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Abstract The Simple Ballot Model (SBM) and the Component Ballot Model
(CBM)—are proposed for solving uncertainty in an election when two candidates
gain the same number of votes under the approval rule. The SBM establishes a
framework to support counting. In separating the two candidates, it is essential to
extract additional information from dominantly valid votes. The CBM uses probabil-
ity matrices, vectors and permutation group as components. A stable-voting mecha-
nism under permutation invariant can be created to distinguish candidates. The result
of the chapter establishes a voting authority to resolve uncertainty of two candidates
under the approval rule.
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1 Introduction

As a common practice in a modern democratic society, voting is a practical way
to resolve a contest where each candidate seeks to gain maximal support from the
electors. Approval voting is a voting procedure in which electors can vote for as
many candidates as they wish. Each candidate approved of receives one vote and
the candidate with the most votes wins. Approval voting, unlike more complicated
ranking systems, is easier and simpler for electors to understand and use. This voting
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method has beenwidely used today by various governments and organizations around
world (including the use by the United Nations to elect the secretary-general).

To keep healthy economic and political progress inmodern democracy societies, it
is necessary to apply reliable and convenient votingmethodologies and tools to ensure
fairness, efficiency and transparency and to overcome paradoxes and difficulties in
elections.

1.1 Brief Review of Voting Systems

We can find interesting voting-based models and practices in many ancient stories
from Chinese literature to Roman and Greek history. Just before the French rev-
olution in the French Academy, de Borda [1] and de Condorcet [2] proposed the
Borda rule and the Condorcet procedures. They wanted to use new voting methods
to resolve difficulties and unfair results under traditional plurality-based voting rules
in elections for the Academy. In 1920s, Hotelling [3] investigated the equilibrium
of spatial economic competition for two firms between location and price. During
World War II, von Neumann and Morgenstern [4] developed Theory of Games using
differential equations to investigate complicated competition behaviors. This theo-
retical foundation has a superior influence to develop analytical methodologies and
tools from applying pre-designed strategic policies to predicting practical election
outcomes. Under fairness conditions, Arrow [5] proved his famous Impossibility
Theorem which claims that there is no single election procedure to fairly decide the
outcome of an election involving more than three candidates. Various ideas, methods
and technologies have emerged to resolve voting difficulties [6–9].

1.2 Problems in the 2000 American Election

The most debatable problem in the 2000 American election, the 2K-election, is that

Whether the machine-rejected ballots need to be manually recounted?

The practical solution of the 2K-election problem was finally decided by the nine
judge’s votes in the US Supreme Court on the lawsuits from the Florida Supreme
Court.

This indicates that current voting theories and vote-counting models are all faults
to be an authority resolving the problem.

Although the 2K-election is under the plurality rule, not under the approval rule,
however the approval rule cannot guarantee to avoid the similar uncertainty when a
large number of electors are involved. It is necessary to establish relevant theoretical
structure to avoid possible problems in the future.
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1.3 Structure of the Chapter

This chapter proposes two models constructing a voting theory to resolve the 2K-
election-like problems and other paradoxes in voting practices. Only one voting
system under approval rule is concerned.

In Sect. 2, a Simple Ballot Model (SBM) is proposed. Using the SBM, the sep-
arable and uncertain conditions for the ballot papers are established. To show some
practical strategies and relevant problems in current votingmethodologies, four addi-
tional rules (reducing error probability, merging other candidate votes, re-election,
and court decision) that are commonly used in practical voting processes are dis-
cussed.

In Sect. 2.8, the error margin for the 2K-election problem is analyzed. Through
voting practice is not an accurate science, but the error margin of 0.233% in the
event still cannot be acceptable as an accurate measure. Although almost 99.8%
of the valid votes were counted, there is still no way of determining that who is
the winner. Therefore, the attentions shifts to the 0.2% votes which were already
deemed invalid. This problem highlights that the voting system needs to improve,
and a method of extracting additional information from valid votes to separate the
two candidates under uncertainty conditions becomes essential.

In Sect. 3, a new votingmodel—the Component BallotModel (CBM)—is defined
and constructed to provide the essential construction for extracting more informa-
tion from votes for comparisons. Based on multiple feature matrices (similar to con-
tingency tables in classical statistics), probability feature vectors and permutation
invariant group and other advanced mathematical tools, multiple pair sets of fea-
ture index families for two candidates are constructed. This mechanism establishes
a voting authority to make a decision for an election. After the mathematical defi-
nitions and constructions to feature matrix, feature vector, probability feature vector
and feature index, the most important results are summarized in Two-D Separable
Proposition and Voting Authority Proposition.

Taking into account only the valid votes, the election model will have intrinsic
stability for the reliable results immediately after the election. Confusion, frustration
and dissatisfaction as those experienced in the 2K-election can be avoided.

In the light of this research, some further research directions are suggested in
Sect. 4.

