
Permutation and Complementary
Algorithm to Generate Random
Sequences for Binary Logic

Jie Wan and Jeffrey Zheng

Abstract Randomness number generation plays a key role in network, information
security, and IT applications. In this chapter, a permutation and complementary
algorithm is proposed to use vector complementary and permutation operations to
extend n-variable logic function space from 22

n
functions to 22

n ×2n! configurations
for variant logic framework. Each configuration contains 22

n
functions that can be

shown in a 22
n−1 × 22

n−1
matrix. A set of visual results can be represented by their

symmetric properties in W, F, and C codes, respectively, to provide the essential
support on the variant logic framework.

Keywords Logic function · Permutation and complementary · Variant logic
Symmetric distribution · Random sequence

1 Introduction

Random numbers play an important role in many network protocols and encryption
schemas on various network security applications [1], for example, digital signatures,
authentication protocols, key generation for PKI, RSA/AES [2], nonce frustrate,
and symmetric stream encryption. A better random number algorithm will enhance
encryption schemas, to do other applications. To satisfy different requirements, the
NIST has published a series of statistical tests as standards [3] to determine whether a
random number generator is suitable for a cryptographic application. After using the

Project supported by Yunnan Advanced Overseas Scholar Project, NSF of China (61362014).

J. Wan
Yunnan University, Kunming, China
e-mail: wanjiech@163.com

J. Zheng (B)
Key Laboratory of Yunnan Software Engineering, Yunnan University, Kunming 650091, Yunnan,
China
e-mail: conjugatelogic@yahoo.com

© The Author(s) 2019
J. Zheng (ed.), Variant Construction from Theoretical Foundation to Applications,
https://doi.org/10.1007/978-981-13-2282-2_14

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2282-2_14&domain=pdf
mailto:wanjiech@163.com
mailto:conjugatelogic@yahoo.com
https://doi.org/10.1007/978-981-13-2282-2_14

238 J. Wan and J. Zheng

vector complementary and the permutation operations on binary logic, the variant
logical framework extends the traditional Logic function space from 22

n
functions

to 22
n × 2n! configurations [4]. Under the new extension conditions, it is possible to

use simple transformation to generate huge numbers of random sequences for future
applications.

Permutation and complementary algorithm is described in the chapter to express
different random properties through a series of binary image sequences undertaking
typical recursive operations.

2 Method

Cellular automata perform a natural way to generate random sequence. The principle
of binary cellular automata [5, 6] can be explained by an example as follows:

First, a sequence 001100 and a function f : {00 → 0, 01 → 1, 10 → 1, 11 → 0}
are selected.

Second, the sequence can be decomposed from left to right. The last bit is com-
posed to the first bit

.

Third, according to the decomposed sequences and the generating function, a new
sequence 010100 can be generated, i.e., f : 001100 → 010100.

Followed the algorithm, the space of the generation function can be extended
further; large numbers of random sequences can be generated. This mechanism can
increase the complexity of code breaking.

In variant logic framework, the logic function space has been extended from 22
n

to 22
n × 2n! by the permutation and the complementary operations. In two variable

functions of cellular automata, there are 16 generated functions, and the 16 functions
can be described in a truth table (Fig. 1a) with 16 entries.

2.1 Permutation Operation

The bit string of states {00, 01, 10, 11} in generating function can be converted to
decimal number {0, 1, 2, 3}. An example in Fig. 1b is shown to permute 3210 to
1320 of the table.

Permutation and Complementary Algorithm … 239

(a).The Truth Table of 3210 (b).The Permutation Table of 1320

J
P Status

K 3
11

2
10

1
01

0
00

0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4

13 1 1 0 1 13
14 1 1 1 0 14
15 1 1 1 1 15

P Status
K J 1

01
3
11

2
10

0
00

0 0 0 0 0 0
1 0 0 0 1 1
2 1 0 0 0 8
3 1 0 0 1 9
4 0 0 1 0 2

13 0 1 1 1 7
14 1 1 1 0 14
15 1 1 1 1 15

1320
3210

P

Fig. 1 Permutation example

2.2 Complementary Operation

In the complementary operation, the complementary vector σ is applied to operate
the truth table.

