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Abstract. Insulator is the most common equipment in power system,
and the recognition of insulator in infrared image is affected seriously
under unconstrained condition with angle change. Due to the insula-
tors’ angle diversification and the manually-designed features’ limita-
tion, the existing algorithms have a problem of low accuracy in classifi-
cation; therefore how to obtain the rotation invariant representations to
cope with these adverse conditions is a very important problem. Deep
Convolutional Neural Networks (DCNNs) have established a remark-
able performance in image classification. The deep features obtained at
the top fully-connected layer of the DCNNs (FC-features) exhibit rich
global semantic information and are extremely effective in image clas-
sification. In this paper, we present a rotation invariant representation
generation method named PFE-FDS (Parallel Feature Extraction and
Feature Dimension Selection) for infrared insulator recognition which
is based on parallel DCNNs FC-features extraction as well as feature
sorting and dimension selection based on mutual information to elim-
inate redundancy. Then the SVM (Support Vector Machine) classifier
is trained on our standard infrared insulator dataset for classification.
The experimental accuracy shows that the PFE-FDS can improve the
accuracy of multi-angle object recognition.
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1 Introduction

Insulator is the most common equipment in power system which is made of non-
conducting material. It is used to support the electrical conductors and shield
them from the ground or other conductors. The failure of insulators would be the
direct threat to the stability and safety of the system [1]. With the advantages of
© Springer Nature Singapore Pte Ltd. 2017
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being non-contact and non-destructive, infrared imaging technology is efficient
for monitoring and evaluating the thermal condition of insulators. According to
statistics, tripping accidents caused by insulator fault accounted for the 81.3% of
transmission line accident [2]. Therefore, monitoring insulator status regularly
and detecting insulator fault timely is crucial. Accurate and efficient recogni-
tion of insulators is the premise of realizing the intelligent detection. Generally,
insulators are diversified with different orientations, and using common feature
representations for recognition may not be accurate, so obtaining robust rotation
invariant representations is necessary.

The pictures in Fig. 1 show the positive and negative training samples as well
as the test samples after multi-angle rotating.

A

Fig. 1. Positive and negative samples. The two rows show the positive and negative
images for training and testing with different orientations, respectively

Over the last few years, there has been some progress in insulators recogni-
tion. Yao et al. [3] proposed a zero value insulators recognition method under
different pollution levels and different humidity conditions by combining the
feature of insulator strings’ relative temperature distribution characteristics and
extracted from the artificial neural networks. Zhao et al. [4] extracted insulator
outline from aerial insulator image based on non sampling contourlet transform.
Jin et al. [5] extracted surface area and detected by using the optimal entropy
threshold segmentation method. Ye [6] achieved object localization by using fea-
ture points matching between object image and template image based on SIFT
(Scale Invariant Feature Transform) feature. Yen [7] studied the recognition and
localization of insulators based on HOG (Histogram of Oriented Gradient) fea-
ture and SVM.

The above methods adopted the traditional hand-crafted feature and had
a common problem of low accuracy, large calculation, being sensitive to the
rotation of the angle. With the development of deep learning technology, more
and more attention has been focused on the recognition of insulators based on the
DCNN:Ss. In this paper, we present a rotation invariant representation generation
method for infrared insulator image named PFE-FDS which is based on parallel
DCNNSs FC-features extraction as well as feature sorting and dimension selection
based on mutual information to eliminate redundancy.
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2 Related Work

Recent researches show that DCNNs models can not only characterize large data
variations but also learn a compact and discriminative feature representations
when the size of the training data is sufficiently large, and it has good perfor-
mance for object recognition and localization tasks [8]. Feature representations
play an important role in computer vision, and have been widely used in many
computer vision tasks [9]. An ideal feature representation should meet two basic
characteristics, high quality representation and low computational cost, and it
needs to capture important and unique information in images and be robust to
various transformations.

