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Abstract. With mass data collected by seafloor observation networks,
an autonomous system which helps to annotate these pictures are in great
demand. In this paper, we study the relationship between the network
architecture and the classification accuracy for the Plankton Dataset
collected by Oregon State University’s Hatfield Marine Science Center.
We use multiple classic deep convolutional neural networks (CNN) mod-
els to compare the benefit and cost of deeper models which have per-
formed quite well in ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) (http://www.image-net.org/challenges/LSVRC) com-
petitions and we discover a hidden degeneration phenomenon. Then we
conclude some skills to make CNN smaller and finally propose a more effi-
cient network architecture whose model is much smaller (only 1.5 MB),
faster (32.2 fps) and achieve a top-5 accuracy of 96% in the Plankton
Dataset. This model can be actually deployed in the seafloor observation
network system with its advantages.
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1 Introduction

With the rapid development of the seafloor observation networks, lots of visual
resources are captured by underwater camera for marine research. Take Oregon
State University’s Hatfield Marine Science Center for example. Hatfield scientists
got 50 million plankton pictures over an 18-day period, which was more than
80 TB. 30,336 images of 121 classes in these pictures are labeled as the Plankton
Dataset to hold a Kaggle data science competition1 in 2015. Faced with such
a big number of pictures, an autonomous system which helps to classify and
annotate these pictures are in great demand. It is very important for this system
to balance classification accuracy and speed properly.

In the competition we mentioned above, classification accuracy matters more
than speed. The No.1 team called “Deep Sea”, used a parallel CNN model and
1 https://www.kaggle.com/c/datasciencebowl/data.
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achieved a top-5 accuracy over 98% and a frame rate of 1.4 fps, which is far from
the general video frame rate 25–30 fps. In order to get the high accuracy, this
team used one network to learn pixel features and the other to learn additional
image features including image size in pixels, Haralick texture features, etc. The
final ensemble network model is more than 300M bytes, and quite difficult to
train.

In this paper, we try to find out the relationship between the network archi-
tecture and the classification accuracy of the Plankton Dataset. We use multiple
classic deep CNN models and compare the benefit and cost of deeper mod-
els which have performed quite well in ILSVRC competitions and we discover
a hid-den degeneration phenomenon for the Plankton Dataset. Then we con-
clude some skills to make CNN lighter and finally propose a simple but efficient
network architecture whose model is much smaller, faster and achieve a top-5
accuracy of 96% in the Plankton Dataset, which can be actually deployed in the
seafloor observation network system.

2 Related Work

The deep CNN technology have come into vogue since 2012, when Krizhevsky
et al. [10] achieved a record-breaking top-1 and top-5 error rates of 37.5% and
17.0% in ILSVRC competition object classification task [1] using a 7-layer CNN
architecture called AlexNet. After that, more and more researchers became inter-
ested in CNN method and a series of breakthroughs for object classification was
made [5,15–17].

2.1 Going Deeper

As early as 1990s, Lecun et al. [11,12] applied CNN in digital handwritten num-
ber and document classification. Due to limitations of computation devices, shal-
low CNN architecture did not make much progress than other traditional meth-
ods. Obviously, the depth of CNN plays an important role in the significant
results, but its also harder for networks with tens of layers to converge because
of vanishing gradients [2,4]. Many researchers’ works about normalization [8,14]
help to solve this obstacle. In 2014, researchers from the Visual Geometry Group
of Oxford University used VggNet [15] to get better performance in ImageNet.
According to [15], the 19-layer VggNet performs best, and we cannot get better
accuracy by increasing more layers. Whats worse, stacking more layers may lead
to degradation. To solve this problem, He et al. [5] proposed a residual network
(ResNet) frame using residual shortcuts, show in Fig. 1. In [5], He compares
CNN models with 50, 101, and 152 layers. The l52-layer network gets the state-
of-the-art top-5 error accuracy of 3.57% in ImageNet. With the help of residual
learning, it seems that we can stack conventional layers as more as we want to
get better performance.
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Fig. 1. A basic building block where every few stacked layers learn the residual function
with feed-forward shortcut connection.

2.2 Going Smaller

As a result of deeper architecture, the size of CNN grows larger and larger.
This means we need not only more expensive computing devices like GPU but
also more time to train and deploy the CNN models. There are different ways
to make CNN models smaller, such as pruning [3], binarized netural network
[6], etc. This paper focuses on how to design the architecture more efficient at
beginning. In 2014, Lin, et al. [13] proposed Network-in-Network structure using
1×1 filters to reduce computation. Szegedy et al. [17] created GoogLeNet family
by using inception structure that contains 1×1, 3×3 filters layers, show in Fig. 2,
to build more efficient and deeper models. Researchers from Berkley proposed
SqueezeNet [7] using the cascaded structure that is named with “Fire” layer
based on inception. SqueezeNet achieves the same accuracy of AlexNet with the
model size squeezed to only 4.8M.