2 Simple Ballot Model

2.1 Key Words in Election

Key words used in an election event can be defined as follows.
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• Election—a special event based on counting votes for awinner (normallywhoever
attracts the most votes wins the election)

• Candidate—a person who has been nominated in an election
• Elector—a person who may legally vote in an election
• Ballot—a pre-designed form used to record choices of an elector
• Vote—a ballot on which the choices of an elector are recorded
• Poll—the collections of votes from all legal electors
• Decision—Za result on who wins the election.

The Simple Ballot Model simulates the simplest case scenario of whole voting
procedure based upon all ballots directly collected from an election under approval
rule. In this scenario, one elector can only create one vote for as many candidates
selected from a list of candidates.

2.2 Definitions

For an ideal election involving n (≥2) candidates, let C � {c1, c2, . . . , cn} be a
set of the selected candidates. A ballot B � 〈c1, c2, . . . , cn〉 is a pre-designed form
containing the list of candidates for whom the electors may vote.

A vote is a record of a ballot B. Let a vote denote v. It is valid if v �
〈v1, v2, . . . , vn〉, vi∈{0, 1}, i ∈ [1, n],

∑n
i�1 vi > 0, otherwise if ∃vi � x /∈

{0, 1}, i ∈ [1, n] or
∑n

i�1 vi � 0 (null selection), then the vote v is invalid; where
vi � 1 indicates selected the candidate ci , vi � 0 indicates not selected ci and
vi � x indicates invalid selection to ci . Normally a vote v has a value region from
〈0, 0, . . . , 0〉 to 〈1, 1, . . . , 1〉 … 〈x, x, . . . , x〉.

An elector can only create one vote and there are a total number of N (�n) votes
in the election.

A poll V is a vote collection in which all votes can be arranged as an array with
N entries:

V � (v(1), . . . , v(t), . . . , v(N )), t ∈ [1, N ]. (2.1)

where v(t) denotes the vote of the tth elector. As each candidate has a number, let
k ∈ v(t) denote the tth elector selected the kth candidate on the vote.

For example, n � 6, N � 8, a poll V is: V � (v(1), . . . , v(t), . . . , v(8)), t ∈
[1, 8]

v(1) � 〈0, 0, 1, 1, 0, 0〉, v(2) � 〈0, 1, 0, 1, 0, 0〉, v(3) � 〈0, 1, 0, 1, 1, 0〉,
v(4) � 〈1, 0, x, 1, 1, 0〉, v(5) � 〈0, 1, 0, 1, 0, 0〉, v(6) � 〈0, 0, 1, 1, 1, 0〉,
v(7) � 〈0, 0, 1, 0, 0, 0〉, v(8) � 〈0, 0, 0, 0, 0, 0〉

In this poll, {v(1), v(2), v(3), v(5), v(6), v(7)} are valid votes (v3(1) � v4(1) � 1
indicates the 1-st vote selected the third and forth candidates). In addition, v(4)
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contains an uncertain selection (v3(4) � x) and v(8) is a null selection, both votes
are invalid.

Let V0 denote the invalid-poll in the election. It collects all invalid votes from
the poll V. Let Vc denote a valid sub-poll in the election. Both sub-polls Vc and V0

partition the poll V . i.e.

V � V c ∪ V0.

Let Vk denote a sub-poll in the election. For any k ∈ [1, n], Vk collects all valid
votes from the poll V for the kth candidate.

Vk � {v(t)|vk(t) � 1, k ∈ [1, n], t ∈ [1, N ], v(t) ∈ V c}.

Let Ṽ denote a poll vector,

Ṽ � (V0, V1, . . . , Vk, . . . , Vn), k ∈ [1, n]. (2.2)

A SBM is a collection of a ballot form, all votes, poll and poll components for an
election.

SB M � (
B
∣
∣V ; Ṽ

)
(2.3)

Let NV c denote the number of votes in the valid poll V c, NV c � |V c|. Let Nk

denote the number of votes in the valid poll Vk , Nk � |Vk |, k ∈ [1, n] and N0 denote
the number of votes in the invalid poll V0.

The total number of votes in an election, N , is equal to the sum of the number of
the valid votes NV c plus the number of all invalid votes N0, i.e.

N � NV c + N0. (2.4)

Let pV c � |V c|/|V |� NV c/N denote a measure of the valid votes.
For any poll vector Ṽ , let pk � |Vk |/|V |� Nk/N , 1 ≤ k ≤ n denote a measure

of the kth candidate and p0 � |V0|
/ |V | � N0

/
N denote the measure of the invalid

votes.
Under the approval rule, there are many overlaps among different sub-polls. Con-

sidering two candidate sub-polls and their common parts, if ∃k, l ∈ [1, n], Vk, Vl ⊆
V c, Vk ∩ Vl � ∅, then

|Vk ∪ Vl | � |Vk | + |Vl | − |Vk ∩ Vl | (2.5)

In general, we have

|Vk ∪ Vl | ≤ |Vk | + |Vl | (2.6)
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Let �̃ denote a frequency vector,

�̃ � (p0, p1, . . . , pk, . . . , pn), k ∈ [1, n] (2.7)

2.3 One-Dimensional Feature Distribution

The frequency vector �̃ corresponds to a density distribution. There are equations
as follows.

