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Abstract. Low-rank and sparse separation models have been success-
fully applied to background modeling and achieved promising results on
moving object detection. It is still a challenging task in complex environ-
ment. In this paper, we propose to enforce the spatial compactness and
appearance consistency in the low-rank and sparse separation frame-
work. Given the data matrix that accumulates sequential frames from
the input video, our model detects the moving objects as sparse out-
liers against the low-rank structure background. Furthermore, we explore
the spatial compactness by enforcing the consistency among the pixels
within the same superpixel. This strategy can simultaneously promote
the appearance consistency since the superpixel is defined as the pixels
with homogenous appearance nearby the neighborhood. The extensive
experiments on public GTD dataset suggest that, our model can better
preserve the boundary information of the objects and achieves superior
performance against other state-of-the-arts.

Keywords: Low-rank representation · Smoothness constraint
Spatial compactness · Appearance consistency

1 Introduction

Moving object detection is a fundamental problem in video analysis, and plays
a critical role in numerous vision applications, such as intelligent transporta-
tion [1], vehicle navigation [25] and scene understanding [17]. Over the years, many
approaches have been proposed for moving object detection while background
subtraction has been recognized as one of the most competitive approaches.

Conventional background modelling methods include single Gaussian dis-
tribution [23], Mixture of Gaussian [7,21], and their variations, VIBE [2] and
fuzzy concepts based methods [3]. However, these methods model the background
for each pixel independently and lack of the relations between the consecutive
frames, thus they are very sensitive to noises and occlusions.
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Recently, the low-rank and sparse separation framework has emerged by
decomposing the video sequence into low-rank background and sparse fore-
grounds (moving objects). One pioneering work is Robust Principal Component
Analysis (RPCA) [12,14,22], which decomposes a given matrix/frames into a
low-rank background matrix and sparse foreground matrix. Candès et al. [6]
proposed to recover the low-rank and sparse components individually by solv-
ing a convenient convex program called Principal Component Pursuit (PCP).
Zhou et al. [27] proposed to handle both small entrywise noises and gross sparse
errors. Dou et al. [10] proposed a incremental learning based LRR model using
K-SVD for dictionary learning. Zhou et al. [26] proposed to relax the require-
ment of sparse and random distribution of corruption by preserving l0-penalty
and modeling the spatial contiguity of the sequence. In order to enforce the
appearance consistency onto the spatial neighboring relationship, Xin et al. [24]
introduced the intensity similarities to the neighboring pixels via regularization
terms for both the foreground and background matrices. However, these methods
constructed the graph only based on pixel level which ignored the spatial com-
pactness. Recently, Javed et al. [11] proposed a superpixel-based online matrix
decomposition method which separate the low-rank background and sparse fore-
grounds on the superpixel level. However, the performance may excessively rely
on the superpixel prior which often produces unfaithful segmentation.

As we observed, the objects are generally spatially compact and consistent
in appearance which means the pixels in the same concept of spatial region with
close appearance tend to belong to the same pattern (foreground/background).
Based on this observation, our main effort is to explore the spatial compactness
and the appearance consistency of the objects based on the general framework of
low-rank and sparse separation. Specifically, we first encourage the appearance
consistency for the object by weighting the neighboring pixel pairs with the
appearance similarity. Furthermore, we enforce the global spatial compactness
on the superpixel level by constructing the informative graphs for the pixels
within the same superpixel. Noted that the superpixel strategy can also promote
the appearance consistency since a superpixel is defined as the perceptually
consistent unit in appearance.

2 Our Approach

In this section, we will present our model by elaborating the enforcement of
spatial compactness and appearance consistency in the low-rank and sparse sep-
aration framework, followed by the alternating optimization algorithm.

2.1 Problem Formulation

In this paper, we formulate the problem of foreground detection as a low-rank
and sparse separation model. A video sequence D = [f1, f2, . . . , fn] ∈ R

m×n

is composed of n frames by of m pixels per frame. B ∈ R
m×n is a background
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matrix, which denotes the underlying background images. Our goal is to discover
the object mask S from data matrices D, where Sij is a binary matrix:

Sij =

{
0,

1,

if ij is background,

if ij is foreground.
(1)

We assume that the underlying background images are linearly correlated and
the foregrounds are sparse and contiguous, which has been successfully applied
in background modeling [16,26]. Furthermore, for the background region where
Sij = 0, we assume that Dij = Bij + εij , where εij denotes i.i.d. Gaussian noise.
Based on the above assumptions, we have:

min
B,Sij∈{0,1}

α‖vec(S)‖0
s.t. S⊥ ◦ D = S⊥ ◦ (B + ε), rank(B) ≤ r,

(2)

where α is a penalized factor, and ||X||0 indicates the l0 norm of a vector. The
operator “◦” denotes element-wise multiplication of two matrices, S⊥ denotes
the region of Sij = 0, and r is a constant that suppresses the complexity of the
background model.