Motived by the development of CNN architecture, we try to find out which
architecture can perform best in the Plankton Dataset, so that we can deploy
the model in seafloor observation networks to deal with tons of data collected by
undersea cameras. We need a model with not only high classification accuracy
but also high speed.

3 The Hidden Degeneration

As mentioned above, the past few years have witnessed the break-throughs cre-
ated by multiple classic CNN architectures with more and more convolutional
layers. Before we introduce our final model, we show some experiments we did
on the Plankton Dataset. In order to find out how deeper CNN models affect the
accuracy in the Plankton Dataset, the models we have tested include CaffeNet2,
2 https://github.com/BVLC/caffe/tree/master/models/bvlc reference caffenet.

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
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Fig. 2. A typical inception layer structure (up) contains convolutional layers with filters
of different size, and the “Fire” layer of SqueezeNet (down) are designed with similar
micro structure.

VggNet-19 (Vgg-19) [15], ResNet [5] with different layer numbers of 19, 50, 101.
At first we held the view that advanced model with more layers may performed
better, but we discovered that the basic CaffeNet has a quite good result and
more layers may not only lead to the loss on Top-1 accuracy but also cannot
help to improve the Top-5 accuracy. We named this phenomenon as the hidden
degeneration, details are described below.

3.1 Data Augmentation and Experiment Environment

The Plankton dataset consists of 30,336 grayscale training images of varying
size, divided unevenly into 121 classes which correspond to different species of
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plankton. This dataset was used for the National Data Science Bowl, a data
science competition hosted on the Kaggle platform. We divide the dataset into
separate validation, testing and training set of 3,037, 3,037 and 24,262 images
respectively and rescaled them to 256× 256 based on the length of their longest
side. We augmented the data to increase the size of the dataset which can be
useful for the prevention of overfitting by rotating the original images 0◦, 90◦,
180◦, 270◦, show in Fig. 3.

Fig. 3. Data augmentation by rotating target Plankton image 0◦ (a), 90◦ (b), 180◦ (c),
and 270◦ (d).

We use Caffe [9] as experiment environment and implement different CNN
models using one piece of GTX1080Ti GPU.

3.2 Multiple Models Comparison

The architecture of these models are shown in Fig. 4. ResNet has too many layers
so we only show a single block.

CaffeNet is a replication of AlexNet with pooling layer before normalization
by researchers from Berkley. It has 5 convolutional layers and 3 fully-connected
layers. 11×11 shown in Fig. 4 means the size of filters and 96 means the number
of kernels in the specific layer. Vgg-19 can be regarded as a AlexNet stacking
more layers. ResNet is much different from other models with residual shortcuts
and less fully-connected layers.

All the nets are trained with stochastic gradient descent (SGD) with back-
propagation [11], having the same solver parameters with a learning rate of 0.001,
a momentum of 0.9, and a weight decay of 0.0005.

We use the Plankton Dataset as train source directly at first, the results are
shown in Table 1.

According to the results, we can find that unexpectedly although CaffeNet is
not as deep as Vgg-19, Res-19, or Res-50, it has higher classification accuracy and
speed with less storage space. The deepest model ResNet with 101 layers only
makes little progress comparing to CaffeNet with a great setback in classification
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Fig. 4. There are mutiple CNN models used in the Plankton Dataset.

Table 1. Models performance on the Plankton Dataset

Model CaffeNet Vgg-19 Res-19 Res-50 Res-101

Top-1 accuracy (%) 74.5 60.6 70.7 72.9 74.7

Top-5 accuracy (%) 94.6 89.7 93.6 95.7 95.9

Model size (MB) 224.0 547.2 44.0 93.0 173.4

Frame rate (fps) 16.9 2.9 12.4 2.7 0.9

rate. As we clarified above, CaffeNet and Vgg-19 have nearly the same micro
structure, while ResNet is much more different from them. It is shown that
Vgg-19’s result is worse than CaffeNet’s with more convolutional layers. As for
ResNet, the more convolutional layers there are, the higher the accuracy we get.
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As a result, we cannot get final conclusion whether more conventional layers
help to improve the classification accuracy for the Plankton Dataset by this
experiment.

We hold the view that this is because the Plankton Dataset is a small scale
dataset. As a result, CaffeNet has less parameters than other nets but can be
trained better. To prove our inference, we design the research process in below.

The ILSVRC2012 dataset which contains 141 GB images of 1,000 classes is
used to train all the nets instead of using the Plankton Dataset directly. After
the models hit limits on ILSVRC2012, the weighs of previous layers in these nets
that we finally saved are adopted to learn about the features of images in the
Plankton Dataset. This method is called “finetune” in common. The results are
shown in Table 2.