1 � pV c + p0; (2.8)

1 ≥ pk ≥ 0, k ∈ [1, n]. (2.9)

Because there is no further partition among sub-polls, the vector �̃ is composed
of a one-Dimension frequency feature histogram.

Considering inequalities (2.6), (2.8) and (2.9), there is an inequality.

1 ≤
n∑

k�0

pk ≤ n. (2.10)

If sub-polls partition the poll, then there is 1 � ∑n
k�0 pk . In the worst case

scenario, if all valid votes select all candidates without invalid votes, then

p0 � 0, p1 � · · · � pn � 1,
n∑

k�0

pk � n

2.4 Separable Condition

When ∃i, j ∈ [1, n], pi , p j > p0, a decision between the candidates i and j can be
made if and only if

∣
∣pi − p j

∣
∣ > p0 (2.11)

This is the separable condition.

2.5 Uncertain Condition

However, therewill be intrinsic difficulties tomake a decision between the candidates
i and j simply from their measures pi and p j , if
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∣
∣pi − p j

∣
∣ ≤ p0 (2.12)

This is the uncertain condition.
Under the uncertain condition, there are no simple solutions to distinguish signals

clearly between pi and p j under the interference of p0.

2.6 Balanced Opposites

It is extremely hard tomake any decisionwhen both candidates gain the same number
of votes in an election. However, for any equilibrium dynamic system involving two
balanced opposites in competition, the most probable trends are p j � pi . In general,
more complicated feedback mechanisms are involved and balanced events occur
more frequently [10, 11].

2.7 Four Additional Policies

To resolve conflicts in an election, four additional policies may be useful: reducing
error probability (p0 → 0),mergingother candidate votes (Vi ∪Vl → Vi orVj∪Vl →
Vj ; i, j, l ∈ [1, n]), re-election (new pi , p j ) and court decision.

The reducing error probability policy works well in certain conditions involving
only a small number of electors. Using various controlled methods, e.g., the total
number of seats in Parliament being an odd number or some additional votes allowed
by Parliament Leaders, the worst case scenario where both candidates hold equal
votes without a decision can be eliminated. However, when an election involves a
large number of electors like sizes of the 2K-election, the voting system becomes
a naturally complex dynamic system and there is no way to make the error margin
(p0 → 0) negligible.

The merging other votes policy works in simple conditions at a single location.
To combine votes for candidates from multiple locations under approval rule would
be more difficult than under plurality rules since there are many overlaps among sub-
polls. There is no guarantee to ensure the policywork. In the best cases, old difficulties
may be temporarily solved, but new similar uncertainties could immediately emerge.

From a complex-dynamic system, re-election is as same as the original elec-
tion. Therefore, the re-election policy cannot provide improved separable property
between two candidates.

If other solutions can not be found by timing or other issues, then it is feasible to
use Courts to make decision. The court decision policy uses Courts to make decision,
it results in efficient decision-making but breaks down the election procedure and
it may loose fairness, transparency, self-determination and other advantages of the
election process.
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2.8 How Accurate Is Accurate?

It is well known that all measurements in physics and in all exact science are inaccu-
rate in some degree. So, what then is sufficient to be deemed accurate for an election?
Can we accept a 10% margin of error to be accurate? What about 1% or even 0.1%?

In real life, an error margin of 1%would be highly commendable and one of 0.1%
would be considered highly accurate.

Although, voting and pollingwere notmeant to be an exact science, polls and other
pre-election statistics had error margin of almost 5–10%. Yet in the actual election,
the margin of error was less in the disputed counties, e.g. Miami-Dada and Palm
Beach, only 14,000 votes from a total number of six million votes were rejected.
The margin of error was only 0.233%. Usually, this would be deemed a negligible
number, as almost 99.8% of votes were valid. However, it was not enough to separate
the two candidates, this margin would have to reduce the rejected votes from 14,000
to 100. In the condition, at least an error margin of 0.00016666% is required. This
is highly improbable due to the cost, time and other factors.

2.9 Shifting Attentions from Invalid Votes to Valid Votes

Almost 99.8% votes are valid. This indicates that in order to determine who will be
the winner under the uncertain condition, it is necessary to fetch additional infor-
mation to determine a victor from valid votes instead of reducing the error margin
by handling invalid votes. The total number of votes is far greater than the number
of candidates. This makes possible to extract additional information using cross-
classification methods based on contingency table-like techniques among multiple
categories. The cross-classified technique is a powerful toolkit in modern statistics
[12, 13, 14, 15].

Under additional categories such as location, age group and sex, valid voteswill be
categorized as two-dimensional classified feature distributions in respective contin-
gency tables. Such spatial or histogram-like feature distributions provide invaluable
information to support improving separable properties between two uncertain can-
didates. To represent this idea, a new model is proposed in next chapter.

