
Chapter 5
Persistent Homology and Materials
Informatics

Mickaël Buchet, Yasuaki Hiraoka and Ippei Obayashi

Abstract This paper provides an introduction to persistent homology and

a survey of its applications to materials science. Mathematical prerequisites are

limited to elementary linear algebra. Important concepts in topological data anal-

ysis such as persistent homology and persistence diagram are explained in a self-

contained manner with several examples. These tools are applied to glass structural

analysis, crystallization of granular systems, and craze formation of polymers.

Keywords Persistent homology ⋅ Materials informatics ⋅ Topological data

analysis

5.1 Introduction

Because of the rapid growth of computers, internet, and experimental measurement

devices, huge amounts of data are now available and they induce drastic changes in

scientific activities. Namely, data-driven science has recently emerged and this new

trend also applies to materials science, leading to a new concept of materials infor-

matics. The basic strategy is to try to capture meaningful information embedded in

the database using machine learning. The readers can discover results at the frontiers

of materials informatics from some papers in this book.

A key to the success of materials informatics is to select compact descriptors of

data to appropriately study materials properties. Available data is large and compli-
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cated. Therefore, good descriptors are required for efficient applications of machine

learning, expanding the possibilities beyond conventional descriptors.

This story applies not only to materials science, but also to various communi-

ties in science and technology. Topological data analysis (TDA) has emerged in this

century [1] and shed a new light on data science. A distinguishing property of TDA

is that it provides tools for capturing the shape of data in a multi-scale way. They

capture topological and geometric features embedded in data and enable the study

of relationships of those detected features in different scales. Nowadays, topologi-

cal data analysis is applied to a wide variety of scientific and industrial areas (e.g.,

materials science, life science, neuroscience, and social networks).

A particularly important tool in TDA is persistent homology and persistence dia-

grams. Briefly speaking, these tools describe topological features characterized by

holes in data (components, rings, cavities, etc.). Practically, the input to persistent

homology is usually given as a finite point set in a Euclidean space or digital images

of any dimension. In materials science, atomic (or particle) configurations obtained

by molecular dynamics simulations as well as digital images observed by experi-

ments can be studied by these tools. The persistence diagram is a two-dimensional

histogram compactly expressing the output of persistent homology. Based on this

visualization, we can easily study higher dimensional topological features in a multi-

scale way.

The purpose of this paper is to provide a self-contained introduction to persis-

tent homology and survey several applications to materials science [2–5]. We only

assume knowledge of elementary linear algebra and show several examples to help

the readers’ understanding. We hope that this paper will be useful for materials sci-

entists to get used to persistent homology.
1

5.2 Mathematical Background

First, we review the mathematical background behind topological data analysis. Our

goal is to provide both a rigorous mathematical development and easily understand-

able intuition. The aim of topological data analysis is to provide an understanding

of the structure of data. For that, we first need to define what we are looking for and

then describe how to extract this information.

5.2.1 Homology

The structure we study is called homology. While homology is not as descriptive

as the maybe more classical concept of homotopy, it does present the undeniable

1
The readers can obtain further information of materials TDA project organized by our group from

the website http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/index.html.

http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/index.html.
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advantage of being computable. For the sake of simplicity, we will only introduce

the concept of simplicial homology.

We will endeavor to present the concept from the algebraic side while maintaining

a geometric intuition. We fix a set called the set of indices. In our case, we will only

use the set of integers ℕ.

Definition 5.2.1 A k-simplex is a set of k + 1 indices.

This very simple definition describes an abstract simplex. It can have an intuitive

geometric counterpart. Given a set of points numbered by indices, the geometric

k-simplex corresponding to a subset of indices is the convex hull of the subset of

points corresponding these indices. Within this geometric framework, a 0-simplex

is simply a point, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a

tetrahedron, and so on (see Fig. 5.1).

Definition 5.2.2 A simplicial complex X is a set of simplices such that for any 𝜎 ∈ X
and any 𝜎

′
⊂ 𝜎, 𝜎

′ ∈ X.

Therefore, a simplicial complex is a set of simplices with a very natural and simple

rule ensuring coherence. For example, if a triangle belongs to the simplicial complex

X, then the three edges that border it also belong to X as well as the three vertices.

Figure 5.2 illustrates this property. While the left object is a simplicial complex, the

middle one is not because the edge e is missing while the upper triangle exists. The

right one is also incorrect. A consequence of the definition is that the intersection

of two simplices is either empty or a simplex belonging to the simplicial complex.