After the AlexNet was proposed, more and more representative works have
emerged in the structural optimization of the deep learning model. Zeiler and
Fergus [10] get the new networks structure named ZF-net by reducing the size of
the first convolution kernel in AlexNet from 11 * 11 to 7* 7. Deep Convolutional
Neural Networks have established an overwhelming presence in image classifica-
tion starting with the 2012 ImageNet Large Scale Visual Recognition Challenge.
In the VGG [11] model, 3* 3 convolution kernels are used in convolution layers,
which can significantly reduce the number of parameters and improve the dis-
crimination. Residual Net (ResNet) [12] is a 152 layer networks invented by He et
al., which was ten times deeper than others. Following the path VGG introduces,
ResNet explores deeper structure with simple layer. Lin et al. [13] proposed a
DeepBit32 model by introducing a new layer named fc8_kevin which encodes dif-
ferent representations of certain angle and obtains binary representations with
certain rotation invariance.

DCNNs impose high computational burdens both at training and testing
time, and training requires collecting and annotating large amounts of data.
Recently, the second method has drawn much attention for image representa-
tion. Deep feature activations extracted from a pre-trained CNN model have
been successfully utilized as general feature extractor for image representation.
To get a generic representation, after a series of convolutional filtering and pool-
ing, the neural activations from first or second fully connected layers (FC-layers)
are extracted from a pre-trained CNN model. Gong et al. [14] proposed a cer-
tain scale pooling method to improve the rotation invariance of features. Yoo
et al. [15] utilize Fisher Vector encode method for polymerizing multi-scale deep
feature. The research of [16] shows that the ability of expressing features can
be enhanced by integrating the representation of multiple layers. Tan et al. [17]
proposed a Feature Generating Machine, which learns a binary indicator vector
to show whether one dimension is useful or not. Deep representations generated
from CNN model have achieved great success in object recognition. More feature
selection methods [18-20] are proposed for different types of applications.

Current deep representations with small angle range rotation invariance can
not meet the requirement of multi-angle insulators recognition. So this paper
presents a rotation invariant representation generation method named PFE-
FDS for infrared insulator image which is based on parallel DCNNs FC-features
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extraction as well as feature sorting and dimension selection based on mutual
information to eliminate redundancy. The details are described in Sect. 3.

3 Proposed Method

In this section, we propose a novel method named PFE-FDS to recognize insula-
tors. Firstly, enter the input image into parallel DCNNs made up of pre-trained
VGG16 model and DeepBit32 model, and extract different FC-layer feature rep-
resentations. Then combine the representations directly and sort feature repre-
sentations based on mutual information. After that select the dimension in line
with the above sorting results. Finally the SVM classifier is trained on our stan-
dard infrared insulator dataset for classification. The overall framework is shown

in Fig. 2.
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Fig. 2. Overall framework of PFE-FDS
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3.1 Parallel Deep Feature Extraction

The research of [16] shows that the ability of expressing features can be enhanced
by the integration of multiple layers. Inspired by this, our method extracts FC-
features from parallel DCNNs. A typical DCNNs is made up of several convo-
lutional layers, followed by pooling layers, fully-connected layers and a softmax
decision layer.
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Fig. 3. Architecture of the DeepBit32 and VGG16 model trained on ImageNet 2012
classification dataset used in this paper. Each layer, represented by a box, is labeled
with the size R; * C; * K of its output in (1).

In Fig. 3 we illustrate the DCNN model. It consists of convolutional layers,
max-pooling layers, fully connected layers and a softmax decision layer (It can
also be called fc8 layer). At any given layer [, the layer’s output data is an
R *C * K| array

[xéj € Rkl}i=1,...,Rl,j=1,...,Cl (1)
that is the input to the next layer, with the input to the first layer being an RGB
image of size Ry * Cy and Ky =3 color channels. The fully connected layers can
be seen as convolutional layers with kernels having the same size as the layer’s
input data.

While these methods adopted only the deep aspect of DCNNs, our goal is
to combine the advantages of both approaches. The feature representations we
utilize are extracted from fc6 layer in VGG16 model and fc8 layer in DeepBit32
model. The feature representations are complementary in discrimination and
rotation.

3.2 Feature Combination and Sorting

In this section, we combine the features representations directly and form a rep-
resentation of 4128 dimension. Because Principal Component Analysis (PCA)
can not handle high-order correlation data, and can not be personalized opti-
mization, so we utilize a feature selection algorithm based on mutual information
for sorting. Although feature selection algorithm based on mutual information
is not a new algorithm, it is the first application in the feature sorting of par-
allel DCNNs and power equipment recognition. Mutual Information is taken as
the basic criterion to find Max-Relevance and Min-Redundancy between features
[21]. The mutual information I of two variables z and y is defined based on their
joint probabilistic distribution p(z,y) and the respective marginal probabilities

p(z), p(y):

I(z,y) = Zp(xi’yj)logzm ?

