

fΩ(n) =
∑

∀p

∑

∀q

f (q, p, n) =
� n
2 �∑

q=0

fE (q, n) =
n∑

p=0

fL(p, n)

=
CG (n)∑

m=1

fG(m, n)

= 2n. (30)

Proof From the results of Corollaries 4, 8 and 11, four schemes provide various
partitions to the same set of vectors on Ω(n) completely.

Corollary 12 Numbers of four symmetric clusters can be expressed by
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Table 8 Numbers of four symmetric clusters in 1 ≤ n ≤ 16

CE (n) = �n

2
� + 1;

CL(n) = n + 1;

CV (n) =
{

n2/4 + 2, n ≡ 0 mod 2

(n2 − 1)/4 + 2, n ≡ 1 mod 2
;

CG(n) = 1

n

∑

k|n
φ(k)2

n
k .

Proof Due to Lemmas 4, 6, 8 and Theorem 1, four equations for numbers of various
symmetric clusters are listed.

In convenient for comparison, their values on 1 ≤ n ≤ 16 are listed in Table 8,
respectively.

Checking real clusters in four schemes, the following corollaries can be provided.

Corollary 13 When n = {1, 2, 3}, three cluster schemes CL(n), CV (n), CG(n) pro-
vide the same partitions of clusters.

Proof Checking the three schemes,wehaveCL (1) = CV (1) = CG(1) = 2,CL(2) =
CV (2) = CG(2) = 3, CL(3) = CV (3) = CG(3) = 4. Relevant cluster contains the
same set of vectors.

Corollary 14 When n = {1, 2, 3, 4, 5}, two cluster schemes CV (n), CG(n) provide
the same partitions of clusters.

Proof Due to Corollary 13, we need to check n = {4, 5} cases. For the two schemes,
wehave (CL(4) = 5) �= (CV (4) = CG(4) = 6), (CL(5) = 6) �= (CV (5) = CG(5) =
8). Relevant cluster contains the same set of vectors.

Corollary 15 When n ≥ 6, four cluster schemes CE (n), CL(n), CV (n), CG(n) pro-
vide different partitions on their clusters.

Proof Due toCorollaries 13 and 14,we need to check n = {6, · · · } cases. For the four
schemes,CE (6) = 4, CL(6) = 7, CV (6) = 11, CG(6) = 14. Only a few clusters can
contain the same set of vectors.
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Corollary 16 When n ≥ 6, three cluster schemes: combinatorial, crossing and vari-
ant {CE (n), CL(n), CV (n)} may contain more symmetric properties than rotation
clusters on CG(n).

Proof Considering a special case on {n = 6, p = 3, q = 2}, V (2, 3, 6) = {001101,
011010, 110100, 101001, 010011, 100110, 011001, 110010, 100101, 001011, 010110,
101100}; this cluster contains twocycles: {001101, 011010, 110100, 101001, 010011,
100110} and {011001, 110010, 100101, 001011, 010110, 101100} with six vectors,
respectively. Both cycles have rotation symmetries only without reflection symme-
tries. It is possible to use reflection symmetric operators to distinct two relative cycles
to form a pure rotation symmetric structure. However, other clusters may contain
more cycles such as L(3, 6) with four cycles and E(2, 6) with six cycles, respec-
tively. It is necessary to apply other symmetric operators different from rotation for
further separations.

4 Four Number Sets of Symmetric Clusters

4.1 Four Approximates on Numbers of Clusters

Using the four numeric equations, relevant approximates can be expressed as follows.

Lemma 13 Four approximates can be expressed as

CE (n) ≈ O
(n

2

)
; (31)

CL(n) ≈ O (n) ; (32)

CV (n) ≈ O

(
n2

4

)
; (33)

CG(n) ≈ O

(
2n

n

)
. (34)

Proof Using the four equations, the following approximates can be expressed:

CE (n) = �n

2
� + 1 ≈ O

(n

2

)
;

CL(n) = n + 1 ≈ O (n) ;

CV (n) =
{

n2/4 + 2, n ≡ 0 mod 2

(n2 − 1)/4 + 2, n ≡ 1 mod 2
≈ O

(
n2

4

)
;

CG(n) = 1

n

∑

k|n
φ(k)2

n
k ≈ O

(
2n

n

)
.
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4.2 Four Approximates on Numbers of Vectors

Definition 22 Let fX (n), X ∈ {L , E, V, G} denote an approximate number of vec-
tors in X cluster.

