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Abstract In modern logic, various systems have been proposed extending classical
Boolean logic & switching theory. Such logic frameworks include multiple-valued
logic, probability logic, fuzzy logic, module logic, quantum logic and various other
frameworks. Although these extensions have been applied to many applications in
mathematics, in science and in engineering, all extensions to Boolean logic invali-
dates at least one of the six fundamental rules of Boolean logic shown in L1 to L6.
We propose a new framework of logic, variant logic, extending Boolean logic whilst
satisfying the six fundamental rules (L1–L6). By defining the Variant–Invariant be-
haviour of logical operations, this framework can be constructed using four types of
general operators. Main results of the chapter are summarized in Theorems 8–10,
respectively. To show significant differences between classical logic and new variant
logic, invariant properties of this hierarchical organization are discussed. Simplest
cases of one-variable conditions are illustrated. Variant logic can provide the nec-
essary framework to support analysis and description of Cellular Automata, Fractal
Theory, Chaos Theory and other systems dealing with complexity. Such applications
of this framework will be explored in future papers.
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1 Laws of Logic Systems

1.1 Laws in Classical Logic Systems

Classical logic identifies a class of formal logic that are characterized by a number
of properties [1–17].

Definition 1 For any logic system if all CL1–CL5 are satisfied, then it is a classical
logic system. The five properties of classical logic (CL1–CL5) are listed as follows:

CL1: Law of the excluded middle and double negative elimination
CL2: Law of non-contradiction
CL3: Monotonicity and idempotency of entailment
CL4: Commutativity of conjunction
CL5: De Morgan duality

Examples of such classical logic systems includeworks of philosophy and religion
(Aristotle’sOrganon;Nagarjuna’s tetralemma; andAvicenna’s temporalmodal logic)
as well as foundational logic systems such as reformulations by George Bool and
Gottlob Frege [4–17]. These properties can be rewritten as simplified equations
describing basic properties of a logic system using characteristics of the five classical
properties. The following equations (L1–L6) describe such a system.

L1: P ∪ P = P Idempotency
L2: P ∩ P = P …
L3: ¬P ∪ P = P Excluded Middle
L4: ¬P ∩ P = P …
L5: ¬¬P = P Double Negative Elimination
L6: P, P → Q

The set of equations can be applied in the analysis of modern logic systems
to determine if they are all satisfied. The equations will be defined as canonical
properties and a logic systemsatisfying all six propertieswill be defined as a canonical
system. If any logic system does not, they are categorized as non-canonical.

1.2 Current Logic Systems

Manymodern logic systems cannot satisfy the six canonical properties. Three-valued
logic proposed by Luckasiewicz 1920 can satisfy L3–L6, cannot satisfy L1–L4.
Probability logic proposed by Reichenbach 1949 can satisfy L5–L6, cannot satisfy
L1–L4. Fuzzy logic proposed by Zadeh 1965 satisfy L1, L2, L5, L6, cannot satisfy
L3–L4. Since they cannot satisfy canonical properties, they are all non-canonical
logic systems [1–22].
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2 Truth Valued Representation in Boolean Logic Systems

For any n-variable Boolean logic system, it is natural to establish 2n states. Under
either selected or not selected operation, it can be building up a truth table for a given
Boolean function. Collecting all possible selections, a full truth table is constructed
in 2n columns and 22

n
rows in presentation. We can list this table as follows:

0 ≤ I < 2n 2n − 1 ... I ... 1 0
0 ≤ i < n 1...1...1 ... In−1...Ii ...I0 ... 0...0...1 0...0...0

0 ≤ J < 22
n

0 0 ... 0 ... 0 0
1 0 ... 0 ... 0 1
2 0 ... 0 ... 1 0
... ...
J J2n−1 ... JI ... J1 J0
... ...

22
n − 2 1 ... 1 ... 1 0

22
n − 1 1 ... 1 ... 1 1

where there are three parameters: i, I, J : 0 � i < n, 0 � I < 2n, 0 � J < 22
n
cor-

responding to variable, state and function numbers, respectively. Under such con-
ditions, for any J , it is convenient to use Karnaugh map or relevant logic tools to
construct the given Boolean function in combination [6–17].