3 Component Ballot Model

To overcome the intrinsic complexities and uncertain problems in approval voting
practices, a new model—the Component Ballot Model—is proposed in this chapter
to use multiple variables on a ballot for a better description and an easier comparison.



Voting Theory for Two Parties Under Approval Rule 177

3.1 Definitions

To be consistent with the previous notation, similar symbols (ballot paper) are used.
However, the contents of the ballot paper and other notations will be compounded
into vector forms.

Let C � {C1, C2, . . . , Cm} be a set of the selected conditions. The i-th item

contains ni distinct values for selections, Ci �
〈
ci
1, . . . , ci

j , . . . , ci
ni

〉
, j ∈ [1, ni ], i ∈

[1, m].
A ballot B (or a component ballot) is a vector composed of m items:

B �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1

. . .

Ci

. . .

Cm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈
c11, . . . c1n1

〉

. . .
〈
ci
1, . . . , ci

j , . . . , ci
ni

〉

. . .
〈
cm
1 , . . . , cm

nm

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, j ∈ [1, ni ], i ∈ [1, m] (3.1)

Component items in a ballot provide additional information about elector to the
paper such as sex, voting time, location, age group, and minority, living area, social
security and employ situations.

For example, the first item contains 10 candidates, the second item presents
100,000 locations, the third item has 3 sex groups (male, female, neutral), the forth
item contains 150 age groups, and the fifth item indicates 1010 social security number.
Under above conditions, a ballot paper could be

B �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1

C2

C2

C4

C5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈
c11, . . . , c110

〉

〈
c21, . . . , c2100000

〉

〈
c31, c32, c33

〉

〈
c41, . . . , c4150

〉

〈
c51, . . . , c51010

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

m � 5, n1 � 10, n2 � 100000, n3 � 3, n4 � 150, n5 � 1010.

A vote v (or a component vote) is a record of a component ballot B for which at
least one value for each m items has been assigned:
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v �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1

. . .

vi

. . .

vm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈
v1
1, . . . , v

1
n1

〉

. . .
〈
vi
1, . . . , v

i
l , . . . , v

i
ni

〉

. . .
〈
vm
1 , . . . , vm

nm

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, vi
l ∈ {0, 1, x}, l ∈ [1, ni ], i ∈ [1, m].

(3.2)

where ni is the upper limit of vi ; vi
l � 1 (or 0) means ci

l candidate selected (or not
selected), vi

l � x indicates ci
l being an invalid value.

More items are provided for each ballot to include more information. Further
distinctions of their valid regions are necessary. If for a vote v, the first item
satisfies i � 1,

∑ni
l�1 v1

l ≥ 1(more than one values selected) and all additional
items satisfy vi

l ∈ {0, 1}, l ∈ [1, ni ], i ∈ [2, m],
∑ni

l�1 vi
l � 1(one and only one

value selected), then the vote v is a valid vote. However, if ∃i, l, vi
l ∈ {x}, i ∈

[1, m], l ∈ [1, ni ] or there is one vi in additional items assigned multiple values,(∃i, vi
l ∈ {0, 1},∑ni

l�1 vi
l > 1, l ∈ [1, ni ], i ∈ [2, m]

)
then v is an invalid vote.

Normally the valid first item in a vote has a value region from 〈0, 0, . . . , 0, 1〉
to 〈1, 1, . . . , 1〉. A total number of 2n1 − 1 combinations are valid to allow one,
two or more candidates selected. However, for other additional items there is one
and only one value selected from 〈0, 0, . . . , 0, 1〉 to 〈1, 0, . . . , 0, 0〉. There are only
ni , i ∈ [2, m] selections allowed.

Additional information for electors may been accessed from existing election
databases somewhere, there is no any technical difficulty to merge them to be a
compound vote automatically using modern information technology.

There are enough rooms for an elector with various parameters on a vote and a
total number of N electors in voting.

A poll V is a vote collection in which all votes can be arranged as an array with
N entries:

V � (v(1), . . . , v(t), . . . , v(N )), t ∈ [1, N ]. (3.3)

Considering each vote has m items, a poll V can be represented as a 2D m×N
array.

V � (v(1), . . . , v(t), . . . , v(N ))

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1(1)
. . .

vi (1)
. . .

vm(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, . . .

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1(t)
. . .

vi (t)
. . .

vm(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, . . .

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1(N )
. . .

vi (N )
. . .

vm(N )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

t ∈ [1, N ], i ∈ [1, m].

(3.4)
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3.2 Feature Partition

Let V c denote a valid poll and V0 denote an invalid poll, V c and V0 partition the poll
V i.e.

V c � {∀v|v is a valid vote, v ∈ V };
V0 � {∀v|v /∈ V c, v ∈ V };
V � V c ∪ V0. (3.5)

Let V i denote a sub-poll in the election. For any i ∈ [1, m], V i collects all valid
votes of the poll V for the ith item.