Lemma 14 Four approximates can be expressed as

fE (n) ≈ O

(
2n+1

n

)
; (35)

fL(n) ≈ O

(
2n

n

)
; (36)

fV (n) ≈ O

(
2n+2

n2

)
; (37)

fG(n) ≈ O (n) . (38)

Proof Since all clusters partition the same phase space Ω(n) with 2n vectors, their
approximates for vectors in a cluster can be evaluated,

fE (n) = 2n

O
(

n
2

) ≈ O

(
2n+1

n

)
;

fL(n) = 2n

O (n)
≈ O

(
2n

n

)
;

fV (n) = 2n

O
(

n2

4

) ≈ O

(
2n+2

n2

)
;

fG(n) = 2n

O
(
2n

n

) ≈ O (n) .

It is convenient to list approximate numbers on clusters, vectors and dimension
of measuring phase spaces in Table 9.

Table 9 Four approximate numbers on both clusters and vectors

X CX (n) fX (n) Measuring phase
space

E O
( n
2

)
O

(
2n+1

n

)
1D

L O (n) O
(
2n

n

)
1D

V O
(

n2
4

)
O

(
2n+2

n2

)
2D

G O
(
2n

n

)
O (n) 1D
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5 Symmetric Boolean Functions for Selected Clusters

5.1 Four Numbers on Symmetric Boolean Functions

Definition 23 Let SFX (n) denote a number of Symmetric Boolean Functions (SBF)
in {X (.)}, X ∈ {E, L , V, G}.
Theorem 5 (Four types of symmetric Boolean functions) Total numbers of four
types of symmetric Boolean functions SFX (n), X ∈ {E, L , V, G} are

SFE (n) = 2CE (n) = 2� n
2 �+1; (39)

SFL(n) = 2CL (n) = 2n+1; (40)

SFV (n) = 2CV (n) =
{
2n2/4+2, n ≡ 0 mod 2

2(n2−1)/4+2, n ≡ 1 mod 2
; (41)

SFG(n) = 2CG (n) = O
(
2

2n

n

)
. (42)

Proof For any selected cluster, there are two selections for its symmetric Boolean
functions.

5.2 Four Numbers of Balanced Symmetric Clusters

Definition 24 Let SFXb(n) be a maximal number of balanced SB FX in {X (.)}, X ∈
{L , V, G}, n = 0 mod 2.

Definition 25 Let SFEb(n) be a maximal number of balanced SB FE in ∃q,

{E(q, n)}, n = 0 mod 4.

Lemma 15 Four selected numbers {CXb(n)}, X ∈ {E, L , V, G} for balanced sym-
metric clusters are

CEb(n) =
{
1, n ≡ 0 mod 4

0, n �= 0 mod 4
; (43)

CLb(n) = 1; (44)

CV b(n) = n

2
; (45)

CGb(n) = O

(
1

n

(
n

n/2

))
. (46)

Proof From Corollary 10 for Eb groups n ≡ 0 mod 4 cases, q = n/4 provides a
cluster with a maximal number of vectors in a balanced condition and other cases
cannot satisfy balanced conditions; for Lb groups n ≡ 0 mod 2 cases, p = n/2
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Table 10 Numbers of four balanced symmetric functions in 2 ≤ n ≤ 20

provides a cluster with a maximal number of vectors in a balanced condition; for V b
groups n ≡ 0 mod 2 cases, p = n/2, 1 ≤ q ≤ n/2, there are n/2 clusters involved
in a balanced condition; for Gb groups n ≡ 0 mod 2 cases, p = n/2, a total of

rotation symmetric clusters O
(
1
n

( n
n/2

))
could be involved in a balanced condition.

5.3 Four Numbers of Balanced Symmetric Boolean
Functions

Theorem 6 (Four balanced SYMMETRIC Boolean functions) Total numbers of
four balanced symmetric Boolean functions {SFX b(n)}, X ∈ {E, L , V, G} are

SFEb(n) = 2CEb(n) =
{
2, n ≡ 0 mod 4

1, n �= 0 mod 4
; (47)

SFLb(n) = 2CLb(n) = 2; (48)

SFV b(n) = 2CV b(n) = 2
n
2 ; (49)

SFGb(n) = 2CGb(n) = O
(
2

1
n (

n
n/2)

)
. (50)

Proof Each number of clusters in a selected scheme has been determined in Lemma
15. For any selected cluster in the scheme, there are two selections to form relevant
symmetric Boolean functions.

In convenient for comparison, four types of SB FXb numbers on 2 ≤ n ≤ 20 are
listed in Table 10, respectively.