3 Cellular Automata Representations

Cellular Automata—CA uses a different mechanism [23–35] to represent a given
function. In a one-dimensional form of CA, a N -length binary sequence is

X = XN−1XN−2 . . . X j . . . X1X0, 0 � j < N , X j ∈ {0, 1} = B2

For a given function f , the output sequence is defined as follows: f : X → Y,Y =
f (X),

Y = YN−1YN−2 . . . Y j . . . Y1Y0, 0 � j < N ,Y j ∈ B2

It is feasible to use a moving window with a fixed length n to separate X into a local
kernel in length n. The kernel can be presented as

[. . . X j . . .] = xn−1 . . . xi . . . x0, xi ∈ B2.

For a given function f
y = f (xn−1 . . . xi . . . x0)
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It is necessary to assign a certain position i in the kernel for special care to associated
with j position of both sequences. We have

y = f (xn−1 . . . xi . . . x0) = f (. . . X j . . .) == Y j

or X j = Xt−1
j ,Y j = Xt

j i.e.

f : Xt−1
j → Xt

j , X
t−1
j , Xt

j ∈ B2

4 Variant Construction

4.1 Four Variation Forms

Considering f : Xt−1
j → Xt

j for any function of Boolean logic system to analyse
their variation properties [36–40], it is normal to have following proposition.

Proposition 1 For any f : Xt−1
j → Xt

j transformation, four forms of transforming
classes are identified: T A : 0 → 0, T B : 0 → 1, TC : 1 → 0, T D : 1 → 1.

Proof X j ,Y j are 0-1 variables, only four classes listed are possible. �

Definition 2 Four transforming forms are corresponding to following sets: TA: In-
variant class for 0 value, TB: Variant class for 0 value, TC:Variant class for 1 value,
TD: Invariant class for 1 value.

Under such definition, the following proposition can be established.

Proposition 2 Using four classes of transformation, four variant operations are
defined.

Type X j → Y j Truth Variant Invariant False
TA 0 0 0 0 1 1
TB 0 1 1 1 0 0
TC 1 0 0 1 0 1
TD 1 1 1 0 1 0

Proof Truth (False) values are determined by Y j (Ȳ j ) and Variant(Invariant) values
are determined by {TB, TC} for 1(0) and {TA, TD} for 0(1) respectively. �

Theorem 1 In { Truth, Variant, Invariant, False} groups, only two pairs of groups:
{Truth, False} and {Variant, Invariant} satisfy L1–L6 to form a canonic logic system.

Proof Both groups are composed of 0-1 variables, in addition, Truth/False, Vari-
ant/Invariant are formed complement relationships.Other combinations contain com-
mon parts, it is not possible for them to satisfy logic canonic conditions L1–L6. �



Hierarchical Organization of Variant Logic 27

Definition 3 Sequential number of binary is defined as SL coding to remember Y.
Shao and Leibniz contribution [41–49] on binary logic.

Definition 4 The operator BN : J → B converts an integer to its binary represen-
tation. The operator DC : B → J converts a binary number to its decimal represen-
tation.

Definition 5 TheSLcoding scheme is anorderingof binary table outputs T : B2n
2 →

J . An element JI ∈ SL at position I , where 0 � I < 2n represents function TI such
that the binary representation of TI is defined as

BN (J ) = T2n−1[J2n−1] . . . TI [JI ] . . . T0[J0]

For any n variable structure, J is composed of 2n bits to represent 0 � J < 22
n

numbers.

Definition 6 AGcoding scheme is defined as an ordering of binary table outputs T :
B2n
2 → J . An element JI ∈ SL at position I where 0 � I < 2n represents function

TI such that the binary representation of TI is defined as

G = {∀J |T (J ), 0 � J < 22
n };

T (J ) = T2n−1[Y (J2n−1)] . . . TI [Y (JI )] . . . T0[Y (J0)], 0 � I < 2n

Where {Y (JI ), 0 � I < 2n} are 22n length0-1vectors,Y (J2n−1) �= . . . �= Y (JI ) �=
. . . �= Y (J0), respectively.

Under G coding scheme, ordering number is an integer sequence with 22
n
po-

sitions. Different transformations will make this sequence extremely complex. In
convenient to do representation, a two-dimensional W coding scheme is proposed.