V i �
{

∀v(t)|v(t) ∈ V c, vi
l (t) ∈ {0, 1},

ni∑

l�1

vi
l (t) ≥ 1,

l ∈ [1, ni ], t ∈ [1, N ], i ∈ [1, m]} (3.6)

Zero-D Feature Lemma All
{

V i
}m

i�1 sub-polls contain the same votes as in the poll
Vc:

V c � V 1 � V 2 � · · · � V i � · · · � V m (3.7)

Proof Using Eqs. (3.5) and (3.6), a valid vote contains at least one valid value in
each category. No difference exists to project all valid votes as one group. �

Let V i
k denote a sub-poll in the election. For any i ∈ [1, m], V i

k collects all valid
votes of the poll Vc for the ith item in a special location k.

V i
k � {∀v(t)|v(t) ∈ V c, vi

k(t) � 1, t ∈ [1, N ], i ∈ [1, m], k ∈ [1, ni ]
}

(3.8)

One-D Feature Lemma All
{

V i
k

}
k∈[1,ni ]

sub-polls dissect a sub poll V i :

V i �
ni⋃

k�1

V i
k (3.9)

Proof By Eqs. (3.5)–(3.8), each vote has at least an identified value. To collect all
votes with the value, we have the result. �
One-D Feature Corollary If each vote contains only one value in the category item,
then all sub-polls

{
V i

k

}
k∈[1,ni ]

partition a sub poll V i :

|V i |�
ni∑

k�1

|V i
k | (3.10)
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Proof By Eq. (3.9), each vote has an identified value. There is no overlap among
possible sub-polls in relation to the category item. �

It can be noticed that only candidate category does not satisfy one-D feature corol-
lary under approval voting rule. Other additional categories satisfied the condition.

Different from the Zero-D feature lemma, the One-D feature corollary provides
non-trivial partition of the votes into multiple sub polls.

Let V 0 denote an invalid-poll in the election. It collects all invalid votes of the
poll V.

V 0 � {∀v(t)|v(t) /∈ V c, t ∈ [1, N ]} (3.11)

Since there is no any further distinction for votes in V 0, all votes in this poll
correspond to discarded votes.

Let V i, j
k,l denote a sub poll. It can be described as

V i, j
k,l �

{
∀v(t)|v(t) ∈ V c, vi

k(t) � 1, v j
l (t) � 1;

t ∈ [1, N ], i, j ∈ [1, m], k ∈ [1, ni ], l ∈ [1, n j ]
}

(3.12)

For any i, j ∈ [1, m], k ∈ [1, ni ], l ∈ [
1, n j

]
, collected votes of V i, j

k,l are the same

as the votes in V j,i
l,k .

If l � k, then votes in V i, j
k,l are different from the votes in V j,i

k,l .

Two-D Feature Lemma All votes in
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j]
dissect either V i

k or V j
l .

V i
k �

n j⋃

l�1

V i, j
k,l ; (3.13a)

or

V j
l �

ni⋃

k�1

V i, j
k,l . (3.13b)

Proof By Eq. (3.12) and one-D feature lemma, each vote in the sub-polls has other
identified values. To collect all votes with the value in relevant sub-polls, we have
the result. �
Two-D Feature Corollary If a valid vote contains a single value in the selected

category item, then all votes in
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j ]
partition either V i

k or V j
l . For j

category,

∣
∣V i

k

∣
∣ �

n j∑

l�1

∣
∣
∣V

i, j
k,l

∣
∣
∣; (3.13c)
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Or for i category,

∣
∣
∣V

j
l

∣
∣
∣ �

ni∑

k�1

∣
∣
∣V

i, j
k,l

∣
∣
∣. (3.13d)

Proof When each vote in the sub-polls has only a single value in relation to the
selected category item, the sub-polls partition the selected poll. �

Under this construction, all votes in
{

V i, j
k,l

}i, j∈[1,m]

k∈[1,ni ],l∈[1,n j ]
dissect the valid poll Vc.

When single value condition satisfied, sub-polls can partition the valid poll.

3.3 Feature Matrix Representation

For a given pair i, j ∈ [1, m], let k corresponding to row number and l corresponding

to column number, for a given
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j ]
sub polls, there is a unique feature

matrix representation.

3.3.1 Feature Matrix

Let V i, j denote a feature matrix,

V i, j �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V i, j
1,1 . . . V i, j

1,l . . . V i, j
1,n j

. . . . . . . . .

V i, j
k,1 . . . V i, j

k,l . . . V i, j
k,n j

. . . . . . . . .

V i, j
ni ,1 . . . V i, j

ni ,l
. . . V i, j

ni ,n j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ∈ [1, ni ], l ∈ [1, n j ]. (3.14)

Using a statistical language, a featurematrixV i, j may correspond to a contingency
table based on cross-classified categorical data under two selected categories [13,
16, 17]. Each element of the matrix collects a sub-set of votes in a respective cross-
categorical meaning.