Here p is the intersection of two simplices but it does not appear as a simplex. Note

that just adding p would not be sufficient to fix the construction.

We now introduce an algebraic notion of orientation to our simplices. Namely,

we fix an ordering on the indices.

Fig. 5.1 Example of

geometric simplices

0-simplex 1-simplex 2-simplex 3-simplex

Fig. 5.2 One simplicial

complex (left) and some

objects that are not simplicial

complexes e p
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Definition 5.2.3 Given a set of indices {v1,… , vk}, we define the oriented simplex

𝜎 = [v1,… , vk] as an ordered set. The opposite simplex is obtained by permuting

two indices: [v1,… vi,… , vj,… , vk] = −[v1,… , vj,… , vi,… , vk].

We choose a field k in order to study the topology of simplicial complexes with the

use of homology. Given a simplicial complex X, let X(n)
be the set of all n-simplices of

X. We use this set as the generating elements of the k-vector spaceΔn(X). This means

that an element of Δn(X) is of the form
∑

𝜎∈X(n) 𝛼𝜎𝜎 where {𝛼
𝜎
} are coefficient in k.

The addition operation is naturally
∑

𝜎∈X(n) 𝛼𝜎𝜎 +
∑

𝜎∈X(n) 𝛼
′
𝜎
𝜎 =

∑
𝜎∈X(n) (𝛼𝜎 + 𝛼

′
𝜎
)𝜎.

The next tool we need is to describe faces of a given simplex 𝜎. We do so by

indicating which vertex is opposite to it.

Definition 5.2.4 Given an ordered n-simplex 𝜎 = [v0,… , vn], we write [v0,… v̂i,

… vn] the (n − 1)-simplex obtained by removing the index vi.

Note that if an n-simplex 𝜎 belongs to a simplicial complex X, any one of its faces

is a (n − 1)-simplex and also belongs to X. We can hence define the following map.

Definition 5.2.5 Given a simplicial complex X, the boundary map 𝜕n ∶ Δn(X) →
Δn−1(X) is defined on the basis elements by:

𝜕n([v0,… , vn]) =
n∑

i=0
(−1)i[v0,… v̂i,… vn].

For example, the definition for n = 1, 2 is given by 𝜕1([v0, v1]) = [v1] − [v0] and

𝜕2([v0, v1, v2]) = [v1, v2] − [v0, v2] + [v0, v1]. By extending this operator to all ele-

ments of Δn(X), we obtain a linear map. Geometrically, the boundary operator

extracts the boundary of a chain while respecting the orientation (see Fig. 5.3).

By combining these operations for each dimension, we obtain the chain complex:

Δn+1(X)
𝜕n+1 Δn(X)

𝜕n Δ1(X)
𝜕1 Δ0(X)

𝜕0
0

Note that the composition of two consecutive boundary operators is zero. In other

words, for any n, 𝜕n−1𝜕n = 0. This property expresses the geometric fact that the

boundary of the boundary of an object is empty.

Fig. 5.3 Examples of

boundaries
∂1

∂2

� − +

�

��
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Let Ker 𝜕n = {c ∈ Δn(X)∶ 𝜕nc = 0} and Im 𝜕n+1 = {c ∈ Δn(X)∶ c = 𝜕n+1c′, c′ ∈
Δn+1(X)}, be the kernel and the image of the boundary maps. From the above prop-

erty, we have Im 𝜕n+1 ⊂ Ker 𝜕n. We can thus define homology by quotienting sub-

spaces.

Definition 5.2.6 The n-dimensional homology of X is defined as Hn(X) =
Ker 𝜕n∕Im 𝜕n+1.

Intuitively, homology describes holes of the structure. By counting generators of

homology, we obtain the Betti numbers which count topological features. The Betti

number in dimension 0 gives the number of connected components. In dimension 1,

it corresponds to the number of holes and in dimension 2 to the number of cavities,

and then generalizes to higher dimensions.

We now give an example of a simplicial complex with five vertices in Fig. 5.4 and

compute its homology.

In this simplicial complex, the simplex of highest dimension is the 2-simplex,

a.k.a. triangle, [1, 2, 3]. Therefore, Δ2(X) = k[1, 2, 3]. Looking at dimension 1 sim-

plices, we can see five different edges. Therefore,Δ1(X) = k[1, 4]⊕ k[4, 2]⊕ k[1, 2]
⊕ k[2, 3]⊕ k[1, 3]. Finally, we have 5 points and, therefore, Δ0(X) = k[1]⊕ k[2]⊕
k[3]⊕ k[4]⊕ k[5].