Definition 7 AW coding scheme is defined as an ordering pair of binary table out-
puts T : B2n

2 → 〈J 1|J 0〉. Each component is composed of 2n−1 bits in representation:

〈J 1|J 0〉 = T2n−1[Y (J2n−1)] . . . TI [Y (JI )] . . . T0[Y (J0)], 0 � I < 2n

J 0 = {∀I |BN (JImod2n−1), 0 ≤ I < 2n−1}

J 1 = {∀I |BN (JImod2n−1), 2n−1 ≤ I < 2n}

Under this construction, aGcoding scheme is transformed into aWcoding scheme
to represent two-dimensional structure for different permutation results. In general,
J 0 represents lower 2n−1 bits and J 1 represents higher 2n−1 bits, respectively. A
general structure of W coding is a 22

n−1 × 22
n−1

matrix shown in the following figure.
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〈0|0〉 . . . 〈0|J 0〉 . . . 〈0|22n−1 − 1〉
. . . . . . . . .

〈J 1|0〉 . . . 〈J 1|J 0〉 . . . 〈J 1|22n−1 − 1〉
. . . . . . . . .

〈22n−1 − 1|0〉 . . . 〈22n−1 − 1|J 0〉 . . . 〈22n−1 − 1|22n−1 − 1〉

0 ≤ J 0, J 1 < 22
n−1 {〈J 1|J 0〉}: 2D Space for 22

n
Functions

4.2 Complement and Variant Operators

Definition 8 In Bn
2 , the generalized complement Y Q, Q ∈ B2n

2 of a variable Y is
defined to be the element obtained from complementing the components of Y ac-
cording to the value of corresponding component of Q; YI is complemented or
un-complemented if QI is 0 or 1, respectively, where YI and QI designate the Ith
component of Y and Q.

For example, given B4
2 for Q = {0101, 0110} are as follows:

Y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Y 0101 1010 1011 1000 1001 1110 1111 1100 1101 0010 0011 0000 0001 0110 0111 0100 0101
Y 0110 1001 1000 1011 1010 1101 1100 1111 1110 0001 0000 0011 0010 0101 0100 0111 0110

To apply Q operator on 2n meta vectors, a vector family can be generated.

Proposition 3 In B2n
2 , generalized complement operator Q ∈ B2n

2 has 22
n
different

cases.

Proof Q is a 2n bits vector, each position can be selected as 0 or 1, so a total of
selections is equal to 22

n
. �

Definition 9 For 2n meta states composed of vector Ψ , the i th vector Ψ (i), 0 ≤
i < n has 2n bits. Four vectors: {0, Ψ (i),¬Ψ (i), 1} in 2n bits can be selected as Q
operators. This special form of Q type operations is defined as QV operation.

Proposition 4 For a QV operator, QV ∈ {0, Ψ (i),¬Ψ (i), 1}, four QV vectors
provide following complement results respectively in transformation:

0 : False Operator
1 : Truth Operator

Ψ (i) : Invariant Operator
¬Ψ (i) : Variant Operator

Proof 1 operator keeps original truth table values; 0 operator reverses all values;Ψ (i)
operator makes invariant condition and ¬Ψ (i) operator generates variant property.

�
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Proposition 5 Undertaken QV operations, 2n+1 cases are generated as a comple-
ment variant group.

Proof Only 0 ≤ i < n selected, each position have two selections associated with i
plus two constant vectors. So a total of 2 × 2n = 2n+1 cases can be generated. �

Definition 10 For 2n meta vectors Y , its I th component Y (I ) ∈ B22
n

2 , Y (I ) has 22
n

bits. A permutation operator P makes the I th component into P(I )th component for
∀I, 0 ≤ I < 2n , respectively.

Proposition 6 Undertaken P operation to 2n meta vectors in Y , a total of 2n! per-
mutations can be generated.

Proof P operator is equal to permutation on 2n integers. This generates a symmetric
group contained 2n! members. �

Proposition 7 Undertaken Q and P operators in Y , a total of 22
n · 2n! cases can be

created. This creates a Complement Permutation Structure—CPS.

Proof Q and P operators are independent of each other. Their results can be multi-
plied together. �

Proposition 8 Undertaken QV and P operators in Y , a total of 2n+1 · 2n! cases can
be created. This creates a Complement Variant Structure—CVS.

Proof QV and P operators are independent each other. Their results can be multi-
plied together. �

4.3 Other Global Coding Schemes

Under QV + P and Q + P operations, more coding schemes can be defined.