3.3.2 Feature Matrix Set

For a given
{

V i, j
k,l

}i, j∈[1,m]

k∈[1,ni ],l∈[1,n j ]
, there are a total number of 2 *

(
m

2

)

� m * (m −1)

distinction feature matrixes. It is composed of a matrix set VS,
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V S � {
V i, j |i, j ∈ [1, m]

}
. (3.15)

For a given pair i � j, i, j ∈ [1, m] in the set, each
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j ]
or

{
V j,i

k,l

}

k∈[1,n j ],l∈[1,ni ]
corresponds to a uniquematrix or its translationmatrix.However

a given pair i � j, i, j ∈ [1, m], the matrix is equal to its translation matrix. So there
are a total of m * m − m different matrix representations.

For a fixed item (e.g. i � 1) as the first index, there are a total number of

m �
(

m

1

)

different matrices in the system to record different relations among

{
V i, j

k,l

}i, j∈[1,m]

k∈[1,ni ],l∈[1,n j ]
sub polls.

Let V SC(i) denotes the matrix set with first index fixed at i,

V SC(i) � {
V i, j | j ∈ [1, m]

}
. (3.16)

Selecting one category for both row and column values, for a given V SC(i), if
V i,i

k,l ∈ V i, i in V SC(i), a vote in the i th category contains only one valid value, then

V i,i
k,l can be determined as following.

V i,i
k,l �

{
∅, i f k � l;

V i
k , i f k � l;

k, l ∈ [1, ni ], i ∈ [1, m]. (3.17a)

In this case, the matrix V i, i is a diagonal matrix.
However, if V i,i

k,l ∈ V i, i in V SC(i), a vote in the i th category contains multiple

distinguishable values, then
{

V i,i
k,l

}
provides cross-classified sub-polls.

V i,i
k,l � V i,i

l,k , V i
k �

ni⋃

l�1

V i,i
k,l �

ni⋃

l�1

V i,i
l,k , k, l ∈ [1, ni ], i ∈ [1, m]. (3.17b)

In this case, the matrix V i, i is a symmetric matrix.
For a given V SC(i), V i, j

k,l ∈ V i, j in V SC(i), following equation is true.

V i
k �

n j⋃

l�1

V i, j
k,l k ∈ [1, ni ], l ∈ [1, n j ], i, j ∈ [1, m]. (3.18)

3.3.3 Probability Feature Matrix

Let Pi, j denote a probability feature matrix corresponding to the matrix Pi, j and{
pi, j

k,l

}
denote its element set, for any pi, j

k,l ∈ Pi, j ,
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pi, j
k,l �

⎧
⎨

⎩

|V i, j
k,l |/|V i

k |, V i
k � ∅;

0, V i
k � ∅.

(3.19)

Pi, j �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pi, j
1,1 . . . pi, j

1,l . . . pi, j
1,n j

. . . . . . . . .

pi, j
k,1 . . . pi, j

k,l . . . pi, j
k,n j

. . . . . . . . .

pi, j
ni ,1 . . . pi, j

ni ,l
. . . pi, j

ni ,n j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ∈ [1, ni ], l ∈ [1, n j ] (3.20)

For example, n1 � 6, n2 � 4, a probability feature matrix can be as follows:

P1,2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.04 0.26 0.1 0.6
0.42 0.2 0.3 0.18

0.14
0

0.21
0

0.42
0

0.23
0

0.008
0.33

0.022
0.01

0.75
0.23

0.22
0.43

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.21)

3.4 Probability Feature Vector

For any Pi, j , only at most ni row vectors in the matrix need to satisfy Eq. (3.22).

1 �
n j∑

l�1

pi, j
k,l , k ∈ [1, ni ], l ∈ [1, n j ], i, j ∈ [1, m]. (3.22)

The Eq. (3.22) can be established from Eq. (3.13c), if the column items partition
the sub-polls for the given row.

Because there is not any restriction among the columns of the probability feature
matrix Pi, j , such properties make flexible select different categories partitioning a

given vote set
{

pi, j
k,l

}
into multiple distributions in larger selection spaces to satisfy

complicated dynamic system requirements.
For a given Pi, j , if the ith item is a categorical index of candidates, then any

candidate k ∈ [1, ni ] has a probability feature vector corresponding to its probability
densities relevant to item j and denoted by �

i, j
k .

�
i, j
k �

(
pi, j

k,1, . . . , pi, j
k,l , . . . , pi, j

k,n j

)
, k ∈ [1, ni ], l ∈ [1, n j ], i, j ∈ [1, m] (3.23)
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3.5 Differences Between Two Probability Vectors

Let
{

V i
l

}
l∈[1,ni ]

sub-polls denote a vector Ṽ i � (
V0, V i

1 , . . . , V i
l , . . . , V i

ni

)
, l ∈

[1, ni ], this vote vector corresponds to a probability vector
�̃ i � (

p̃0, p̃i
1, . . . , p̃i

l , . . . , p̃i
ni

)
, l ∈ [1, ni ], let

p̃i
l � |V i

l |/(|V i |+|V0|) � Nl/N , l ∈ [1, ni ] (3.24)

and

p̃0 � |V0|/
(|V i |+|V0|

) � N0/N , i ∈ [1, m]. (3.25)

Let
{

V i
l

}
l∈[1,ni ]

sub-polls denote a vector V i � (
V i
1 , . . . , V i

l , . . . , V i
ni

)
, l ∈ [1, ni ]

and

pi
l � |V i

l |/|V i |� Nl/(N − N0), l ∈ [1, ni ] and i ∈ [1, m]. (3.26)

A vector V i is corresponding to a probability vector � i ,

� i � (
pi
1, . . . , pi

l , . . . , pi
ni

)
, l ∈ [1, ni ]. (3.27)

If the ith item of a vote indicates an ordinal number of candidates in an election,
a probability vector �̃ i is a special case of a linear spectral distribution.