Appearance consistency. Due to the non-convexity of l0 norm of the matrix
S, a common practice is to introduce a contiguous constraint to form a MRF [8]
model which can be solved by graph cuts [4,15]. In order to preserve the spatial
smoothness of the objects, [16,26] constructed the graph based on the neighbor-
ing pixels. However, it is necessary to enforce the appearance similarity onto the
neighboring pixels for the informative graphs [11,24]. Therefore, we construct
the smoothness by:

||C vec(S)||1 =
∑

(ij,kl)∈ε

wij,kl |Sij − Skl|, (3)

where, ||X||1 =
∑

ij |Xij| denotes the l1-norm, ε denotes the edge set connecting
spatially neighboring pixels, (ij, kl) ∈ ε when pixel ij and kl are spatially con-
nected. C is the node-edge incidence matrix denoting the connecting relationship
among pixels, and vec(S) is a vectorize operator on matrix S. Among them, con-
sider the first term ||C vec(S)||1 in Eq. (7) represents the difference between the
adjacent pixels wij,kl indicates the adaptive weighting factor between the pixels
and is defined as:

wij,kl = exp
−||dij − dkl||22

2σ2
(4)

where dij and dkl represent the intensity of pixel ij and kl respectively and σ
is a tunning parameter. Based on this construction, as shown in Fig. 1(a), the
higher probability that a pair of pixels belongs to the same segment (with close
intensity), the stronger correlation between this pair, which can further enforce
the appearance consistency between neighboring pixels.
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Fig. 1. Illustration of generating the informative graphs. (a) Constructing the weighted
graphs for the neighboring pixels where the thicker links between pixel pairs indicate the
higher appearance similarity. (b) Constructing graphs between the pixel pairs within
the same superpixel. (Color figure online)

Spatial compactness. It is observed that, the pixels from the same superpixel,
which is a perceptually consistent unit in color and texture, are basically derived
from the same concept (background/foreground). In order to enforce this spatial
compactness, we further construct the fully connected graph between the pixels
within each superpixel (as shown in Fig. 1(b)) generated by the lazy random
walks (LRW) [20] and introduce the spatial compactness into the model via:

||A vec(S)||1 =
∑

(ij,pq)∈N
|Sij − Spq|, (5)

where, N indicates edge set connecting all the pixel pairs within each superpixel
and A is the node-edge incidence matrix denoting the connecting relationship
among pixels. It can also promote the appearance consistency since the super-
pixel consists of the consistent unit in color and texture.

As concluded, we can integrate our formulation by enforcing the spatial com-
pactness and appearance consistency into Eq. (2) as:

min
B,Sij∈{0,1}

α‖vec(S)‖0 + μ||E vec(S)||1,

s.t. S⊥ ◦ D = S⊥ ◦ (B + ε), rank(B) ≤ r,
(6)

with:
||E vec(S)||1 = β||C vec(S)||1 + γ||A vec(S)||1, (7)

where μ, β and γ are tuning parameters.

2.2 Model Optimization

Equation (6) is a NP-hard problem, to make Eq. (6) tractable, we relax the rank
operator on B with the nuclear norm, the nuclear norm has proven to be an



54 M. Xu et al.

effective convex surrogate of the rank operator [19]. Therefore, Eq. (6) can be
reformulated as:

min
B,Sij∈{0,1}

1
2

||PS⊥(D − B)||2F + α‖vec(S)‖0 + μ||E vec(S)||1 + λ‖B‖∗, (8)

where λ is a balance parameter. || · ||∗ and || · ||F indicate the nuclear norm
of a matrix and the Frobenius norm of a matrix, respectively. PS⊥(X) is the
complement to PS(X) which is the orthogonal projection of matrix X denoted
by:

PS(X)(i, j) =

{
0,

Xij ,

if Sij = 0,

if Sij = 1,
(9)

Therefore, we adopt an alternating algorithm by separating Eq. (8) over B
and S in the following two steps.