First, remark that for any dimension n ≥ 3, the boundary map 𝜕n = 0 and, there-

fore, Ker 𝜕n = 0 and Hn(X) = 0. We first need to consider the matrix associated with

𝜕2. Writing the matrix M2 associated with the boundary map 𝜕2, we obtain,

M2 =

[1, 2, 3]
⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

0 [1, 4]
0 [4, 2]
1 [1, 2]
1 [2, 3]
−1 [1, 3]

We can immediately deduce that Ker 𝜕2 = 0 and Im 𝜕2 = k([1, 2] + [2, 3] −
[1, 3]). Hence H2(X) = Ker 𝜕2∕Im 𝜕3 = 0. To compute H1(X), we also need to con-

sider the matrix M1 associated with 𝜕1.

Fig. 5.4 Example of a

simplicial complex

1

2

3

4

5
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M1 =

[1, 4] [4, 2] [1, 2] [2, 3] [1, 3]
⎛
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎠

−1 0 −1 0 −1 [1]
0 1 1 −1 0 [2]
0 0 0 1 1 [3]
1 −1 0 0 0 [4]
0 0 0 0 0 [5]

A simple computation yields that Ker 𝜕1 = k([1, 4] + [4, 2] − [1, 2]) + k([1, 2] +
[2, 3] − [1, 3]). Therefore, the homology H1(X) = Ker 𝜕1∕Im 𝜕2 = k([1, 4] + [4, 2] −
[1, 2] + Im 𝜕2) ≅ k. In other words, the one-dimensional homology is isomorphic to

k and, therefore, has dimension 1. It means that there exists one hole. Moreover, one

possible representative of the class is the cycle [1, 4] + [4, 2] − [1, 2]. Note that this

representative is not unique as [1, 4] + [4, 2] + [2, 3] − [1, 3] is also a representative

of the same class. Intuitively, the quotient operation means that given a cycle in

dimension d, we can add or remove the boundary of simplices of dimension d + 1
without changing the equivalence class. In our example, the cycle corresponding to

the hole is equivalent to the one obtained by adding the boundary of the triangle

[1, 2, 3] to it.

To finish, remark that Im 𝜕1 = k([4] − [1]) + k([2] − [4]) + k([3] − [2]) and that

𝜕0 is a zero map. Therefore, Ker 𝜕0 = k[1] + k[2] + k[3] + k[4] + k[5] and H0(X) ≅
k2 which indicates the presence of two connected components.

5.2.2 From Point Sets to Simplicial Complexes

The construction of simplicial homology relies on simplicial complexes. The first

task is to build such a simplicial complex from our data. We consider here an input

given as a set of points P ⊂ ℝd
in a Euclidean space. We want to build a geometric

simplicial complex, id est a continuous space, from the point set P which is a discrete

space. To do so, we consider balls around these points.

Given a radius r and a point x, we denote B(x, r) the ball centered at x and of

radius r. We consider the union ∪x∈PB(x, r) of all balls of radius r centered at points

of P. We define the nerve of the union of balls also called the Čech complex, which

is a geometric simplicial complex whose vertices are the points of P.

Definition 5.2.7 The Čech complex is defined as Cr(P) = {𝜎| ∩p∈𝜎 B(p, r) ≠ ∅}.

Each point is associated with a ball. Note that all the balls are non-empty if r >

0 and, therefore, all points of P belong to the Čech complex. An edge belongs to

the complex if and only if the two balls corresponding to its extremities intersect.

Similarly, a triangle requires the common intersection of its three vertices’ balls to

be non-empty to belong to the Čech complex.
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Fig. 5.5 Example of Čech complex

Considering the Čech complex is enough to study the topology of the union of

balls as the Nerve Theorem [6, 4G.3] implies:

Proposition 5.2.8 Given a set of points P in a Euclidean space and a radius r, the
union of balls ∪p∈PB(p, r) and the Čech complex Cr(P) are homotopy equivalent.

Intuitively, two spaces are homotopy equivalent if we can deform continuously

one into the other. Therefore, they have the same topological structure and studying

the homology of one is equivalent to studying the homology of the other one. The

construction is illustrated in Fig. 5.5.

It is important to note that the construction can be made with any union of balls.

The Nerve Theorem is not limited to Čech complexes. From an applicative stand-

point in material science, the notion of weighted Čech complexes is especially useful.

When the input is a set of atomic positions with different type of atoms, we can reflect

the size of each particular atom by modifying the radius accordingly. We obtain a

union of balls with different radii, bigger atoms having larger balls.