For any lth candidate, if 1 ≥ p̃i
l >> p̃0 ≥ 0, then p̃i

l
∼� pi

l .
Considering the difference between the two probability measures,

pi
l − p̃i

l � Nl/(N − N0) − Nl/N

� Nl N0/N (N − N0)

� Nl/(N − N0) × N0/N

� pi
l × p̃0 ≥ 0 → 0. (3.28)

Equation (3.28) indicates that the probability measure of invalid votes is small
compared with the candidate measures. There is no significant difference for both
probability measures p̃i

l and pi
l for a candidate in two probability vectors �̃ i and � i

respectively.
If any lth and gth candidates gain a similar number of votes in an election to satisfy

the uncertain condition, then the difference between both probability measures pi
l

and pi
g are restricted by the uncertain condition too.

Considering probability measure difference under uncertain condition, their dif-
ference is
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| p̃i
l − p̃i

g| � | p̃i
l − pi

l + pi
l − p̃i

g + pi
g − pi

g|
� |pi

l − pi
g − ( p̃i

l − pi
l ) − ( p̃i

g − pi
g)|

� |pi
l − pi

g + (pi
l − p̃i

l ) + (pi
g − p̃i

g)| (3.29)

→
∵
(

pi
l − p̃i

l

)
+
(

pi
g − p̃i

g

) � (
pi

l + pi
g

) × p̃0 ≥ 0, (3.30)

∣
∣pi

l − pi
g

∣
∣ +

(
pi

l + pi
g

) × p̃0 ≤ ∣
∣ p̃i

l − p̃i
g

∣
∣ +

(
pi

l + pi
g

) × p̃0 ≤ p̃0 +
(

pi
l + pi

g

) × p̃0

∴
∣
∣pi

l − pi
g

∣
∣ ≤ 3 × p̃0. (3.31)

Equation (3.31) indicates that the new probability vector does not solve the uncer-
tain problem. To overcome the difficulty, other techniques need to be employed.

3.6 Permutation Invariant Group

For any �
i, j
k , a permutation invariant group �(i, j |k) can be constructed to collect

vectors using all elements in ψ
i, j
k as constructors of possible permutations.

3.6.1 Feature Index and Permutation Invariant Family

For a vector � ∈ �(i, j |k), if it is feasible to define a numeric measure (or feature
index) and all vectors ∀� ∈ �(i, j |k) have the same index, then the feature index λ

is an invariant of �(i, j |k).
For ∀� ∈ �(i, j |k),

{∃λ|λ(�) � λ(�) � c,� � �;�,� ∈ �(i, j |k), k ∈ [1, ni ], l ∈ [
1, n j

]
, i, j ∈ [1, m]

}
(3.32)

3.6.2 Polynomial Feature Index Family

For any probability vector � � (
p1, . . . , p j , . . . , pm

)
with m items and ∃k ∈

[1, m], pk > 0 a family of polynomial indexes {λn} is defined by Eqs. (3.33)–(3.36).

λ0(�) �
m∑

l�1

(pl)
0 � m; (3.33)

λ1(�) �
m∑

l�1

(pl)
1 � 1; (3.34)
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λ2(�) �
m∑

l�1

(pl)
2; (3.35)

…

λn(�) �
m∑

l�1

(pl)
n, n ≥ 0. (3.36)

For example, using the sample probabilitymatrix P1,2 ofEq. (3.21), its polynomial
indexes {λn} are

λ0(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4
4
4

4
4
4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; λ1(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
1

0
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; λ2(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.437616
0.3388
0.293

0
0.611448
0.3468

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

λ3(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.23464
0.11492
0.090664

0
0.43253416
0.127612

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; . . .

3.6.3 Entropy Feature Index

For a probability vector� � (
p1, . . . , p j , . . . , pm

)
with m items, an entropy feature

index λE is defined by Eq. (3.37).

λE (�) � −
m∑

l�1

pl * ln(pl). (3.37)

In polynomial index family {λn(�)}n≥0, λ0(�) indicates the length of vector and
λ1(�) provides the normalized measure. In addition to {λn(�)}n≥0 family, λE (�)
provides another type of indexes in relation to the entropy measurement. Using one
of these indexes, it is feasible to distinguish two probability vectors in different
permutation groups.