B– subproblem. Given an current estimate of the foreground mask Ŝ, estimat-
ing B by minimizing Eq. (8) turns out to be the matrix completion problem.
This is to learn a low-rank background matrix from partial observations.

min
B

1
2

||PŜ⊥(D − B)||2F + λ‖B‖∗, (10)

The optimal B in Eq. (13) can be computed by the SOFT-IMPUTE [18]
algorithm. Which based on the following Lemma [5]:

Lemma 1. Given a matrix Z, the solution to the optimization problem

min
X

1
2

||Z − X||2F + λ‖X‖∗, (11)

is given by X̂ = Θλ(Z), where Θλ means the singular value thresholding

Θλ(Z) = UΣλVT , (12)

Here, Σλ = diag[(d1 − λ)+, · · · , (dr − λ)+], UΣλVT is the SVD of Z, Σ =
diag[d1 − dr] and t+ = max(t, 0). Rewriting Eq. (10), we have:

min
B

1
2

||PŜ⊥(D − B)||2F + λ‖B‖∗,

= min
B

1
2

||[PŜ⊥(D) + PŜ(B)] − B)||2F + λ‖B‖∗,
(13)

According to Lemma 1, given an arbitrary initialization B̂, the optimal solu-
tion can be obtained by iteratively using Eq. (14):

B̂ ←− Θλ(PŜ⊥(D) + PŜ(B̂)), (14)

S– subproblem. Given an current estimate of the background position matrix
B̂, Eq. (8) can be transferred into following optimization functions:

min
S

1
2

||PS⊥(D − B̂)||2F + α‖vec(S)‖0 + μ||E vec(S)||1, (15)
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Algorithm 1. Optimization Algorithm to Eq. 8
Require: D = [l1, l2, . . . , ln] ∈ R

m×n.
Set B = D, S = 0, τ = 1e − 4, maxIter = 20.

Ensure: Ŝ, B̂.
1: Using SOFT-IMPUTE algorithm to optimize energy function Eq. (10), by comput-

ing B̂: B̂ ←− Θλ(PŜ⊥(D) + PŜ(B̂))

2: if rank(B̂) ≤ K then
3: tuning parameters λ, returns run to step 1.
4: end if
5: Using graph cuts algorithm to optimize energy function Eq. (15) by computing Ŝ:

Ŝ = arg minS

∑
i,j(α − 1

2
(Dij − B̂ij))

2Sij + μ||E vec(S)||1
6: Check the convergence condition: if the maximum objective change between two

consecutive iterations is less than τ or the maximum number of iterations reaches
maxIter, then terminate the loop.

The energy function Eq. (15) can be rewritten in line with the standard form
of a first-order Markov Random Fields [8] as:

1
2

||PS⊥(D − B̂)||2F + α‖vec(S)‖0 + μ||E vec(S)||1

=
1
2

∑
i,j

(Dij − B̂ij)2(1 − Sij) + α
∑
i,j

Sij + μ||E vec(S)||1,

=
∑
i,j

(α − 1
2
(Dij − B̂ij))2Sij + μ||E vec(S)||1 +

1
2

∑
i,j

(Dij − B̂ij)2.

(16)

When B̂ is fixed, 1
2

∑
i,j(Dij − B̂ij)2 is constant. Meanwhile, Sij beside the

(β − 1
2 (Dij − B̂ij))2 is also constant. Known Markov unary term and pairwise

smoothing term, one can easily obtain the optimal foreground matrix though
graph cuts method [4,15] since Sij ∈ {0, 1} is discrete.

A sub-optimal solution can be obtained by alternating optimizing B and S
and the algorithm is summarised in Algorithm1.

3 Experiments

We evaluate our method against the state-of-the-arts on the public challenging
GTD dataset [16]. It consists of 25 video sequence pairs in both visual and
thermal modality. In this paper, we evaluate the proposed method on visual
modality videos. The GTD dataset [16] contains fifteen different scenes and
various challenges including intermittent motion, low illumination, bad weather,
intense shadow, dynamic scene and background clutter etc.

3.1 Evaluation Settings

Parameters. In our model of Eq. (8), the parameter λ controls the complexity
of the background model which is first roughly estimated by the rank of the
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background model. The parameter α which controls the sparsity of the fore-
ground masks is set as α = 16.2σ2, where σ2 is estimated online by the mean
variance of {Dij − B̂ij}. The parameter μ controls spatial smoothness between
pixels that satisfies the constructed informative graphs, and is set as μ = 0.205.
The parameter β and γ control the relative contribution of each term in Eq. (7),
respectively. We determine β and γ by adjusting its ratio to α, and empirically
set as {β, γ} = {2.7α, 0.13α}. Moreover, we set σ = 25 in Eq. (3), and set the
number of superpixel patches A = 650.

