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Abstract. This paper addresses the unsupervised domain adaptation
problem, which is especially challenging as the target domain does not
provide explicitly label information. To solve this problem, we develop
a new algorithm based on canonical correlation analysis (CCA). Specif-
ically, we first use CCA to project both domain data onto the correla-
tion subspace. To exploit the target domain data further, we train an
SVM classifier by the source domain to obtain the pre-label of the tar-
get domain. Considering that the label space between the source and
target domain may be different or even disjoint, we introduce a class
adaptation matrix to adapt them. An objective function taking all fac-
tors mentioned above into consideration is designed. Finally, we learn
a classification matrix by iterative optimization. Empirical studies on
benchmark tasks of action recognition demonstrate that our algorithm
can improve classification accuracy significantly.
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1 Introduction

In computer vision, domain adaptation (DA) has become a very popular topic.
It addresses the problem that we need to solve the same learning tasks across
different domains [2,20]. Generally, we can divide domain adaptation into two
parts: unsupervised DA in which target domain data are completely unlabeled,
and semi-supervised DA where a small number of instances in the target domain
are labeled. We focus on the unsupervised scenario, which is especially challeng-
ing as the target domain does not provide explicitly any information on how
to optimize classifiers. The goal of unsupervised domain adaptation is to derive
a classifier for the unlabeled target domain data by extracting the information
that is invariant across source and target domains.

Canonical correlation analysis (CCA) is often used to deal with DA problems
since it can obtain two projection matrices to maximize the correlation between
two different domains [9]. The derived correlation subspace can preserve common
features of both domains very well.
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In our work, an efficient unsupervised domain adaptation algorithm based
on CCA is developed. Specifically, we first make use of CCA to derive the cor-
relation subspace. In order to explore the target domain data further, we use
the source domain data to train a SVM classifier and then obtain the pre-label
of the target domain. Considering that the label space between source and tar-
get domain may be different or even disjoint, we introduce a class adaptation
matrix to adapt them. Taking all factors mentioned above into consideration, we
design an objective function. Finally, a fine classifier can be obtained by iterative
optimization.

The rest of the paper is organized as follows. Section 2 first introduces the
related work of DA and CCA. In Sect. 3, we discusses our proposed unsupervised
domain adaptation algorithm based on canonical correlation analysis in detail.
Section 4 shows the experimental results in a cross-domain action recognition
dataset. The last section gives some conclusive discussions.

2 Related Work

We now review some state-of-the-art domain adaptation methods and the recent
works related with deep learning are also discussed. Finally, we introduce the
main idea of CCA.

2.1 Domain Adaptation Methods

Generally speaking, domain adaptation problems can be solved by instance-
based and feature-based approaches.

The goal of instance-based approaches is to re-weight the source domain
instances by making full use of the information of target domain. For example,
Dai et al. [3] proposed an algorithm based on Adaboost, which can iteratively
reinforce useful samples to help train classifiers. Shi et al. [21] attempted to find
a new representation for the source domain, which can reduce the negative effect
of misleading samples. In [11], a heuristic algorithm was developed to remove
misleading instances of the source domain. Li et al. [13] proposed a framework
that can iteratively learn a common space for both domain. Several methods
[15,16,26–28] proposed by Wu et al. and Liu et al. can also help us solve the
domain adaptation problem effectively.

The purpose of feature-based approaches is to discover common latent fea-
tures. For instance, a method integrating subspaces on the Grassman manifold
was developed to learn a feature projection matrix for both domains in [7]. Zhang
et al. [34] introduced a novel feature extraction algorithm, which can efficiently
encode the discriminative information from limited training data and the sample
distribution information from unlimited test data. In [5], a projection aligning
subspaces of both domains was designed. The distributions of the feature space
and the label space are considered in [8] to learn conditional transferable compo-
nents. In [22–24], three subspaces extraction methods were proposed, which pro-
vides the new way to find the common subspaces of both domains. The method in
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[19] attempted to project both domains into a Reproducing Kernel Hilbert Space
(RKHS) and then obtain some transfer components based on Maximum Mean
Discrepancy (MMD). In [30], the independence between the samples learned
features and domain features is maximized to reduce the domains’ discrepancy.