For example, using the same probability matrix P1,2 of Eq. (3.21), its entropy
index λE is
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λE (P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.015748065
1.356003379
1.305367539

0
0.6714638476
1.113842971

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.7 Two Probability Vectors and Their Feature Indexes

Two probability vectors �
i, j
k and �

i, j
l , have two distinct index families{

λn

(
�

i, j
k

)}

n≥0
,
{
λn

(
�

i, j
l

)}

n≥0
and ∃τ, λτ (�

i, j
k ) � λτ (�

i, j
l ), 1 < τ ≤ λ0(�

i, j
l )

then the two vectors belong to two different permutation groups.
For two probability vectors �

i, j
k and �

i, j
l , each vector belongs to one permuta-

tion group and cannot be generated from another vector then ∃n > 1, λn

(
�

i, j
k

)
�

λn

(
�

i, j
l

)
, 1 < n ≤ λ0

(
�

i, j
l

)
.

Under such conditions, if two vectors have different index families, then they
are in different permutation groups. In another way, when two vectors cannot be
generated from another one, at least one indexes is distinguishable.

3.8 CBM Construction

Let CBM denote a Component Ballot Model. A CBM is a collection of a ballot
form, vote sequences, poll and poll component matrix collection, probability matrix
collections with normalized probability vectors plus the selected indexing family for
an election.

CBM � (
B
∣
∣V, V S,

{
Pi, j

}
, {λi }

)
. (3.38)

Compared with SBM (Eq. 2.3) and CBM (Eq. 3.38), it is clear that the SMB is
the simplest case of CBM and CBM provides more powerful properties for refined
descriptions and comparisons in complicated voting applications.

Two-D Separable Proposition For two candidates to gain similar number of votes
in the uncertain condition, it is always feasible to use other categorical information
(i.e. location, age group) to re-partition sub polls for each candidate. If the two refined
probability feature vectors belong to two permutation groups, then the uncertain
problem can be solved in most case scenarios by using the polynomial feature index
family or the entropy future index.
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Proof For most case scenarios, cross-classified categorical data make corresponding
probability feature vectors with significant differences in relation to respective den-
sity distributions. Under different categories without simple correspondences, this
mechanism makes it possible to use the same strategy to handle votes for candidates.
Since one party may be very strong in certain polices and relative weak in other
strategies, those differences create various probability feature vectors easier located
in different permutation groups. Even in the most balanced election events from a
global viewpoint, hugely distinguishable distributions exist in local regions. This
is the most important reason for two probability feature vectors making a pair of
significantly distinct feature indexes. �
In a complex dynamic system, equilibrium is themost probable statewhen the system
is in dynamic balance. However, there are significant differences among local areas
even in the most equilibrium conditions. This is the most powerful part of proposed
model for solving uncertainty in general for complex dynamic systems.

For an election to avoid uncertainty and frustrations due to the voting result in
uncertainty, it is necessary to pre-select additional oddm −1 ≥ 1 categories different
from candidates. Following main conclusion can be statement.

Voting Authority Proposition If two candidates in an election under approval rule
are in uncertainty, then additional categories (odd m − 1 ≥ 1) under pre-agreed
conditions could be used. These create the m −1 pairs of feature indexes for making
the decision for who will be the winner.

Proof According to the two-D separable proposition, each additional category can
provide a pair of significantly distinct feature indexes to separate the two candidates,
and all selected m −1 pairs have such properties. Considering m −1 an odd number,
each pair of indexes acts as an authority vote. So, there is no problem using the
majority rule to make the decision. �

4 Conclusion and Further Work

In the proposedComponent BallotModel,multiple probability-featurematrix collec-
tions are employed and component categories other than the candidate are proposed
on ballot papers to overcome confusion and frustration when two candidates are in
uncertainty.

Applying advanced invariant constructions to probability feature vectors and also
distinguishable properties among measurements in polynomial and entropy feature
index families, voting authority provides a stable indexing mechanism to make the
whole calculation based on valid votes. Distinguishable properties and invariant
properties among feature index families provide reliable measurements for election
outcomes.

The basic ideas, tools and technologies in the chapter are originated and created
from the author’s research works in 1990s for advanced content-based information
retrieval and image feature indexing [18–20].



Voting Theory for Two Parties Under Approval Rule 189

Because the approval rule is onlyoneof the rules in practical voting systems, reader
may read author’s other paper discussing related aspects of voting theoryunder plural-
ity and majority rules [21]. It is interesting to know whether the proposed newmodel
can apply to other voting systems (such as Borda rules, proportional-representation
system and preference voting systems) consistently. Similar uncertainty exists in
other voting mechanisms. This will be a natural extension of current study.

To satisfy practical voting systems, it is essential to establish testing frameworks
to make recommendations for the specific invariant properties contained in the pro-
posed or new indexing families. There is no doubt that different voting systems may
require various combinations of different feature indexing schemes to satisfy their
optimal properties. More case studies linking between theoretical models and prac-
tical applications should be conducted to solve complicated voting paradoxes and
other similar problems.
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