5.2.3 Persistent Homology

A major problem that arises is the choice of the radius r. Choosing a radius gives a

snapshot of the topology at the corresponding scale but does not encapture the whole

topological structure. Persistent homology is a tool that allows multi-scale analysis.

Instead of looking at one given radius, we can look at the evolution of topological

features across scales.

In the context of material science, this allows to not only detect topological fea-

tures but also to classify them depending on their scale. This is related to the diameter

and the geometry of holes and cavities.

First, notice that the union of balls we considered previously possesses a natural

inclusion when the radius increases. Given some radii r1 ≤ · · · ≤ ri ≤ · · · ≤ rl, we

have:

∪pB(p, r1) ↪ ∪pB(p, r2) ↪ · · · ↪ ∪pB(p, ri) ↪ · · · ↪ ∪pB(p, rl).
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This sequence can be transformed in a sequence of inclusions between simplicial

complexes by taking the nerve of each union of balls. We obtain the following Čech

filtration.

Cr1 (P) ↪ Cr2 (P) ↪ · · · ↪ Cri
(P) ↪ · · · ↪ Crl

(P).

We then use the homological construction for each of these spaces to obtain a

sequence of vector spaces linked by linear maps. We denote Hn(Cr(P)) the homol-

ogy vector space built using Cr(P) for a given dimension n. Since the choice of the

working dimension does not have an influence on the theoretical results, we indicate

it by writing H∗(Cr(P)).

Definition 5.2.9 Given an ordered index set I and a field k, a persistence module H
is a sequence (Φi)i∈I of vector spaces and linear maps (𝜙j

i)i≤j where 𝜙
j
i ∶ Φi → Φj

and for all i ≤ j ≤ k, 𝜙
k
i = 𝜙

k
j ◦𝜙

j
i.

A persistence module is a sequence of vector spaces linked by linear maps. The

condition on the linear maps is that they commute. Intuitively, this means that we

can decompose and recompose them. Working on the previous chain sequence, we

build at homology level the following persistence module.

H∗(Cr1 (P)) → H∗(Cr2 (P)) → · · · → H∗(Cri
(P)) → · · · → H∗(Crl

(P))

The Persistent Nerve Lemma [7] guarantees that this persistent module is isomor-

phic to the one we can build using the union of balls. Therefore, studying the Čech

filtered complex is equivalent to studying the filtered union of balls.

The critical property of the persistence module is its decomposability. Indecom-

posables, in other words, the building blocks, are called interval modules. They con-

sist of a sequence of one-dimensional vector spaces linked by identity maps.

0 → k → k → k → 0 → 0

In this example of an interval module, we have six values of indices we name

{1,… , 6}. The interval spans from the second to the fourth so we denote it I[2, 4].
All maps between the nonzero vector spaces are identity maps.

The following property ensures that the persistence modules we consider are

uniquely decomposables into a direct sum of intervals.

Proposition 5.2.10 A persistence module whose every vector space is finite dimen-
sional is uniquely decomposable into a direct sum of interval modules.

Note that in our setting, we build finite simplicial complexes from finite point

sets. Therefore, everything is finite, especially the dimension of the vector spaces.

Thus the Proposition applies. There exist various more general variants [8, 9] of this

result but we limit ourselves to this one for the sake of simplicity.
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Intuitively, intervals have a birth, the first index where the vector space is nonzero,

and a death, the first index where the vector space is zero after having been nonzero.

The first index for which a simplex 𝜎 belongs to the complex is called the apparition

time of 𝜎. Intervals correspond to the existence of topological features. In the case of

a one-dimensional cycle, for example, the birth corresponds to the apparition time

of the edge forming the cycle and the death corresponds to the apparition time of the

triangle that fills it completely.

Formally, a persistence module H can be associated with a set of pairs (bi, di) such

that:

H =
⨁

I[bi, di]

We can represent each of the interval I[b, d] as a bar starting at b and ending at

d. We thus obtain a figure called barcode that describes the decomposition of the

persistence module. Figure 5.6 shows an example of barcode.

There exists a natural bijection from barcodes to multi-sets of ℝ2
denoted D =

{(b, d)}. This multi-set is called a persistence diagram (PD for short) and is often

represented as in Fig. 5.7.

H0

H1

Fig. 5.6 Simplicial complex, topological features, and barcode for zero and one-dimensional

homology

Fig. 5.7 From barcode to persistence diagram
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Interpretation of persistence diagrams reveals two different kinds of information.

