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Abstract. Data-driven feature learning has achieved great success in
various visual recognition tasks. However, to handle millions of train-
ing image/video data efficiently, a high performance parallel computing
platform combining with powerful machine learning algorithms plays a
fundamental role in large-scale feature learning. In this paper, we present
a novel large-scale feature learning architecture based on Slow Feature
Analysis (SFA) and Apache Spark, where the slowness learning principle
is implemented to learn invariant visual features from millions of local
image patches. To validate the effectiveness of the proposed architecture,
extensive experiments on pedestrian recognition have been performed on
the INRIA pedestrian dataset. Experimental results show that the per-
formance on pedestrian recognition can be promoted significantly with
the growth of training patches, which demonstrates the necessity of large
scale feature learning clearly. Furthermore, in comparisons with classi-
cal Histogram of Oriented Gradients (HOG) and Convolutional Neural
Network (CNN) features, the slow features learnt by large-scale training
patches can also achieve comparable performance.
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1 Introduction

Extracting robust visual feature is an essential step towards achieving high
performance in real-world visual recognition tasks. Recently, large-scale feature
learning has achieved great success in various visual recognition tasks, in which
powerful machine learning algorithms are integrated closely with high perfor-
mance parallel computing platforms, clusters or GPU, so as to support data
intensive computing from millions of training images. In this paper, we propose
a novel large-scale feature learning architecture based on Slow Feature Analysis
(SFA) [15] and Apache Spark [2], where the slowness learning principle is imple-
mented to learn invariant visual features from millions of local image patches.

SFA is an unsupervised feature learning method, which intends to learn the
invariant and slowly varying features from input signals. It has been successfully
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used for action recognition [12,21], trajectory clustering [20], handwriting digi-
tal recognition [7] and dynamic scenes classification [14]. Recently, Escalante-B
and Wiskott [16] extend the SFA to supervised dimensionality reduction and
the notion of slowness is generalized from temporal sequences to training graphs
(a.k.a GSFA). Different with previous work, e.g., Sparse coding [9] and Autoen-
coder [6], most of which learn features to minimize the reconstruction error,
we utilize the GSFA to explore the neighbor relationships in large-scale local
patches from a view of manifold learning, where the learnt features will encode
the intrinsic local geometric structures existing in a large number of training
local patches.

Feature learning by the GSFA is to construct a feature space, in which the
nearby points in original space will have similar locations. Thinking about a gray
image with 16x16 pixels, and the value of each pixel ranges from 0 to 255. It
means that there may exits 2562° possibilities [19] in the input space. Thus, the
feature space learnt with limited data may have two issues: (1) Losing mush use-
ful information makes visual samples belong to different patterns locate nearly
in the feature space, i.e., inaccuracy. (2) Incomplete distribution of the training
samples makes the learnt features are not effective in practical application, i.e.,
overfitting. On the other hand, it is the most important step of GSFA to con-
struct the local neighbor relation graph in input space. Such graph is usually
constructed through finding the top k nearest neighbors (k-NN). The hypothe-
sis, near patches have similar patterns, is established only with large-scale data.
While the inaccurate k-NN results will result in inaccurate slow feature functions.

As mentioned above, it is necessary to learn robust features with large-scale
data. Meanwhile, relation graph construction in the input space is the key step of
GSFA. However, it is a O (n?) problem [13] to construct it with k-NN searching.
So it is a computational challenge with such large-scale data (about 10 million in
this paper). The available of high performance hardware and parallel computing
platform make it possible to alleviate this problem. Now, Hadoop [1] and Spark
[2] attract much attention in big data tasks. The advantages of Spark, i.e., in-
memory computation, sufficient APIs and good compatibility, make it faster and
more convenient than MapReduce in Hadoop. Recently, some projects on deep
learning with Spark are released, such as CaffeOnSpark [17] and SparkNet [10].

Motivated by above reasons, in this paper we construct a parallel architecture
for large-scale slow feature learning using Spark. In summary, the efforts of this
paper includes:

(1) We present a new large-scale feature learning architecture based on SFA and
Spark, which is used to train invariant features with more than 10 million
of local patches. The task can be completed efficiently within 140 h.

(2) We study the effect of the quantity of training patches for the visual recog-
nition task on pedestrian recognition based on this architecture. The exper-
imental results demonstrate that the performance is indeed improved signif-
icantly with the growth of training patches consistently.
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(3) The learnt slow features can achieve superior performance than that of clas-
sical hand-crafted feature, i.e., Histogram of Oriented Gradients (HOG) [3]
feature, which validate the effectiveness of large-scale slow feature learning.