It can be described as

yδ �
{
y, δ � 1

ȳ, δ � 0

In two-variable variant logic, σ is a binary sequence of 4 bits in {0000, . . . , 1111}.
In the example, the original table is σ � 1111 and shown in Fig. 2a given σ � 1100
in Table 2 which can be described as 1320(1100) � 11312000. Under such operation,
the sequence values of state 1 and 3 columns are invariant. But the values of columns
whose index is 0 and values of the permutation sequence in state 2 and 0 are changed
to their revised values, respectively.

After the complementary operation, Fig. 2a changes to Fig. 2b.

2.3 Visualization

For function f, once applied on the sequence 001100 to output 010100, then this
function can be applied on the sequence 010100 to output 111100. For such binary
sequence, select black for 1 and white for 0 to generate the visual patterns as follows
(Fig. 3).

240 J. Wan and J. Zheng

(a).The Permuata on Table of (b).The Complementary Table of

σ

K
1 1 0 0

J P Status
1
01

3
11

2
10

0
00

0
1
2
3
4

13
14
15

0
0
1
1
0

0
1
1

0
0
0
0
0

1
1
1

1
1
1
1
0

0
0
0

1
0
1
0
1

0
1
0

3
2
11
10
1

4
13
12

σ
1 1 1 1

J P Status K
1
01

3
11

2
10

0
00

0
1
2
3
4

13
14
15

0
0
1
1
0

0
1
1

0
0
0
0
0

1
1
1

0
0
0
0
1

1
1
1

0
1
0
1
0

1
0
1

0
1
8
9
2

7
14
15

Fig. 2 Complementary example

Fig. 3 Visualize the random
sequence

2.4 Matrix Representation

For example (Fig. 2b), the truth value of third function is 1010. It can be converted to
a binary coordinate 〈10|10〉 distinguished by left two and right two bits, respectively.
So the decimal coordinate is 〈2|2〉. Then Fig. 2b can be converted to Table 1.

Under such conversion, the 2D matrix can be represented in Table 2.

3 Algorithm and Properties

3.1 Permutation and Complementary Algorithm

Using permutation and complementary operations, an algorithm is extended to
express the n-ary variant logic functional space.

Permutation and Complementary Algorithm … 241

Table 1 Coordinate map of
1320(1100)

σ Transformed
bracket

1 1 0 0

J P Status

1 3 2 0

01 11 10 00

0 0 0 1 1 〈0, 3〉
1 0 0 1 0 〈0, 2〉
2 1 0 1 1 〈2, 3〉
3 1 0 1 0 〈2, 2〉
4 0 0 0 1 〈0, 1〉
... … … …

...
...

... … … …
...

...

13 0 1 0 0 〈1,0〉
14 1 1 0 1 〈3,1〉
15 1 1 0 0 〈3,0〉

Table 2 2D matrix of the 1320(1100)

0, 0
5

0, 1
4

0, 2
1

0, 3
0

1, 0
13

1, 1
12

1, 2
9

1, 3
8

2, 0
7

2, 1
6

2, 2
3

2, 3
2

3, 0
15

3, 1
14

3, 2
11

3, 3
10

Algorithm: Permutation and Complementary:
Input: variable n
Output: a set of truth table of Pσ,∀P ∈ S(2n),∀σ ∈ B2n

2 .
Method:
Step 1. Initial T � {2n2n − 1 · · · · · · 10}
Step 2. Generate a permutation P for T
Step 3. From σ � 000 . . . 0 to 111…1 do vector complementary operation.
Step 4. Any new permutation?
Yes go to Step 2.
Step 5. End

where S (N) is a symmetry group with N member and BM
2 is an M variable Boolean

structure with 2M members.

242 J. Wan and J. Zheng

Table 3 2D matrix for n-ary
logic functions 〈0, 0〉 … … 〈0, 22n−1 − 1〉

〈1, 0〉 … … 〈1, 22n−1 − 1〉
...

...
...

...

〈22n−1 − 2, 0〉 … … 〈22n−1 −
2, 22n−1 − 1〉

〈22n−1 − 1, 0〉 … … 〈22n−1 −
1, 22n−1 − 1〉

Table 4 The number of W, F,
and C codes in 2-ary variant
functional space

Code system No

W 384

F 128

C 16

3.2 Representation Scheme

Every truth table has a 2D matrix to arrange visual results of random sequence. The
〈X,Y 〉 is the coordinate to allocate each visual result. So for n-ary logic function
space, the 2D matrix has a size of 22

n−1 × 22
n−1

as shown in Table 3.