The discrepancies between domains [32] can be reduced through deep net-
works, which learn feature representation disentangling the factors of variations
behind data [1]. Recent works have demonstrated that deep neural networks are
powerful for learning transferable features [6,17,18,25]. Specifically, these meth-
ods embeds DA modules into deep networks to improve the performance, which
mainly correct the shifts in marginal distributions, assuming conditional distri-
butions remain unchanged after the marginal distribution adaptation. However,
the recent research also finds that the features extracted in higher layers need
to depend on the specific dataset [33].

2.2 Canonical Correlation Analysis

We briefly review canonical correlation analysis (CCA) as follows.
Suppose that Xs = {xs

1, . . . , x
s
n} ∈ R

ds×n and Xt = {xt
1, . . . , x

t
n} ∈ R

dt×n

are source and target domain dataset respectively. n denotes the number of
samples. CCA can obtain two projection vectors us ∈ R

ds and ut ∈ R
dt to

maximize the correlation coefficient ρ:

max
us,ut

ρ =
us� ∑

st ut

√
us� ∑

ss us

√
ut� ∑

tt ut

, (1)

where
∑

st = XsXt�,
∑

ss = XsXs�,
∑

tt = XtXt�, and ρ ∈ [0, 1]. According
to [9], we can regard (1) as a generalized eigenvalue decomposition problem,
there is

∑

st

(∑

tt

)−1 ∑�
st

us = η
∑

ss
us (2)

Then, ut can be calculated by
∑−1

tt

∑�
st us/η after us is obtained. To avoid

overfitting and singularity problems, two terms λsI and λtI are added into
∑

ss

and
∑

tt respectively. We have

∑

st

(∑
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+λtI

)−1 ∑�
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us = η
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)
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Generally speaking, we can obtain more than one pair of projection vectors
{us

i }L
i=1 and {ut

i}L
i=1. L denotes the dimensions of the CCA subspace. CCA

can determine projection matrices Ps = {us
1, . . . , u

s
d} ∈ R

ds×L and Pt =
{ut

1, . . . , u
t
d} ∈ R

dt×L, which can project the source and target domain data (Xs

and Xt) onto the correlation subspace. Once the correlation subspace spanned
by

{
us,t

i

}L

i=1
is derived, we can recognize the target domain data by the model

trained from the source domain data.
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3 Our Method

Our approach mainly consists of four steps. Firstly, we use the CCA to find the
source and target domain’s projection matrices and then project both domain
data onto the correlation subspace. The second step is to train a SVM classifier
to obtain the pre-label matrix of the target domain data. Then, we introduce
a sigmoid function to process dataset on the correlation subspace. Finally, by
minimizing the norm of classification errors, we obtain a class adaptation matrix
and a classification matrix simultaneously.

3.1 The Correlation Subspace

We denote XS = (x1, x2, . . . , xNS
)�, xi ∈ R

d as the source domain data and
XTu = (x1, x2, . . . , xNTu

)�, xi ∈ R
d as the target domain data. Then we can use

CCA mentioned above to find the projection matrices PS ∈ R
d×L and PTu ∈

R
d×L for labeled source domain and unlabeled target domain data respectively.

L denotes the dimension of the correlation subspace. Moreover, we denote XP
S ∈

R
NS×L and XP

Tu ∈ R
NTu×L as data matrix of source and target domain projected

onto the correlation subspace. Then, we have

XP
S = XSPS (4)

XP
Tu = XTuPTu (5)

3.2 The Pre-label of Target Domain

Let YS = (y1, y2, . . . , yNS
)T ∈ R

NS×c be the label matrix of source domain with
c classes. In our algorithm, we propose to obtain the pre-label of target domain
by training a SVM classifier on the CCA correlation subspace. And we denote
YTu = (y1, y2, . . . , yNTu

)T ∈ R
NTu×c as the pre-label matrix.

3.3 The Sigmoid Function

What’s more, a sigmoid function G(·) is introduced to process both domain
dataset on the correlation subspace. The role of G(·) is to preform a non-linear
mapping, which can improve the generalization ability of our model further.
Specifically, we have

RS = G(XP
S ) = G(XSPS) (6)

RTu = G(XP
Tu) = G(XTuPTu) (7)