2 Method

In this section, we first give a brief introduction on SFA,| mainly about its essen-
tial problem and mathematical representation. Then, we explain the details
about the parallel computing architecture for large-scale SFA with Spark.
Finally, we will discuss how to use the learnt slow feature functions for an
instance of visual recognition tasks, i.e., pedestrian recognition.

2.1 Slow Feature Analysis

Thinking about an object move through one’s visual field, the signals fall on his
retina change rapidly. However, the relevant abstract information, e.g. identity,
changes slowly in a timescale [16]. It is known as slowness principle which first
formulated by Hinton in 1989 [5]. Based on the slowness principle, SFA is to
learn a group of slow feature functions to transform the input signal to a new
feature space, in which the transformed signal varies as slow as possible. It is first
proposed by Wiskott [15]. GSFA [16] is the extension of SFA, which generalizes
the slowness principle from sequences to a training graph. Because the lack of
temporal information in the training local patches, we adopt the GSFA to learn
slow features in this paper. Mathematically, GSFA is formulated as follows:

Given a training graph G = (V, E) with a set of nodes V = {x(1),..,xz(N)}
and a set of edges E := (x(n),x(n’)), where (n,n’) denotes a pair of samples
with 1 < n,n’ < N. GSFA aims at learning a group of input-output functions
{g;},1 < j < J such that the J-dimensional output signals y;(n) = g;(x(n))
have the minimum difference with their nearest neighbors,

L 1 2
minimize A; = 4 D na (g5 (0') =y (n)) (1)
s.t. 1
0 Z vpy;(n) =0 weighted zero mean , (2)
1
) Z vn (y; (n))? =1 weighted unit variance (3)
1 . .
0 Z vnyi(n)y;(n) =0 weighted decorrelation , (4)
with

R = Zvn,n/ and Q = ZV” , (5)

n,n’ n
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where v and v denote the weight of node and the weight of edge respectively.
And 7, s = Yo/, means that the edges are undirected. Constraint (2) is used to
make constraint (3) and (4) with concise form. Constraint (3) avoids the trivial
solution. And constraint (4) ensures that different functions g; take different
properties of the input signal. Meanwhile constraint (4) enforces the functions
g; are ordered based on their slowness, in which the first is the slowest one.

For the linear GSFA, g¢,(x) = w]Tsc. This optimization problem equals to
solve a generalized eigenvalue problem,

AW = BW A, (6)
with

A= 23 (@) — 2(m)(@(n') — 2(n)" ™)

n,n’

and

B= g S va(@(n) — &) (z(n) — 7)7 (8)

where Z = (1/Q) Y_, vhx(n) is the weighted mean of all the samples. For the
nonlinear GSFA, the inputs can be firstly mapped to a nonlinear expansion space
and then solve the problem with the steps in the linear case. The nonlinear
expansion function is defined by

h(z) := [hi(x), ..., ha ()] . 9)

So the slow feature functions of GSFA can be calculated with three steps:

(1) Construct the undirected graph G = (V, E); and confirm the weights of
nodes and edges. In this paper, v, = 1 and ¥, = 1/Negges-

(2) Map the inputs to a nonlinear space with a nonlinear function and centralize
them. In this paper, we use the quadratic expansion. For a I-dimensional
input signal, h(x) = [z1, ..., 21, T121, T1T2, ..., T12 1]

(3) Solve the generalized eigenvalue problem AW = BWA. The eigenvectors
corresponding to the first J smallest eigenvalues are selected as slow feature
functions.

2.2 Large-Scale SFA in Spark

The proposed parallel computing architecture for large-scale SFA runs on a clus-
ter consists of 10 machines with 96 CPU cores, as shown in Fig. 1, in which one
for master node and the other nines for worker nodes. And the total memory is
510 GB. Since the advantages of Spark in big data processing, we choose it as
our computational platform to implement SFA with large-scale data. For a Spark
platform, the core concept is Resilient Distributed Datasets (RDD) [18], which is
a distributed memory abstraction for in-memory computations in cluster. Fur-
thermore, the application running on Spark consists of a driver program and
many executors, in which driver program runs the main function and executors
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different tasks. The driver program launches different tasks to workers with

a variance of RDD transformations and actions (shown in the brace of Fig.1).
The launched tasks will be implemented by the executors in each worker, and

the

results will return to driver program or produce new RDDs. Our large-scale

SFA parallel architecture based on above principle as well.

map

union

Driver RDD (Resilient Distributed Dataset): filter
distributed memory abstraction collect

reduce

RAM

Executor Executor [ Executor
Master Worker, ll Worker, Worker,

Fig. 1. An overview of the computing platform with Spark.