Definition 11 The F coding scheme is defined as a subset W. For anyW code, if any
two meta state can be paired, such that ∀ j1, j1 − 2n−1 = j0, 0 ≤ j0 < 2n−1 ≤ j1 <

2n, I j1 = ¯I j0 indicate state I j1 be I j0 ’s complement.

F coding provides restricted pair conditions to the structure. Its corresponding
forms are as follows:

J 1 j-th meta state � J 0 j-th mate state
� F coding base �
X � X̄

Definition 12 A coding scheme satisfies general conjugate condition if ∀I j0 ∈ IJ 0 ,
for the selected position i,∀ai ∈ I j0 , ai = 0, 0 ≤ i < n.
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In other words, the general conjugate condition makes selected position on lower
part in 0 valued and higher part in 1-valued, respectively.

Definition 13 The C coding scheme is defined as a set of the F coding whereby
∀I j0 ∈ IJ 0 , for the selected position i,∀ai ∈ I j0 , ai = 0, 0 ≤ i < n.

C coding provides more strong restrictions to separate all 0-valued meta states in
lower part and all 1-valued meta states in higher part.

J 1 j-th mate state � J 0 j-th F coding
� C coding base � +

∀xi ∈ J 1, xi = 1 � ∀xi ∈ J 0, x j = 0 General Conjugate

Some coding samples are listed in following table:

No. 7 6 5 4 3 2 1 0 Normal sequential number
SL 111 110 101 100 011 010 001 000 Ordering sequence

Truth 0 0 0 1 1 1 1 0 G: J = 30; W: 〈1|12〉
Variant 1 1 0 1 0 0 1 0 G: J = 210; W: 〈13|2〉

W 111 110 010 011 001 000 100 101 General Conjugate, without pairs
Truth 0 0 1 1 1 0 1 0 G: J = 58; W: 〈3|10〉

Variant 1 1 0 0 1 0 1 0 G: J = 202; W: 〈12|10〉
F 111 110 101 100 000 001 010 011 Meta states in pairs

Truth 0 0 0 1 0 1 1 1 G: J = 23; F: 〈1|7〉
Variant 1 1 0 1 0 1 0 0 G: J = 212; F: 〈13|4〉

C 111 110 010 011 000 001 101 100 General Conjugate + pairs
Truth 0 0 1 1 0 1 0 1 G: J = 54; C: 〈3|5〉

Variant 1 1 0 0 0 1 0 1 G: J = 197; C: 〈12|5〉

4.4 Sizes of Variant Spaces

Definition 14 Under QV + P operations, W, F and C coding schemes are defined
as WV, FV and CV coding schemes, respectively.

Theorem 2 For a W coding scheme of n variables, it has a total of 22
n · 2n! cases

distinguished.

Theorem 3 For a WV coding scheme of n variables, it has a total of 2n+1 · 2n! cases
distinguished.

Theorem 4 ForaFcoding schemeof n variables, it has a total of22
n · 22n−1 · 2n−1! =

22
n(1+1/2) · 2n−1! cases distinguished.

Theorem 5 For a FV coding scheme of n variables, it has a total of 2n+1 · 22n−1 ·
2n−1! = 22

n+n+1 · 2n−1! cases distinguished.
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Theorem 6 For a C coding scheme of n variables, it has a total of 22
n · 2n−1! cases

distinguished.

Theorem 7 For a CV coding scheme of n variables, it has a total of 2n+1 · 2n−1!
cases distinguished.

Using definitions of different coding schemes, shown in various sequences of one
variable cases in the following table:

Function Truth W coding Variant W coding Invariant WV coding False WV coding
0 0 〈0|0〉 2 〈1|0〉 1 〈0|1〉 3 〈1|1〉
x̄ 1 〈0|1〉 3 〈1|1〉 0 〈0|0〉 2 〈1|0〉
x 2 〈1|0〉 0 〈0|0〉 3 〈1|1〉 1 〈0|1〉
1 3 〈1|1〉 1 〈0|1〉 2 〈1|0〉 0 〈0|0〉
0 0 〈0|0〉 1 〈0|1〉 2 〈1|0〉 3 〈1|1〉
x̄ 2 〈1|0〉 3 〈1|1〉 0 〈0|0〉 1 〈0|1〉
x 1 〈0|1〉 0 〈0|0〉 3 〈1|1〉 2 〈1|0〉
1 3 〈1|1〉 2 〈1|0〉 1 〈0|1〉 0 〈0|0〉

using 2D W coding to arrange 1D sequences into 2D matrices:

Original:

Truth Variant
0 x̄ x 1
x 1 0 x̄
x̄ 0 1 x
1 x x̄ 0

Invariant False

Permutation:

Truth Variant
0 x x 0
x̄ 1 1 x̄
x̄ 1 1 x̄
0 x x 0

Invariant False

5 Invariant Properties of Variant Constructions

It is interesting to notice that under QV operations, there are 2n + 2 vectors avail-
able to generate QVS. This makes significant differences among classical logic and
Variant logic construction [50–56]. The main results of this chapter are summarized
in the following theorems.

Theorem 8 (Four Invariant Points for One Variable Condition) For a W coding
scheme under one variable condition, four points of the structure correspond to four
functions: {0, x, x̄, 1}, respectively.
Proof When n = 1, four vectors are available for any Q or QV operations. �
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Theorem 9 (Two Invariant Points for Truth and False Schemes) For any n > 1,
W(WV) coding schemes, for any truth or false representation, only full 0 or full 1
valued vectors can be invariant undertaken P operations.

Proof Undertaken P operation, if there is any not full 0 or 1 vectors, its binary
number sequences will be changed. �

Theorem 10 (Four Invariant Points for C Coding Scheme) For any C (CV) coding
scheme in variant construction, four corner positions of 2D function matrix have
extreme invariant properties.

Proof Under C(CV) coding scheme, four functions:{0, x, x̄, 1} correspond as fol-
lows: x = 〈0|0〉; 0 = 〈22n−1 − 1|0〉; 1 = 〈0|22n−1 − 1〉; x̄ = 〈22n−1 − 1|22n−1 − 1〉.
Four positions are all corner points of the variant matrix. �

6 Comparison

It is convenient to list numeric parameters to compare the different coding schemes
in the following table.

Var State Function ExPower SL W coding WV coding C coding CV coding
n 2n 22

n
2n! 1 22

n
2n! 2n+12n! 22

n
2n−1! 2n+12n−1!

1 2 4 2 1 8 8 4 4
2 4 16 24 1 384 192 32 32
3 8 256 40320 1 10321920 645120 6144 384
4 16 216 16! 1 21616! 32 · 16! 216 · 8! 32 · 8!
5 32 232 32! 1 23232! 64 · 32! 232 · 16! 64 · 16!

where we use Var: variable number; State: state number; Function: function number;
ExPower: exponent power products; SL: SL coding number; W coding: W coding
number under Q + P operations; WV coding: WV coding number under QV + P
operations; C coding: C coding number under Q + P operations; CV coding: CV
coding number under QV + P operations in the table, respectively.

7 Conclusion

In this chapter, variant logic has been proposed to extend truth table representation
that describes variant properties of binary sequences. This extension is requiredto ex-



Hierarchical Organization of Variant Logic 33

pand traditional Boolean logic framework to a new variation space. Under two types
of vector operations, the new space has 22

n
2n! timesmore complexity than traditional

Boolean function space with 22
n
members. In order to manage this complexity, the

framework has proposed a series of global coding schemes encoded through sym-
metric properties representing the elements in a matrix as a 2D map. Under this
two-dimensional model, coding mechanism can be constructed and their invariant
properties can be discussed.

Boolean function space represents a core invariant functional space and the newly
expanded space broadens the descriptions and coding schemes used. Thus, a wide
area of variation coding can be developed. In essence, the space of binary sequence
functions can be thought of as a keyboard with 22

n
notes. Each note contains a

complete Boolean function set and its own representation. The set of notes can be
represented using a coding scheme that orders the notes in a particular sequence (SL
and G codes) or their 2D maps (W, F and C codes).

Under W coding representation mechanism, 2D matrix is suitable to visualize
permutation sequences of n variable logic structures. Using invariant properties,
classical logic and variant logic can be clearly identified. Further work on dynamic
behaviours of complex dynamic systems can be explored. This chapter outlines
the construction and notation of variant logic only. Future papers will show that
the proposed scheme, with its foundation in symmetry, will have definite uses for
predicting convergent and chaotic behaviour in dynamic binary systems such as the
analysis of cellular automata rules using various visual methodologies.
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