3.4 The Classification Matrix and Class Adaptation Matrix

We first define a classification matrix β ∈ R
L×c. It aims to classify both domain

data onto the right class as accurate as possible. That is to say, RSβ and RTuβ
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should be similar to YS and YTu respectively. Specifically, we define the objective
function as

min
β

F (β) = ‖β‖q,p + CS ‖RSβ − YS‖2F + CTu ‖RTuβ − YTu‖2F (8)

where ‖·‖q,p and ‖·‖2F are the lq,p-norm and Frobenius norm respectively. CS

and CTu are the penalty coefficient for both domain data. Specifically, ‖β‖q,p

can be written as

‖β‖q,p = (
m∑

i=1

(
n∑

j=1

|βij |q)p/q)1/p (9)

q ≥ 2 and 0 ≤ p ≤ 2 are set to impose sparsity on β. It’s difficult to solve
the objective function when p = 0, therefore, we let p = 1. The classification
accuracy will not be improved with larger q [10], so we set q = 2. Finally, the
objective function can be described as

min
β

F (β) = ‖β‖2,1 + CS ‖RSβ − YS‖2F + CTu ‖RTuβ − YTu‖2F (10)

We also introduce a class adaptation matrix Θ ∈ R
c×c to adapt in label

space. This is because the label space between source and target domains may
be different [29]. So label adaptation may help obtain a better classification
model. To incorporate label adaptation into our method, we can redefine the
objective function as

min
β,Θ

F (β,Θ) = ‖β‖2,1 + CS ‖RSβ − YS‖2F +

CTu ‖RTuβ − YTu ◦ Θ‖2F + γ ‖Θ − I‖2F (11)

‖Θ − I‖2F is a term to control the class distortion. And γ is the trade-off para-
meter. The symbol ◦ denotes a multiplication operator, which can perform label
adaptation between domains. In [4], the importance of unlabeled data has been
emphasized. It’s believed that a large number of unlabeled target domain data
containing meaningful information for classification may not be fully explored.
We minimize the error between the RTuβ and YTu ◦ Θ to explore the unlabeled
data further.

The problem in our method turns out how to find the optimal classification
matrix β and class adaptation matrix Θ simultaneously.

3.5 Optimization Algorithm

We can obtain the solution for the objective function (11) easily since β and Θ
is differentiable.

Firstly, by fixing Θ = I, we can get the derivative of (11) with respect to β.
And there is

∂F (β,Θ)
∂β

= 2Qβ + 2CSRT
S (RSβ − YS) + 2CTuRT

Tu(RTuβ − YTu ◦ Θ) (12)
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in which Q ∈ R
L×L is a diagonal matrix. We can regard the i-th element of Q as

Qii =
1

2 ‖βi‖2
(13)

in which βi can be seen as the i-th row of β.
In our algorithm, to avoid βi = 0, we incorporate a very small value ε > 0

into (13). Specifically, we use ‖βi‖2 + ε to update Q. So the Eq. (13) can be
rewritten as follows

Qii =
1

2(‖βi‖2 + ε)
, ε > 0 (14)

We can let the Eq. (12) be zero, namely ∂F (β,Θ)
∂β = 0, then the optimal β can

be obtained, there is

β = (Q + CSRT
S RS + CTuRT

TuRTu)−1(CSRT
S YS + CTuRT

TuYTu ◦ Θ) (15)

Second, according to the formula (15), we substitute the fixed β value into
the objective function. The optimization problem (11) becomes

min
Θ

F (Θ) = CTu ‖RTuβ − YTu ◦ Θ‖2F + γ ‖Θ − I‖2F (16)

Then, we can obtain the derivative of (16) with respect to Θ. Specifically, we
have

∂F (β,Θ)
∂Θ

= −2CTuY T
Tu(RTuβ − YTu ◦ Θ) + 2γ(Θ − I) (17)

Similarly, by setting (17) to be zero, we have

Θ = (CTuY T
TuYTu + γI)−1(CTuY T

TuRTuβ + γI) (18)

The result can be obtained by iteratively optimizing β and Θ. The opti-
mization procedure of our model is summarized in Algorithm 1. Tmax denotes
the number of maximum iteration. In this paper, we set Tmax to be 50. Once
the number of iteration reach Tmax, the iterative update procedure would be
terminated.