First, it indicates, which features are probably relevant as they are those far away

from the diagonal. Second, it can separate features according to a combination of

size and shape that contribute to their lifespan.

5.2.4 Computation

From a computational point of view, persistent homology is very intuitive. Consid-

ering that we build the simplicial complex from scratch, we add one simplex at a

time according to their apparition time. If multiple simplices are added at the same

time, we can arbitrarily choose the order in which we insert them. This allows us to

maintain a simplicial complex at all steps.

When a d-simplex is inserted, there are two possible cases. Either the simplex is

negative which means that it destroys a (d − 1)-dimensional feature, or it is positive
and creates a d-dimensional feature. Figure 5.8 shows the two kinds of 1-simplices.

Note that the object on the left has two connected components and no cycle. The

first edge we introduce kills one of the connected component and, therefore, is neg-

ative. The second one has its two extremities in the same connected component and,

therefore, is positive, creating a cycle.

To compute the barcode, a positive simplex is trivial to handle. We just need to

create a new bar. However, a negative simplex is more complicated. We need to find

which feature is being killed and that is nontrivial. In our example, we do not know

which of the two connected component should be considered as dead and which

one is still alive. Persistent homology follows the rule that the oldest one survives.

Therefore, we kill the one that appeared last.

This very intuitive algorithm has an algebraic counterpart. We build a boundary

matrix that contains the incidence information of all simplices. Each column and row

represent a simplex and they are ordered by apparition time. Rows are the boundaries

of columns.

Computing persistent homology is equivalent to reducing that matrix with the

following rules. Every time we introduce a new simplex, id est a new column, we are

free to use the columns on the left and add multiple of them to the new column. Any

Fig. 5.8 Insertion of the two types of edges
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Fig. 5.9 Filtration on a triangle

zero column corresponds to a topological feature. A nonzero column corresponds to

the death of the feature created at the time of the lowest nonzero index.

We now provide a simple example and do the whole computation. We build a

complex containing a triangle, its edges and vertices filtered in the order shown in

Fig. 5.9.

We fix an arbitrary orientation on every simplex by sorting indices in increasing

order of apparition. Therefore, we consider the boundary of edge [3] to be [2] − [1].
We then obtain the following boundary matrix.

[1] [2] [3] [4] [5] [6] [7]
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[1] 0 0 −1 0 −1 0 0
[2] 0 0 1 0 0 −1 0
[3] 0 0 0 0 0 0 1
[4] 0 0 0 0 1 1 0
[5] 0 0 0 0 0 0 −1
[6] 0 0 0 0 0 0 1
[7] 0 0 0 0 0 0 0

First, note that this matrix is upper triangular. This is a direct consequence of

having a filtered complex. A simplex cannot appear before one of its faces.

We now do the computation for this example. First, we introduce columns [1]
and [2] which are zero and corresponds to 0-simplices. Therefore, it creates two

connected components. Then we add [3] which cannot be reduced by elements on

its left and, therefore, kills a feature. The lowest nonzero entry corresponds to line [2]
so [3] kills the feature created by [2]. In the same way, [4] creates a new connected

component killed by [5].
The insertion of [6], however, introduces a column that can be reduced using

columns located on its left. More precisely [6] = [5] − [3]. Note that it is easy to

detect such a case as it suffices to look at the lowest nonzero entry, cancel it and then

recurse. Hence [6] creates a cycle, id est a one-dimensional feature, which is then

killed by the insertion of [7].
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The resulting matrix can be expressed as:

[1] [2] [3] [4] [5] [6] + [3] − [5] [7]
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

[1] 0 0 −1 0 −1 0 0
[2] 0 0 1 0 0 0 0
[3] 0 0 0 0 0 0 1
[4] 0 0 0 0 1 0 0
[5] 0 0 0 0 0 0 −1
[6] 0 0 0 0 0 0 1
[7] 0 0 0 0 0 0 0

Note that the algorithm provides a few extra information for free. We obtain

matches between positive simplices and negative ones. Moreover, we get a repre-

sentant of each homology class being created. Here, the cycle can be represented

by [6] + [3] − [5]. Beware that this representant is not necessarily the unique repre-

sentant in its class nor looks good from a geometric point of view. Its structure is

disconnected from the geometry.