Max-Relevance is to search features satisfying (3), S denote the subset of features
we are seeking, which approximates D(S,c) with the mean value of all mutual
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information values between feature x; and class label c:

max D (S, ¢) Z I(z,c (3)

xeS’

It is likely that features selected according to Max-Relevance could have rich
redundancy. Therefore, the following Min-Redundancy condition can be added
to select mutually exclusive features.

minR(S),Rzé > I(wixy) (4)

T, X €S
We define a new equation (5) for sorting. Then we use V; denote the value calcu-
lated by (5) of the ith dimension feature, the values are arranged in descending
order, and the ranking results are stored in the matrix A and the features are
stored in S corresponds to the matrix A.

Vi=max (D (S,¢)) —R(S)+ ——&—,1=1,2...4128 (5)

3.3 Feature Dimension Selection

In image classification, the generated feature representations dimension is high
and has rich redundancy. So we select the dimension of features S according to
the classification results of SVM. The recognition result of VGG16_fc6 combine
DeepBit32_fc8 is considered as a baseline. We select feature representations from
matrix A in the top n for testing, the accuracy of recognition is the highest when
n equals 3994.
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Fig. 4. Visualization of insulator and its feature representations

As shown in Fig. 4, the picture (a) is the original insulator image, the picture
(b) represents its feature representations of two model combined directly, the
picture (c) represents its feature representations with dimension is 3994 after
feature sorting and dimension selecting. The picture (d), (e), (f) is the feature
representations of the corresponding negative sample.
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4 Experiments Results and Analysis

In this section, we begin by introducing our infrared insulator datasets. Then,
we evaluate our rotation invariant feature representations generation method on
our standard infrared insulator datasets. In order to verify the practicability of
this method, we selected two kinds of indoor scene for testing, and the effect is
excellent.

4.1 Datasets

Due to the difficulty of obtaining insulators infrared image, and there is no public
infrared image datasets, we use a large number of infrared images collected from
insulator inspection system to build the insulator infrared image datasets. In the
task of recognizing insulator, the infrared image datasets consists of 672 insulator
samples and 1012 background samples. These original images are getting from
the power substations varying from 110kV to 500kV level. Due to the limited
samples of the insulator, we rotate the images manually for testing during the
experiments.

We divide the dataset into two parts: 70% of this dataset for training and
the remaining 30% for testing. All the training samples are labeled with “posi-
tive”and “negative”, respectively.

4.2 Multi-angle Infrared Insulators Recognition

We visualize the feature maps of each convolutional layers of VGG16 model in
Fig. 5. From the Fig. 5, we found that the neuron will response to the edge when
the insulator image rotated and it will influence the recognition accuracy, but
this influence is caused by human, can be ignored.

d

Fig. 5. Neural activation feature maps of each convolutional layers. The top line is
normal insulator, the bottom line is the insulator rotated 30°

We extract feature representations from different FC-layers such as fc6 layer
and fc8 layer in a DCNNs. Then we carry out the same operation on the dif-
ferent deep models such as VGG16, AlexNet, and we also experiment on some
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traditional feature descriptors like Speeded Up Robust Features (SURF), Ori-
ented FAST and Rotated BRIEF (ORB) and Binary Robust Invariant Scalable
Keypoints (BRISK). Classification tasks are implemented on the normal samples
and the samples rotating 30° respectively. The experimental results are shown
in Fig. 6.

Accuracy(%)

M Rotate 30° M Normal

DeepBit32_fc7

VGG16_fc7 .
VGG16_fc6 SLLLLS 583
BRISK st 80.7692

ORB 64.8438

80.1282
69.7917
SURF 86.5380

60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0

Fig. 6. Recognition results of different layers in different deep models (Color figure
online)

Inspired by the results, whether it is to recognize the normal or rotating
samples, the accuracy of VGG16 is the highest. Although DeepBit32 has rotation
invariance in certain degree, its recognition performance is not good enough.
And we discover the feature representations extract from VGG16 and DeepBit32
are complementary due to its introduced process. Based on this discovery, this
paper will combine the two kinds of feature representations effectively, then sort
features and select dimensions.