4 Experimental Results

4.1 Experimental Setting

Dataset. The Inria Xmas Motion Acquisition Sequences (IXMAS)1 records 11
actions. Each action can be seen as a category. There are 12 actors involved in
this action shooting and they perform each action three times. Therefore, 396
instances are captured by one camera in total. As seen from Fig. 1, five cameras
(domains) are used to capture the actions simultaneously. To extract features
from each image, we follow the procedure in [14]. Finally, each image can be
regarded as a vector of 1000 dimensions. This dataset aims to set a standard for
human action recognition.
1 http://4drepository.inrialpes.fr/public/viewgroup/6.

http://4drepository.inrialpes.fr/public/viewgroup/6
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Algorithm 1. Domain Adaptation Based on Canonical Correlation Analysis
Input: Source domain data XS , Target domain data XTu, Source domain label YS ,

The number of maximum iteration Tmax

Output: Classification matrix βt, Class adaptation matrix Θt

1: Calculate PS and PTu based on canonical correlation analysis;
2: Calculate XP

S and XP
Tu using (4) and (5);

3: Obtain the pre-label YTu of target domain data by training a SVM classifier on the
CCA correlation subspace;

4: Calculate RS and RTu using (6) and (7);
5: t ← 1
6: Qt ← IL×L

7: Θt ← Ic×c

8: while not converged (t < Tmax) do
9: Calculate the classification matrix βt using (15);

10: Update Θt+1 using (18);
11: Update Qt+1 using (14);
12: t ← t + 1
13: end while

Fig. 1. Example actions of the IXMAS dataset. Each row represents an action at five
different views.

Implementation Details. We follow the operation in [31] to obtain the CCA
projection matrices for both domains. Specifically, two thirds of domains’ sam-
ples in each catagory are selected. And the training set consists of 30 labeled sam-
ples per category in source domain and all unlabeled samples in target domain.
The test set consists of all unlabeled target domain data. Then we follow the
procedure mentioned in Sect. 3 to train a classifier and get the classification
accuracies. The above procedure is repeated ten times. We give the average
classification accuracy in Table 1.
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Table 1. The classification accuracies and standard errors (%) for all methods on the
IXMAS dataset

Domains SVM SA TCA GFK MIDA Ours

cam0→cam1 15.3±1.1 63.8±1.0 48.3±1.3 49.4±1.4 59.8±0.5 81.3±0.8

cam0→cam2 12.1±0.9 72.1±1.3 54.1±4.4 55.2±6.8 58.0±1.3 86.4±1.3

cam0→cam3 7.3±0.8 72.6±1.3 55.4±4.7 55.5±9.0 57.7±1.4 91.9±1.0

cam0→cam4 10.7±0.7 73.0±1.1 45.3±3.8 51.2±6.0 54.3±2.8 92.5±1.3

cam1→cam0 7.5±0.8 71.6±0.9 26.6±2.0 59.0±1.7 53.5±1.6 89.0±0.8

cam1→cam2 13.3±1.3 68.6±1.1 66.7±2.1 53.5±1.5 67.6±1.7 84.9±1.3

cam1→cam3 7.1±0.8 72.1±0.9 59.5±2.8 60.7±11.3 57.1±1.7 90.9±0.9

cam1→cam4 10.9±0.6 70.5±2.1 44.1±4.7 61.9±3.2 51.8±2.1 92.0±1.0

cam2→cam0 16.8±2.1 72.3±1.2 47.8±6.7 61.7±5.2 60.0±1.0 88.7±1.4

cam2→cam1 12.3±0.6 71.8±0.6 29.3±3.1 59.1±7.6 57.2±1.8 84.7±0.8

cam2→cam3 11.1±0.7 68.8±1.1 68.7±1.2 50.5±11.4 67.2±1.6 91.6±0.8

cam2→cam4 8.0±0.7 72.9±1.5 51.2±5.1 60.6±3.7 51.1±3.7 88.1±1.1

cam3→cam0 5.3±1.0 74.4±2.0 68.3±3.6 56.3±2.0 59.5±1.2 84.0±1.1

cam3→cam1 6.9±1.0 72.8±1.0 63.3±2.5 52.1±7.1 58.8±1.3 90.6±1.0

cam3→cam2 12.4±0.8 76.5±2.6 66.8±3.1 65.5±2.7 59.6±0.9 82.5±0.9

cam3→cam4 10.4±0.9 68.6±1.6 47.2±3.2 47.3±7.8 67.7±2.0 87.5±1.2

cam4→cam0 18.5±1.3 63.9±0.8 60.7±1.2 55.8±3.8 63.9±1.3 86.5±0.7

cam4→cam1 12.5±1.4 71.0±1.6 42.0±4.6 66.1±0.9 57.5±1.3 89.4±1.0

cam4→cam2 6.7±0.8 74.4±1.4 65.6±3.2 59.0±6.0 58.1±1.7 90.4±0.9

cam4→cam3 9.6±1.3 76.5±1.9 65.4±3.2 65.4±12.8 59.5±0.9 89.0±0.6

Average 10.7±1.0 71.4±1.4 53.8±3.3 57.3±5.6 59.0±1.6 88.1±1.0

4.2 Comparison Methods

We compare our framework with a baseline and several classic unsupervised
domain adaptation methods.