3.3 W, F, and C

Three coding schemes can be distinguished in the algorithm.
W code [4] is a binary sequence of 2n bits. It separates into two parts,

(
J 1|J 0

)
.

Each part has 2n−1 bits.
F code is a subset of W code, and it is a symmetry code. In F code, if the Ith

meta-state in J 1 is 1 or 0, the Ith meta-state in J 0 is the negative state.
If a code is F code, the Ith meta-state in J 1 has the same value. Besides, four

corners of its matrix are included in {0, x, x̄, 1}; it is C code [4].
For example, (32|10)(1110|0100) is an element of W code. In the sequence, 1

is not the negative sequence of 3, and the 0 is not also the negative sequence of 2.
(32|01)(1110|0001) is an F code. It has the symmetry property. In the sequence, 0 is
the negative sequence of 3 and 1 is the negative sequence of 2. (13|20)(0111|1000)
is a C code. It has the symmetry property of F code, and four comers of 1320’s matrix
are included in {0, x, x̄, 1}.

The further definition of W, F, and C codes can be found in [4].
From the exhaustive of the binary variant function space, the number of W, F, and

C codes in binary variant function space [7] is shown in Table 4.

Permutation and Complementary Algorithm … 243

4 Coding Simples

W Code:
Permutation sequence: 3210

The value of σ:1011

Fig. 4 The 2D matrix diagram and the visual result of 32101011

F Code:
Permutation sequence: 3201

The value of σ: 1111

Fig. 5 The 2D matrix diagram and the visual result of 32011111

244 J. Wan and J. Zheng

C Code:
Permutation sequence: 1320

The value of σ:1100

Fig. 6 The 2D matrix diagram and the visual result of 13201100

5 Result Analysis

In Fig. 4,W code is shown as a general code.MajorityW code does not have apparent
symmetry property. W code covers all the code spaces which are formed from binary
input variable. These properties can be seen in Fig. 4.

All the F codes have overall symmetry in 2D distribution. Obvious symmetry
among functions in the 2D matrix can be observed in Fig. 5.

Simple is shown in a C code in Fig. 6. It is a small set of F code with complete
symmetry property. C code has the four-constant vertex property. The group of the
four vertexes in C code are located by 0, 15, 10, and 5 functions, respectively.

In the n-ary logical function permutation and complementary algorithm, the per-
mutation is operated for 2n!; the complementary exhaustive needs 22

n
operation for

each permutation operation. A total of computational complexity of an n-ary variant
logical function using permutation and complementary algorithm is O

(
2n!×22

n)
.

6 Conclusion

A permutation and complementary algorithm has been proposed for n-ary logical
function, and sample results are visualized. The visual results ofW, F, and C codes in
the variant and invariant properties support the variant logic system through exper-
imentation to use an algorithmic mechanism to generate a series of huge random
number sequences.

Permutation and Complementary Algorithm … 245

References

1. W. Stallings, Cryptography and Network Security: Principles and Practice (Pearson Education,
2006)

2. J. Soto, L. Bassham, Randomness Testing of the Advanced Encryption Standard Finalist Can-
didates (NIST, 2000)

3. Random number generation (NIST, 2008), http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
4. J.Z.J. Zheng, C.H. Zheng, A framework to express variant and invariant functional spaces for

binary logic. Front. Electr. Election. Eng. China 5(2) (2010) (Higher Education Press & Springer
Press)

5. S. Wolfram, Theory and Applications of Cellular Automata (Word Scientific, Singapore, 1986)
6. S. Wolfram, Cellular automata as models of complexity. Nature 311 (4 October 1984)
7. J. Wan, J. Zheng, Showing exhaustive number sequences of two logic variables for variant logic

functional space, inProceedings of Asia-Pacific YouthConference onCommunication (APYCC),
p. 4 (October 2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://csrc.nist.gov/groups/ST/toolkit/rng/index.html
http://creativecommons.org/licenses/by/4.0/

	Permutation and Complementary Algorithm to Generate Random Sequences for Binary Logic
	1 Introduction
	2 Method
	2.1 Permutation Operation
	2.2 Complementary Operation
	2.3 Visualization
	2.4 Matrix Representation

	3 Algorithm and Properties
	3.1 Permutation and Complementary Algorithm
	3.2 Representation Scheme
	3.3 W, F, and C

	4 Coding Simples
	5 Result Analysis
	6 Conclusion
	References