6 Cryptographic Properties of Symmetric Boolean
Functions in Hierarchy

Boolean functions are of great importance in the design of randomnumber generators
for stream ciphers [25] that are widely used in modern network environment.
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Due to cryptographically secure consideration, the sequence produced by the ran-
dom number generator must satisfy the various properties [6, 8]: the longer period,
the period complexity and good statistical distributions. There exists a huge theoret-
ical knowledge of such combining generators [25].

A symmetric Boolean function must fulfil different necessary criteria to yield
a cryptographically secure scheme, at least to resist known attacks [11]. In this
direction, various measuring parameters play an important role such as balanced,
support set, hamming weight, hamming distance, balanced function, non-linearity,
correlation immunity, etc. [6, 8].

In relation to balanced properties, when n is even, the functions of highest non-
linearity are the bent functions, and it is well known that the bent functions cannot be
the balanced functions [28, 33]. From a structural viewpoint, the balanced functions
having the highest possible non-linearity need to be considered. However, finding
such functions is a very difficult problem [29, 31, 33]. When n is odd, exhibiting
functions of the highest non-linearity is a hard problem in itself. Among the available
candidates, balanced ones exist [16, 33].

To explore optimal functions in rotation symmetric Boolean function sets, many
researchers are faced extremely difficulties on computational complexity even for
n > 10 symmetric Boolean functions [29]. Exponentially increasing complexity
makes a complex exhaustive search be quickly impossible. Compared with both
variant and rotation schemes listed in Table 10, it is interesting to notice that the vari-
ant scheme takes a numeric complexity on n = 20 as same as the rotation symmetric
scheme on n = 10. Much faster computation on optimal functions could be feasibly
explored.

From a meta analytic viewpoint, measuring phase spaces provide multiple lev-
els of construction in a hierarchy linked to various symmetric Boolean functions.
They support an n tuple 0–1 vector construction as a word-based 0–1 vector to sat-
isfy various design and analysis purposes. The variant PRNG construction [38, 43]
is a similar approach to RC4 and HC128 stream ciphers [25] in their meta phase
spaces using the word-oriented vector structure with the higher speed and efficiency.
Measuring phase spaces could support advanced cryptographic applications on the
direction.

Due to significant differences betweenmeasuring phase spaces proposed and alge-
braic normal forms classically formulated, in addition to initial balanced symmetric
properties discussed in the chapter, other advanced comparison mechanisms need
to be established for all interesting cryptographic properties to satisfy practical and
optimal requirements for streamciphers. Further detailed researches and explorations
are required.

7 Conclusion

Symmetric clusters in a hierarchy provide the additional information to organize
various symmetricBoolean functions into hierarchical constructions asmultiplemeta
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levels of structures efficiently. The variant symmetric functions proposed in this
chapter provide a meta construction on a 2D measuring phase space to contribute
richer capacities compared with the three classical schemes (combinatorial, crossing
and rotation) on 1D measuring phase spaces.

From a measuring viewpoint, three schemes (combinatorial, variant and rotation)
in Tables 8, 9 and 10 have similar values in n = {1, 2, 3} and {4, 5} or different values
in n ≥ 6 conditions. The variant scheme provides a 2D intermediate structure differ-
ent from other two schemes in 1D structure. From an approximate viewpoint, both
combinatorial and rotation schemes are shown in stronger similar properties. Their
approximate number of clusters and number of vectors in a cluster can be exchanged
in Table 9. From an abstract system viewpoint, this pair of exchangeable measure-
ments may provide approximate symmetric properties for both combinatorial and
rotation schemes.

From a clustering viewpoint, the most important results are summarized in Theo-
rem 4 to show that the four symmetric cluster schemes are different partition schemes
on the same 0–1 vector set.

From a balanced analysis viewpoint, the key results of balanced symmetric
Boolean functions are summarized in Theorem 6 and Table 10. This set of results
provides a basic measurement to illustrate relevant computational difficulties to
explore further optimal properties in balanced symmetric conditions. Different from
other three schemes (combinatorial, crossing and rotation) in either very simpler
or extremely complex associated with n increasing, balanced variant symmetric
Boolean functions present very interesting patterns to support even n ≥ 20 cases
for future explorations.

Many advanced properties are existed to use a meta hierarchical construction to
manage relevant measuring phase spaces into multilevels of a hierarchical structure.
Various measuring parameters can be used as control parameters in detailed cases.
Refined design and analysis can be performed under this meta hierarchy to provide
powerful models and tools on design and optimization for future generations of
stream ciphers.
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