SVM [12]. We regard SVM as the baseline. SVM has become a classic method
to solve classification problems. To solve the DA problem, we use the original
features in both domains directly. Specifically, We build a prediction model based
on the source domain data and then classify instances in the target domain. Since
SVM is not developed for DA problem, the final result on target domain may
be the worst when compared with other methods.

Subspace Alignment (SA) [5]. This algorithm is very simple. It learns PCA
subspaces of both domains at first. And then a linear mapping aligning the
PCA subspaces is derived. After that, we can build models based on the source
domain to classify the target domain data on the common subspace.

Transfer Component Analysis (TCA) [19]. This algorithm is designed
according to maximum mean discrepancy (MMD), which can measure the
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distance between two distributions. By minimizing MMD, a projection matrix
narrowing the distance between both domains can be obtain. This method can
also map both domain data into a kernel space. In our experiments, Gaussian
RBF kernels are taken.

Geodesic Flow Subspaces (GFK) [7]. This method applies the Grassman
manifold to solve DA problems. First of all, the PCA or PLSA subspaces of both
domains are computed. Then the subspaces are embedded into the Grassman
manifold. And we can use the subspaces to obtain super-vertors by transforming
the original features. Finally, low dimensional feature vectors are derived and we
can train a prediction model on them.

Maximum Independence Domain Adaptation (MIDA) [30]. MIDA intro-
duces Hilbert-Schmidt independence criterion to adapt different domains. Specif-
ically, in order to reduce the difference across domains, we can try to obtain the
maximum of the independence between the learned features and the sample
features.

4.3 Parameter Tuning

In our method, there are totally four parameters including CS , CTu, ε and γ.
Generally speaking, it is not appropriate for an algorithm to tune the four para-
meters at the same time. Actually, there is no need to tune all of them. We
can find the optimal solution by freezing two parameters. To be specific, we set
ε = 1 and γ = 0.1. Then we search for the best values of Cs and CTu within the
ranges

{
40, 41, 42, 43, 44, 45, 46

}
and

{
10−3, 10−2, 10−1, 100, 101, 102, 103

}
respec-

tively. Finally, the best performance of our model is reported.
For SVM and other four state-of-the-art DA methods, we follow the pro-

cedures in corresponding paper to tune parameters and then report the best
classification results.

4.4 Experimental Results and Comparisons

The classification accuracies and standard errors are summarized in Table 1.
Cam0-cam5 represent different domains. Specifically, the form A→B states that
A is the source domain and B is the target domain. For example, cam0→cam1
represents that images captured by cam0 are used as the source domain and
images captured by cam1 are regarded as the target domain. The classification
accuracy of SVM can be seen from the second column of Table 1. And the results
of the classic unsupervised DA methods are shown in the third to the sixth
column. The last column is the result of our proposed method. Totally, 20 domain
pairs are given and we bold the best results for each pair. From Table 1, we can
conclude that

– The classification model trained by SVM doesn’t perform well. As can be
seen from the table, average accuracy is around 11% and most of the results
are no more than 15%. In real applications, such a model is useless.
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– We can obtain better prediction models by training classifiers based on those
classic unsupervised DA methods (SA, TCA, GFK, MIDA). The average
classification accuracy for each method is above 50%. It’s worth noting that
the result of SA is highest (71.4%) compared to TCA, GFK and MIDA. That
is to say, SA is more suitable to deal with IXMAS dataset.

– The classification result can be improved further by our model. Specifically,
the average accuracy of our proposed algorithm is 88.1%. The result is good
enough since it is improved around 77% points compared with SVM.

5 Conclusion

A new unsupervised domain adaptation algorithm based on canonical correlation
analysis is proposed in this paper. Our method shows competitive performance
when compared with some state-of-the-art methods, e.g. SVM, SA, TCA, GFK,
MIDA.
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