An overview of the architecture for large-scale SFA is shown in Fig.2. We

may summarize the large-scale SFA with Spark as five tasks:

(1)

(2)

Data loading and patches extraction. Load the images data from hard disks
to Spark RDD. Then extract patches from each image by dense sampling
in parallel. The extracted patches will be stored as new Spark RDDs.
Pre-processing. Implement PCA whitening on extracted patches to remove
the redundant information and make the patches with zero mean and unit
variance. It will also bring convenience for the following operations. Its result
(a transformation matrix) will act on the input of nonlinear expansion.

(3) Graph construction. It is the core step in GSFA. We construct the graph

with k-NN searching in parallel, in which the broadcast variables are used
to improve the efficiency and the patches are divided into multiple RDDs
(see Fig. 2) to satisfy the limitations of memory resources. FLANN! is used
for k-NN searching locally (more details in Algorithm 1). The k-NN results
and their source patches are used to compute the differences matrix after
nonlinear expansion.

(4) Nonlinear expansion (Eq. (9)). Implement a quadratic expansion to the pre-

processed patches data in parallel.

! http://www.cs.ubc.ca/research/flann/.
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Fig. 2. Diagram of large-scale SFA in Spark for pedestrian classification. The upper
part is the architecture for large-scale SFA in Spark. The lower part shows how to
extract feature using slow feature functions in pedestrian classification. Two methods
(with max pooling or not) are tested in experiment. (Color figure online)

(5) Solve the generalized eigenvalue problem. Firstly, compute the covariance
matrices (Egs. (7) and (8)) in parallel. Then collect the matrices from Spark
RDD to the memory of master node to calculate the eigenvalues and eigen-
vectors.

2.3 Pedestrian Recognition Using Slow Feature Functions

Pedestrian recognition is one of the essential tasks in visual object recogni-
tion. Instead of detecting pedestrian over whole images where the performance
depends not only on the feature itself, but also on the post-processing step, e.g.,
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Algorithm 1. Graph construction: k-NN searching in Spark

Input: sc: the spark context which defines the entry of a spark application; rdd_total:
a RDD contains all the extracted training patches; rdd_query: a RDD contains the
query patches (its size is determined by the size of memory); k: the number of
nearest neighbors to search.

Output: rdd_knn: a RDD contains the top k nearest neighbors of each query patch.

1: query-data_broadcast := sc.broadcast(rdd_query.collect());

2: rdd_knn_local := rdd_total.map(labmda element : {

3:  flann := FLANN();

4 if isComingFromDif ferentImages(element, query_data_broadcast)
5: knn_local := flann.nn(element, query_data_broadcast, k, kdtree);
6 end if

7. return knn_-local;

8: });

9: rdd_knn_local.cache();

10: knn_global := rdd_knn_local.treeAggregate();
11: rdd_knn_local unpersist();

12: rdd_knn := sc.parallelize(knn_global);

13: return rdd_knn

Non-Maximum Suppression (NMS) [11], we only perform binary classifications
over a set of candidate windows extracted from whole images, for a straight
evaluation of the effectiveness of the slow features.

As shown in the lower part of Fig.2, the learnt function can be seen as a
filter (red block). For a candidate window (input), it is filtered using all the
learnt functions with a specific stride that will generate a number of feature
maps where each feature map corresponds to one slow feature function. Then, a
nonlinear normalization function, e.g., the Sigmoid function used in this paper,
is performed to clip the responses with large values. After that, we test two
methods to generate the final feature vector: (1) concatenate the normalized
feature maps directly; (2) execute max-pooling operation over a local region on
the feature maps before the concatenation. To predict whether there is a person
in the input window or not, a linear Support Vector Machine (SVM) is trained
as the classifier.

3 Experimental Results

In this paper, we select the INRIA Person dataset [3] as the training and test
dataset. It totally includes 2416 positive training windows and 1126 positive
test windows, where each window corresponding to one person annotated in the
dataset. To generate negative windows, we randomly extract ten windows per
training negative image (12180 windows) and five windows per test negative
image (2265 windows). The size of each window is 96x160 pixels.