Table 2. Models performance after finetune

Model CaffeNet Vgg-19 Res-19 Res-50 Res-101

Top-1 accuracy (%) 77.7 74.1 78.5 76.2 76.8

Top-5 accuracy (%) 96.1 95.2 95.4 96.1 96.8

After finetune, we can see all the nets make significant progress than training
on the Plankton Dataset directly, and the degeneration phenomenon that deeper
models get lower accuracy is more obvious. We can see that Vgg-19 has a worse
result but more layers than CaffeNet, comparing both Top-1 and Top-5 accuracy.
Res-19 has the fewest layers but the highest Top-1 accuracy, while the Top-5
accuracy of different ResNet models are nearly the same.

The comparison experiment shows that the deeper and advanced models
do not lead to better results on the Plankton Dataset. Residual connection does
not make significant progress than CaffeNet in the experiment. And models with
proper layers can help to get a better result.

Comprehensively speaking, the mass data collected by underwater camera
calls for more efficient model which takes less storage space, runs more rapidly
and keeps a proper accuracy. The new model should take the hidden degeneration
into consideration.

4 Propose Framework

4.1 Key Points to Make CNN Smaller

In fact, when researchers try to make CNN architecture deeper with the limited
storage of GPU, lots of tricks have been applied in different models to make them
smaller. Here we conclude some key points on designing efficent architecture
[15,17]:
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First, use smaller filter instead of 5 × 5, 11 × 11 convolutional filter.
Because a 5 × 5 convolutional layer has the same sense field as two cascaded
3 × 3 convolution-al layers, and the latter method reduce computation because
3 × 3 + 3 × 3 < 5 × 5. So we can find that Vgg-19 only uses 3 × 3 filter rather
than AlexNet with 5 × 5, 11 × 11 filters.

Second, avoid adding fully-connected layers. Fully-connected layer has much
more parameters than convolutional layer. One of the alternative methods is to
use convolutional layer with global average pooling, but this can lead to loss of
accuracy. This trick is also adopted by He in [5], but he adds one fully connected
layer at last.

Third, using inception to enrich nonlinear representation of feature maps.
The former two ideas are decreasing as more parameters as possible, but this
will make accuracy decrease as well. Motived by SqueezeNet [7], we try to use
more 1 × 1 inception structure to keep the accuracy with least cost.

Based on key points listed above, we proposed a more efficient framework for
the Plankton Dataset.

4.2 Framework Architecture

We now introduce the CNN architecture we proposed in Fig. 5. The Model con-
tains 14 convolutional layers in total. To squeeze the size, we do not use any
fully-connected layers. All the convolution layers are designed with filters smaller
than 3 × 3.

However, this may increase classification error. So 1 × 1 inception structure
are adopted to maintain the accuracy.

According to the hidden degeneration we discover, the depth has an optimal
value for the Plankton Dataset. We increase the net layer by layer to and finally
choose the 14-layer model. Some of experiments are shown in Table 3.

Table 3. The framework with different layer numbers

Model 12 layers 14 layers 16 layers 18 layers

Top-1 accuracy (%) 74.6 76.4 76.3 76.0

Top-5 accuracy (%) 94.8 96.2 96.0 96.1

As mentioned above, SqueezeNet [7] proposed by Berkley researchers also
use the 1 × 1 inception structure and they call two cascaded layers as Fire
module, but they also use late downsample and different convolutional filter size
compar-ing with our architecture. We conclude the results of different models in
Table 4.

Our architecture is only 1.5 MB, and can reach real time operation rate of
32.2 fps with nearly no loss in classification accuracy.
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Fig. 5. There are mutiple CNN models used in the Plankton Dataset.
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Table 4. Plankton classification comparision

Model Ours CaffeNet Res-19 Res-50 Res-101 SqueezeNet

Top-1 accuracy (%) 76.4 77.7 78.5 76.2 76.8 74.9

Top-5 accuracy (%) 96.1 96.1 95.4 96.1 96.8 95.8

Model size (MB) 1.5 224.0 44.0 93.0 173.4 3.1

Frame rate (fps) 32.2 16.9 12.4 2.7 0.9 18.4

5 Conclusion

The development of CNN has been quite rapidly recently, however, for the spe-
cific problem such the Plankton Dataset, advanced models generlize not so well.
Lots of work remains to be done for researchers.

In this paper, we compare multiple models to classify planktons. We find that
the deeper and advanced models do not lead to better results on the Plankton
Dataset. What’s worse, deeper nets take up more storage space and run more
slowly, so that cannot be actually deployed in the seafloor observation network.
To solve this problem, we proposed a framework inspired by concluding the
common skills to make CNN smaller, our architecture archive a real time process
speed and nearly no loss of classification accuracy.
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