Evaluation Criterion. The Precision, Recall, F-measure are first comprehen-
sively evaluated, which are defined as following:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F-measure = 2
Precision × Recall
Precision + Recall

.

(17)

where TP = True Positives, indicating the foreground pixels correctly labeled
as foreground. FP = False Positives, referring the background pixels incorrectly
labeled as foreground. TN = True Negatives, corresponding to background pixels
correctly labeled as background. FN = False Negatives, referring to foreground
pixels incorrectly labeled as background [9]. F-measure is a comprehensive mea-
surement to balance the argument between precision and recall.

Furthermore, the Mean Absolute Error (MAE) is evaluated to measure the
disagreement between the detected results and the groundtruth:

MAE =
1

N × F
F∑

i=1

∑
p∈DR,ṕ∈GT

XOR(p, ṕ) (18)

where N denotes and resolution of the frame and F denotes the number of
the frames in the video clip. DR and GT indicate the “Detection Result”
and the “Ground Truth” respectively. XOR(∗) denotes the logic operator
“exclusive OR”. p, ṕ ∈ {0, 1} denotes the background/foreground pixels.

3.2 Comparison Results

We compare our approach with four state-of-the-art moving object detection
algorithms including DECOLOR [26], GMM [13], VIBE [2] and PCP [6]. To
keep things fair, we choose the default parameters released by the authors for
corresponding methods.

Qualitative Results. Figure 2 demonstrates the detected results on a certain
frame of six video clips from GTD dataset [16]. From which we can see, our
method can produce finer boundary information and better suppress the influ-
ence of the noise.
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Fig. 2. Sample results of our method against the state-of-the-arts on six video sequences
from GTD dataset.

Quantitative Results. Table 1 reports precision, recall, F-measure, and MAE
on public GTD dataset [16]. We can see our method significantly outper-
forms the state-of-the-arts in precision, F-measure, and MAE. Although the
recall of our method looks lower than DECOLOR [26], from Fig. 2 we can see,
DECOLOR [26] tends to produce coarse boundary which always leads to high
recall. The F-measure which is the comprehensive criteria between precision and
recall together with the MAE verify the promising performance of our method.

Table 1. The precision, recall, F-measure and MAE values on GTD public dataset,
where the bold fonts of results indicate the best performance.

Algorithm DECOLOR GMM VIBE PCP OUR

Precision 0.54 0.51 0.40 0.29 0.62

Recall 0.82 0.64 0.47 0.18 0.79

F-measure 0.59 0.51 0.39 0.22 0.67

MAE 0.006 0.0125 0.0169 0.0155 0.005
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3.3 Component Analysis

In order to validate the spatial compactness and appearance consistency via
superpixel constraint, we evaluate several variations of our model and report
the results on Table 2 and visualize several detection results on Fig. 3, where
Ours: the proposed model; Our-I: our model without spatial compactness by
setting γ to 0; Our-II: our model without appearance consistancy by setting all
wij,kl to 1; Our-III: our model without spatial compactness and the appearance
consistency by setting all wij,kl = 1 and γ = 0. From Table 2 we can see that:
Our-II significantly beats Our-III and Our outperforms Our-I in Recall and
F-measure, which suggest that superpixel constraint plays importance role on
moving object detection. From Fig. 3 we can see that: After introducing the
spatial compactness and appearance consistency via superpixel constraint, our
method can better preserve the boundary information and suppress the noise.

Fig. 3. Example results of our method and its variants on four video sequences from
GTD dataset.

Table 2. Average precision, recall, and F-measure of our method and its variants on
the GTD dataset. The bold fonts of results indicate the best performance.

Algorithm Precision Recall F-measure

Ours 0.62 0.79 0.67

Ours-I 0.62 0.77 0.64

Ours-II 0.57 0.78 0.62

Ours-III 0.51 0.66 0.55
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4 Conclusion

In this paper, we have proposed a novel method for moving object detection
under the low-rank and sparse separation framework. We have first emphasized
the neighboring pixels with close appearance. We have further explored the spa-
tial compactness and appearance consistency between the pixels within the same
superpixel. Extensive experiments against state-of-the-arts on the public video
sequences suggest that, the proposed method can better preserve the boundary
of the objects and robust to the noise. In future work, we will focus on extending
our model to online or streaming fashion for real-life applications.
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