We perform the slow feature learning with two strategies, i.e., unsupervised
SFA and supervised SFA. For the supervised SFA, three kinds of methods are
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implemented as shown in the lower part of Table 1. The key parameters in train-
ing SFA are chosen as follows: patch size is 16x16 pixels, k in k-NN searching is
3 and dense sampling stride is 4. When generate final features, we set filtering
stride to 8 and window size to 64x128 pixels. For different numbers of selected
functions (as shown in Table 1), the dimensions of final features are 2100, 2100,
13000 and 3150, respectively. Figure 3 shows the results of the visualization of
the first 25 slow feature functions learnt by supervised and unsupervised learning
strategies.

Optimal excitatory stimuli Optimal inhibitory stimuli Optimal excitatory stimuli Optimal inhibitory stimuli
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Fig. 3. Visualization of learnt slow feature functions.(a) The slow feature functions
learnt by negative samples. (b) The slow feature functions learnt by positive samples.
(¢) The slow feature functions learnt by unsupervised SFA.

We study the relationship between the populations of training patches and
the classification performance, under the case of unsupervised SFA. From Fig. 4,
it clearly shows that the classification performance can be improved (precision is
increased and miss rate is decreased) with the growth of training patches, which
indicates that the large-scale training samples enhance the ability of the learnt
slow features for pedestrian recognition. Meanwhile, compare the elapsed time
of SFA learning between single-core machine and our proposed SFA+SPARK
architecture, the speed-up ratio ranges from 3.56 to 14.67 when the number of
training patches increases from 6k to 120k. It indicates that the efficiency has
been improved significantly, especially when the data size is very large. And it
can handle more than 10 million local patches within 140 h efficiently.

We compare both unsupervised and supervised SFA with the HOG feature
and CNN feature. In experiment, we use the scikit-image? library to extract

2 https://github.com /scikit-image /scikit-image.
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Fig. 4. Effect of the number of training samples on classification performance. The
variations of precision and miss rate is shown on the left side, while the variation of
the number of false positives located on the right.

Table 1. Comparison on classification performance with other features.

Methods #Patches |#Slow Precision|Miss rate|#False
feature Positives
functions (FP)

HOG [3] - - 0.9773 |0.0521 18

CNN [8] - - 0.9862 |0.0415 |0

Unsupervised SFA 11 millions |20 0.9673 0.0680 34

Supervised SFA (positives w/o max pooling) |1.8 millions|20 0.9650 |0.0777 31

Supervised SFA (positives with max pooling)|1.8 millions|200 0.9703 0.0583 35

Supervised SFA (positives & negtives) 11 millions {30 0.9800 |0.0477 |14

HOG feature, in which the cells per block is 2 x 2, pixels per cell is 8 X 8, number
of orientations is 9 and the stride is 8. So the dimension of HOG feature is 3780.
While the CNN feature is trained on the INRIA dataset using Caffe®. We select
the output of fc7 as the final features which dimension is 4096.

The classification results of different methods are list in Table 1. The perfor-
mance of our method trained with both the positive and negative samples under
supervised learning strategy is superior to the performance of the HOG feature.
However, it is worse than the CNN feature. It may because the CNN extracts
features with multiple layers that can capture much high-level information. The
hierarchical SFA [4] learning architecture may be introduced into our future
work to improve the performance. From the table, we can also conclude that,
the performance of slow functions trained with both the positive and negative
samples is superior to that of the slow features trained only using the positive
samples. Furthermore, along with the increasing of the number of slow feature
functions, the max pooling may achieve more superior performance, compared
to the feature representation obtained by directly concatenation. In summary,
compared with the HOG feature and CNN feature, the comparable performance
validates the effectiveness of our large-scale SFA+SPARK learning architecture.

3 https://github.com/BVLC/caffe.
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4 Conclusion

In this paper, we present a large-scale feature learning architecture based on SFA
and Apache Spark. It is used to learn invariant visual features from more than 10
million of local patches under supervised and unsupervised learning strategies.
Then, we extract features using the learnt slow feature functions to do pedes-
trian classification on the INRIA person dataset. The experiment results indicate
that the efficiency of the SFA learning using large-scale data can be improved
greatly with our proposed parallel computing architecture. It also demonstrates
that the classification performance can be improved along with the increasing of
the number of training patches. Furthermore, the performance of learned slow
feature is comparable to the classic HOG feature and CNN feature in pedestrian
classification.
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