The test samples of datasets are rotated respectively and the rotation angle is
5°,10°, 15°, 20°, 25°, 30°, 45°, 60°, then we utilize following representations for
testing: (1) the feature representations from VGG16 fc6 layer; (2) the feature rep-
resentations from DeepBit32 fc8 layer; (3) the feature representations combining
two model representations directly, named P-DCNNs (parallel DCNNs); (4) the
representations consist of two model representations, then conduct feature selec-
tion and no dimension selection, named PFE-FS (Parallel Feature Extraction
and Feature Sorting); (5) the representations consist of two feature representa-
tions, then conduct feature selection and dimension selection which dimension
is 3994, named PFE-FDS. The classification and intuitive results are shown in
Table 1 and Fig. 7.
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Fig. 7. Classification results of our method on multi-angle (Color figure online)

Table 1. Recognition results of insulators with multi-angle

Angles (°)

Accuracy (%)

VGG16 (4096)

DeepBit32 (32)

P-DCNNs (4128)

PFE-FS (4128)

PFE-FDS (3994)

0 98.9593 95.5729 98.9593 98.9593 98.9593

5 98.6979 94.7917 98.6979 98.6979 98.6979
10 96.8750 91.1667 96.8750 96.8750 96.8750
15 93.2292 88.2812 93.7500 93.7500 94.0104
20 89.5833 81.5104 91.1458 91.1458 92.4429
25 86.9792 79.9479 89.0625 89.0625 89.3229
30 84.1146 76.5625 86.4583 86.4583 87.7604
45 81.7708 71.8750 83.5938 83.5938 85.4167
60 82.5521 78.1250 85.6771 85.6771 86.7188

For the normal infrared insulators, the recognition accuracy of a single deep
model has been very high, so the use of PFE-FDS is not much improvement,
but with the angle increases, the recognition accuracy increases faster.

4.3 Multi-angle Scene Recognition

In order to verify the validity of the method we proposed, we select two kinds of
similar indoor scene named airport inside and bar from the datasets published
for the task of indoor scene recognition. The number of samples is 608 and 603
respectively, we divide the dataset into two parts: 70% of this dataset for training
and the remaining 30% for testing, and we performed the same operation on the
test set like the above. The scene dataset and its feature map of each convolutional
layer are shown in Fig. 8, and experimental results are shown in Table 2.
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Fig. 8. Indoor image and its feature map

Table 2. Recognition results of indoor scene with multi-angle

Angles (°) | Accuracy (%)
P-DCNNSs (4128) | PFE-FS (4128) | PFE-FDS (4004)
93.3649 93.3649 96.6825
5 92.8910 92.8910 95.2607
10 91.9431 91.9431 96.2085
15 94.3128 94.3128 96.6825
20 93.3649 93.3649 93.3649
25 92.4171 92.4171 92.4171
30 90.0474 90.0474 95.2607
45 83.4123 83.4123 85.7820
60 85.7820 85.7820 88.6256

For indoor scene recognition task, the recognition accuracy is highest when
the dimension is 4004. The recognition results indicate that our proposed method
outperforms the other two methods in precision.

From the results of the above experiments, we can see that the accuracy of
our proposed method is not only higher than the two separate models, but higher
than the accuracy of combining representations directly, and the contrast results
of last two columns reflect the necessity select the feature and dimension. The
experimental results of indoor scene recognition show that our proposed method
is not only effective for multi-angle infrared insulator recognition, but also can
be applied to multi-angle visible image recognition.
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5 Conclusion

Infrared imaging has advantages in inspecting abnormal heating in electrical
equipment, and it is efficient, reliable and non-destructive. However, most of
the recognition and detection are conducted manually. With a great quantity of
insulators to be inspected, the automatic recognition and localization method is
needed.

In the light of the problem that the insulator recognition method is sensitive
to the change of angles, and the recognition accuracy is low, a feature represen-
tation method for infrared insulators is proposed. Because of the few samples
of infrared insulators, the data requirements of training model can not be met.
We introduce the feature representations generation method PFE-FDS based on
parallel DCNNs. The method doesn’t need to do any direct finetune which needs
a lot of time, realize the leap from feature designing to feature learning, then
sort the feature and select its dimension to obtain the feature representations
with robust rotation invariance and no redundancy. The high accuracy shows the
efficiency of the proposed method. Then the method will be applied to practice.
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