This algorithm has a worst case running time that is cubic in the number of sim-

plices. In practice, however, implementations work much faster, mostly because of

the sparsity of the boundary matrix. There are numerous libraries that compute per-

sistent homology and that are aimed at different public. Some of the most recent

ones are the TDA package in R [10] intended for statisticians, DIPHA [11] and

GUDHI [12] that are state-of-the-art approaches from the computational topology

community or HomCloud [13] which aims at a more experimentalist public with

additional tools and graphical output. This list is non-exhaustive and many more

exist.

5.2.5 Digital Images

Until now we focused on point sets. We now look into what is different when we

want to work with digital images.

By digital images, we mean a multidimensional array of value that can be either

0 or 1. For example, a two-dimensional array is a black and white image. The tab-

ular structure is particular and our previous geometric construction using the Čech

complex is not the most suitable here. We replace simplicial complexes by cubical

complexes. The idea is similar but we use squares instead of triangles and cubes

instead of tetrahedron and so on.

Taking the example of an image, we build the complex with the following rule.

Every pixel is given a value 𝛼 and the cubic complex at time 𝛼 contains all pixels

whose value is less than 𝛼. Moreover, two adjacent pixels are linked if both of them

have values below 𝛼. Four pixels in a square shape corresponds to a square in the

complex if all of them have value less than 𝛼. The construction extends naturally to
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higher dimensions. Note that the resulting object is indeed a complex in the sense

that any element belonging to it has faces that also belong to it.

The next question is how to choose the value 𝛼 for each pixel. We want to give

a description of the topology of the areas, taking geometry into consideration. Note

that if we just keep 0 and 1, we do only compare black and white areas. We thus put

new values on each pixel depending on the distance to the other color. A black pixel

adjacent to a white pixel is valued 0 and then the next black pixel is valued −1 and

so on. Conversely, white pixels are valued increasingly depending on the distance

to the nearest black pixel. Figure 5.10 shows the example of how to choose 𝛼 and

Fig. 5.11 shows the filtration by those 𝛼.

Fig. 5.10 Example of choosing 𝛼. The left figure shows an input digital image and the right figure

shows the assignment of 𝛼 on each pixel

Fig. 5.11 Filtration for a digital image
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Our construction provides a way to analyze digital images through the lense of

persistent homology. It provides good insight into the structure of objects. More-

over, this simple approach to topological data analysis can be combined to machine

learning to obtain interesting results [14].

5.3 Materials TDA

In this section, we briefly explain some applications of persistent homology to mate-

rials science. For details of each subject, we refer the readers to the original papers

listed therein.

5.3.1 Silica Glass

Our first application is the structural analysis of silica glasses by using persistent

homology [2]. There is a long history of trying to understand geometric structures

of glass materials. From the experimental side, Xray/neutron scattering diffractions

and the transmission electron microscopy (TEM) are often used to study the geomet-

ric structures of atomic configurations. On the other hand, from the computational

side, molecular dynamics simulations, reverse Monte Carlo, and first-principles cal-

culation based on density function theory are used to simulate atomic configurations.

Although our understanding of glass structures is becoming richer, we have not yet

reached a sufficient level.

One of the problems we are facing is the lack of appropriate descriptors to com-

pactly and quantitatively express the geometry of glass atomic configurations. In the

computational studies, we usually apply radial distribution functions, ring statistics,

and Voronoi polyhedron analysis as conventional descriptors to the atomic configu-

rations. However, those tools are restricted to the study of either the zero-dimensional

topology (connected components) or single scale properties. As we have seen so far,

persistence diagrams provide a tool for multi-scale analysis of higher topological fea-

tures. This is presumably the most desired function for deeper analysis of amorphous

structures.

Our idea is that, given an atomic configuration of silica (SiO2), we regard it as a

point cloud and characterize its geometric and topological structures by using per-

sistent homology. Namely, we put balls with radius rSi and rO on silicon atoms and

oxygen atoms, respectively, and gradually increase those radii to study birth and

death events of holes in the atomic ball models in a multi-scale way. Technically,

the initial radii rSi and rO are determined from the first peak positions of the partial

radial distribution functions.

Figure 5.12 shows the one-dimensional persistence diagrams computed in the liq-

uid, glass, and crystal states of silica, respectively. We denote them by D1(liq),
D1(amo), and D1(cry), respectively. Recall that the one-dimensional persistence

diagram studies ring structures embedded in the atomic configurations. Here, the

color bar is plotted on the logarithmic scale. The atomic configurations, consisting
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Fig. 5.12 Persistence diagrams of silica in liquid (left), glass (middle), and crystal (right) states

(Reproduced from [2])

of 2,700 silicon atoms and 5,400 oxygen atoms, are prepared via the Beest-Kramer-

Santen (BKS) model. We refer the readers to the original paper for details on prepar-

ing those atomic configurations by molecular dynamics simulations.

As we observe from Fig. 5.12, the persistence diagrams clearly distinguish these

three states. Namely, the liquid, glass, and crystal states are characterized by planar

(2-dim), curvilinear (1-dim), and island (0-dim) regions of the distributions, respec-

tively. Here, the 0 and 2 dimensionality of the PDs result from the periodic and ran-

dom atomic configurations of the crystal and liquid states, respectively. In particular,

we emphasize that the presence of the curves in D1(amo) clearly distinguishes the

glass state from the others. This implies that specific geometric features of the rings

generating these curves in D1(amo) play a significant role to elucidate glass states.

Let us consider the meaning of curves. We first remark that, since our system

consists of a large enough amount of atoms (8,100 atoms), statistical information

is also embedded in each persistence diagram. From this respect, the presence of

curve means that generators on each curve are restricted to that curve. Namely, each

generator is not allowed to move in the normal direction of the curve, but possibly

move to the tangential direction. We recall that generators in the persistence diagram

are characterized by ring configurations of atoms. Hence, by pulling back these nor-

mal directions of curves, we obtain geometric constraints of local deformations to

which atomic configurations are prohibited. In other words, a rigidity information

with respect to small deformation of the atomic configuration is embedded in the

persistence diagram. Actually, in the original paper, the relationship between persis-

tence diagrams and rigidity based on the small deformation of atomic configurations

induced by isotropic pressurization is studied in detail. From the same observation,

we also remark that the persistence diagram of crystal state shows further geometric

constraints.

The silica is a typical glass material classified as network forming glasses. In [2],

we also studied another type of glass materials based on random packing structures.

For instance, Fig. 5.13 shows the one-dimensional and two-dimensional persistence

diagrams of the Lennard-Jones (LJ) system in crystal and glass states, denoted by

Dk(LJ
cry) and Dk(LJ

amo) (k = 1, 2). In this case, not only the one-dimensional persis-

tence diagrams but also the two-dimensional persistence diagrams show characteris-

tic features. Similar to the silica case, a deviation of the persistence diagrams of the
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D1(ALJ
cry) D2(ALJ

cry)

D1(ALJ
amo) D2(ALJ

amo)

Fig. 5.13 Persistence diagrams of the Lennard-Jones system in crystal and glass states (Repro-

duced from [2])

glass state from those of the crystal state is observed. In particular, D2(LJ
amo) shows

a peak corresponding to octahedral configurations.

As we see, the persistence diagrams clarify topological and geometric features

embedded in atomic configurations, which cannot be characterized by other con-

ventional methods. Note that those persistence diagrams are computed on atomic

configurations given in a fixed system size. Therefore, we need to be careful about

the dependence of the system sizes. The scaling properties of PDs with respect to the

system size are computationally studied in [4]. Recently, the existence and unique-

ness of limiting persistence diagram is mathematically solved in [15].

Starting from the research explained in this subsection, persistence diagrams are

nowadays applied to a wide variety of structural analysis of materials.

5.3.2 Grain Packing

In the paper [5], crystallization mechanism of three-dimensional granular packings

of frictional spheres is studied at the grain-scale using Xray tomography and persis-

tent homology. Here, we briefly review some of the results.
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(a) (b) (c) (d)

Fig. 5.14 Persistence diagrams of grain configurations for different packing ratios (Reproduced

from [5])

In this study, three-dimensional images of granular packings with several packing

ratio 𝜙 are obtained by using XCT, and these images provide precise positional coor-

dinates of grains. Our interest is to characterize the skeleton deformation structures

of grain configurations during the crystallization process. For experimental details,

please see the original paper.

Figure 5.14 shows the two-dimensional persistence diagrams computed on the

grain configurations for four packing ratios 𝜙 = 0.6, 0.63, 0.69, and 0.73. Here, we

note that the packing ratio 𝜙 = 0.64 is known as the Bernal’s density at which

sharp structural transition to jamming is observed. As we observe from the figure,

the persistence diagram (d) at the crystallized state consists of two strong peaks at

(0.288, 0.353) and (0.288, 0.5), and they correspond to the regular tetrahedral and

the regular octahedral configurations, respectively. We note that the persistence dia-

gram (c) is similar to D2(LJ
amo) in Fig. 5.13 (the Lennard-Jones system), since both

are classified as random packing systems.

The tetrahedral peaks are well preserved for all packing ratios, while the octahe-

dral peaks only exist at (c) and (d). Actually, further studies show that the octahedral

peaks are only observable for packing ratios 𝜙 > 0.64.

Next, let us study the persistence diagram (c) at 𝜙 = 0.69 in detail. Figure 5.15a

is the same persistence diagram at 𝜙 = 0.69, in which four curves (D1, D2, D3, and

D4) corresponding to the boundaries are drawn. In the paper, we found the analytical

expressions of the actual deformations of grain configurations corresponding to these

curves. Figure 5.15b and c show those deformations. It follows from a discussion

similiar to the silica glass case that distorted tetrahedra and octahedra are confined

in the region bounded by D1-D4 and those deformations give geometric constraints

during the crystallization process.

5.3.3 Craze Formation of Polymer

Craze formation has been intensively investigated by experiments such as electron

microscopy, optical microscopy, atomic force microscopy, and so on. From these
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Fig. 5.15 Persistence diagram at 𝜙 = 0.69 and the deformations of tetrahedra and octahedra gen-

erating the boundary curves D1–D4 (Reproduced from [5])

experimental observations, several kinetic models of craze formation have been pro-

posed so far.

On the other hand, molecular dynamics (MD) simulations have also been applied

to understand atomic-scale craze formation mechanisms, which are difficult to observe

by experiments. However, the relation between the kinetic models and the MD sim-

ulations still remains unclear. This is partially due to the lack of definition of voids in

the MD simulations. We note that, since MD simulations are based on the discretized

systems, the definition of voids which are consistent with multi-scalability is not triv-

ial. However, such a multi-scalable definition of voids is unavoidable to study the

growing process of voids as continuum phenomena, where the kinetic models are

discussed. As we now know, persistence diagrams provide an appropriate tool for

this purpose.

In the paper [3], a persistent homology analysis is applied to investigate the behav-

ior of nanovoids during the crazing process of glassy polymers. We carry out a

coarse-grained molecular dynamics simulation of the uniaxial deformation of an

amorphous polymer and analyze the results with persistent homology.

We first compute persistence diagrams of simulation results at each time snapshot.

After yielding, several large voids appear, and we detect them from persistence dia-

grams as generators with large death values as these values measure the size of voids.

Then, we reverse the time evolution of the simulation to investigate the initial con-

figurations of those large voids. Then, we revealed that those large voids are created

by the coalescences of small voids during craze formation. Figure 5.16 shows some
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Fig. 5.16 Void percolation (Reproduced from [3])

of those coalescences during crazing, where gray voids correspond to large voids

observed after yielding and other colored small voids coalesce to those gray voids.

The results suggest that the yielding process should be regarded as the percolation

of nanovoids created by deformation.

5.4 Discussions

In this paper, we summarized persistent homology and its applications to materials

science. From these applications, we observed that persistence diagrams are signifi-

cant descriptors for characterizing multi-scale disordered structures in materials. The

next stage toward materials informatics is to combine TDA with machine learning.

Machine learning enables us to capture characteristic patterns from a large amount

of data, and TDA enables us to summarize the shape of data quantitatively. There-

fore, by combining these two data analysis methods, we can effectively capture the

characteristic geometric patterns of the data. Since many machine learning methods

accept vectors as input data, we need to convert a persistence diagram into a vector.

Some vectorization methods are proposed, and here we introduce two methods with

some applications.

One method is the persistence image (PI) [16], which uses a histogram on a finite

mesh with smoothing and weighting applied. The histogram values are ordered con-

sistently and we treat it as a finite dimensional vector. In [14], PI is used with logistic

regression and linear regression to find a hidden relationship between a persistence

diagram obtained from data and a parameter bound to data. In that paper, inverse

analysis is effectively used to clarify the geometric origins of birth-death pairs impor-

tant for the relationship. For materials informatics, we can apply the method to find

the characteristic geometric patterns of materials data related to their physical prop-

erties such as Young’s modulus and conductivity.

Another method is the persistence weighted Gaussian kernel (PWGK) [17, 18], a

kind of kernel methods. PWGK maps a persistence diagram into a vector in an infi-

nite dimensional Hilbert space. It is impossible to directly treat infinite dimensional

vectors on a computer, but using the kernel trick technique, we can indirectly treat
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the vectors to apply various kinds of machine learning methods. This method shows

good performance in some examples in [17] and is applied to practical problems in

[17, 18], e.g., estimating the liquid-glass transition point by using changing point

analysis and classifying proteins by using support vector machine.
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